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Abstract

The handwritten signature has been identified as one of
the most popular biometric means of human consent and/or
presence for transactions held by any number of physical
or legal entities. Automated signature verification (ASV),
merge popular scientific branches such as computer vision,
pattern recognition and/or data-driven machine learning
algorithms. Up to now, several metric learning approaches
for designing a writer-independent signature verifier, have
been developed within a Euclidean framework by means of
having their operations closed with respect to real vector
spaces. In this work, we propose, for the first time in the
ASV literature, the use of a meta-learning framework in the
space of the Symmetric Positive Definite (SPD) manifold as
a means to learn a pairwise similarity metric for writer-
independent ASV. To begin, pairs of handwritten signatures
are converted into a multidimensional distance vector with
elements corresponding SPD distances between spatial seg-
ments of corresponding covariance pairs. We propose a
novel meta-learning approach which explores the structure
of the input gradients of the SPD manifold by means of a
recurrent model, constrained by the geometry of the SPD
manifold. The experimental protocols utilize two popular
signature datasets of Western and Asian origin in two blind-
intra and blind-inter (or cross-lingual) transfer learning ap-
proach. It also provide evidence of the discriminating na-
ture of the proposed framework at least when summarized
against other State-of-the-Art models, typically realized un-
der a framework of Euclidean, or vector space, nature.

1. Introduction

Signature verification (SV), the authentication or consent
of human actions by means of the handwritten signature,
is a captivating biometric task [48], usually performed by
a Forensic Handwriting Examiner. Today, automated SV
is an active research field, since it incorporates a unique

kind of behavioral data, derived by a combined product of
a neuromotor skill and a taughting system [2]. Their nat-
ural variability poses an important element for competent
human verification [46], by merging diverse scientific fields
which models the resulted cognitive task usually depicted
by an optical pen trace [13].

Surveys conducted on SV systems up until now [20, 36,
48], may categorize the systems as offline/static and on-
line/dynamic, according to the acquisition mode, i.e. digital
images or time-indexed feature sequences. Another catego-
rization that exists for SV systems depends on the approach
towards the verifier [9,30,45,47,53]. A system that operates
on a per-writer basis, is termed Writer-Dependent (WD),
while a system that learns to discriminate similarities, or
not, between signature pairs is termed Writer-Independent
(WI). Thus, model differences are formed, usually in the
form of the dichotomy transform (DT) [41], where a fea-
ture space F ⊆ Rd that contains any two pairs of signa-
ture representations (si, sj), is mapped to a distance space
D = |si − sj | ⊆ Rd

+, termed (dis)similarity space, that
contains the element-wise distances of any two feature vec-
tors si and sj . This, and transformations of similar nature,
creates two distributions: a) the ω+ or positive distribution,
composed by the genuine-to-genuine pairs, and b) the ω− or
negative distribution, encompassing the genuine-to-forgery
pairs.

An important concern when a binary WI-SV verifier is
designed addresses the way that the negative distribution
ω− is formed, given the fact that there are numerous types
of forgeries. A literature search [34–36, 44, 45, 53], shows
that forgery samples may be assigned as a) Random or b)
Simple if the forgery level is simplistic and c) Simulation:
or d) Skilled if the forger mimics the genuine style of hand-
writing. Further, an unbiased assessment of any given WI-
SV verifier, requires that the signature pairs used for the
development stage should not be participants in the testing
stage.

In this paper, we formulate the SV problem as a metric
learning problem in the space of SPD matrices by means
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of the Mahalanobis distance, for which we develop a meta-
learning framework in order to learn the SPD matrix pa-
rameter required by the distance formula. To that end we
propose:

1. A novel mapping for pairs of SPD matrices into a dis-
tance vector, termed hereafter as the SPD Distance
Pyramid (DP). The intuition behind DP is that, con-
trary to measuring a single distance between two SPD
matrices, we map the original pairs of signature co-
variance matrices to a distance vector with elements
an assortment of SPD related distances. One may con-
template an analogy between the typical DT, that maps
pairs of features vectors to the (dis)similarity space. In
our case, both the representation as well as the map-
ping to the distance space have a manifold nature; im-
ages are coded into SPD matrices while pairs of them
are mapped into a distance vector with elements SPD
measures.

2. A novel offline WI-SV metric Meta-Learning al-
gorithm, called SigmML, which utilises the meta-
learning network of [17], with the Mahalanobis dis-
tance. The objective is to calculate a covariance matrix
which will minimise the distance of similar signatures
while maximize dissimilar ones. We modify the learn-
ing algorithm of the network to jointly train it with the
covariance parameter. As the task at hand utilizes data
that are not easy to acquire, we take advantage of them
with meta-learning, which exploits underlying infor-
mation of the gradients produced from the SPD param-
eter. Although the SPD manifold has been used in the
formulation of an SV system in [54], it is WD, without
meta-learning or as a metric learning task.

3. The use of three ω− assemblies in order to eval-
uate the efficiency of the proposed WI-SV archi-
tecture. We realize the following ω− implementa-
tions: a) only genuine-to-skilled forgeries, b) genuine-
to-random and genuine-to-skilled forgeries in equal
amount and, c) only genuine-to-skilled forgery pairs.
We utilise disjoint training, validation and testing sets.
Additionally, the use of blind learning and testing sets
allows us to proceed with the use of genuine-to-skilled
forgery pairs without any bias induce.

Our source code is available at a https://bitbucket.
org/agiaz/sigmml for reproducibility purposes.

Section 2 summarize the literature for metric learning
based WI-SV systems. Section 3 provides an overview of
the proposed architecture and the steps needed for the for-
mation of DP vector. Section 4 reviews the elements of
the SPD Riemannian manifold. Section 5 provides all the
necessary details regarding the proposed SPD metric meta-
learning framework. Section 6 describes the experimental

protocol and provides the results. Finally, section 7 pro-
vides the conclusion.

2. Metric learning in SV
Metric learning has been noted to be among the main ap-

proaches for SV systems. It is easy to understand why; as
a principle in SV, learning a metric which separates similar
from dissimilar objects [18] is approachable, easy to under-
stand and can be formulated with seemingly any kind of
algorithmic basis. As seen in [20], metric learning based
algorithms are performed with the assumption that the ap-
propriate representation to perform the SV task belongs to
a vector space, regardless of whether the vector representa-
tion of a signature image is either learned or handcrafted.
Although this assumption has produced a number of State-
of-the-Art (SOTA) algorithms, as seen in Table 1, it is not
necessarily the best approach. As seen in [54], even though
it is not a metric learning approach and it is a WD frame-
work, the SPD representation of the signature images can
provide equally efficient results.

In Table 1, we provide a concise summary of the SOTA
algorithms for the SV task formulated under a metric learn-
ing framework, the features used to generate the vector rep-
resentation and the datasets utilized for training and testing.
It is easy to observe that DCNN representation learning is
now the dominant approach, since the deep learning nature
could identify and extract features for which there may be
no handcrafted algorithm yet. Most of the presented meth-
ods were trained and tested on multiple datasets, which pro-
vides a measure of their ability to discriminate between gen-
uine and forgery signatures, internally on the dataset they
were trained and externally on other datasets that were used.

3. Overview of the Proposed Architecture
Figure 1 depicts a graphical overview to the proposed

WI-SV framework. To begin, any signature image Iraw is
first subjected to a typical preprocessing stage, described in
the literature [55]. In summary, it is comprised from the fol-
lowing steps: binarization, using Otsu’s method, followed
by a thinning operation. The resulted thinned binary image
is the mask operator which extracts the relevant gray-scale
information I from the original image Iraw. Next, a total of
ten image filters described by Eq. (1) is applied in I in order
to create a corresponding ten layered image stack, F (I).

F (I) =

{
I, |Ix|, |Iy|,

√
I2x + I2y , tan

−1

(
Iy
Ix

)
,

|Ixx|, |Iyy|, |Ixy|, x, y
}

(1)

Each layer contains the grayscale intensity I , the di-
rectional first and second order derivatives Ix and Iy ,
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1st Author #Ref Method/Features Datasets

Maergner [33]
Multiple classifier system (MCS) /

Graph Edit Distance (GED) + DCNN features
GPDSsynthetic [14], MCYT-75 [38],

UTSig [44], CEDAR [24]
Maergner [32] MCS / GED + Inkball models GPDSsynthetic, MCYT-75

Soleimani [43]
Deep Multitask Metric Learning (DMML) /

Histogram of Oriented Gradients (HOG),
Discrete Radon Transform (DRT)

UTSig, MCYT-75,
GPDSsynthetic,

GPDS960GraySignatures [15]

Liu [28]
Deep Convolutional Siamese Network (DCSM) /

Mutual Signature DenseNet (MSDN)
CEDAR, GPDSsynthetic,

ChnSig [28]

Zhu [52] Point-to-Set (P2S) Distance / DCNN
ChiSig, CEDAR, MCYT-75,

BiosecurID-SONOF [16],
SigComp11 [29]

Hamadene [19]
Feature Dissimilarity Measure Thresholding (FDMT) /

Contourlet Transform (CT) CEDAR. GPDS300 [8]

Parcham [40] CBCapsNet / CBCapsNet
CEDAR, GPDS300,

GPDSsynthetic, BHsig260 [39]

Hanif [21]
Mahalanobis Distance / HOG
+ Local Binary Patterns (LBP)

+ Vector of Locally Aggregated Descriptors (VLAD)
CEDAR, BHsig260

Chattopadhyay [12]
Self-Supervised pre-trained

+ transfer learned ResNet-18/ SURDS BHsig260

Lin [27] Euclidean Distance / 2-Channel-2-Logit (2C2L)
GPDSsynthetic,

CEDAR, BHsig260

Lu [31]
Adaptive Distance Fusion (ADF) /

Spatial Transformer Network + Attentive Recurrent Comparator
CEDAR, GPDSsynthetic,

BHsig-260

Natarajan [37] Euclidean distance / SigNet based Siamese Network SigComp11, CEDAR,
BHsig260

Viana [49]
Euclidean distance /

Multi-task handwritten signature representation learning (MHSRL)
GPDSsynthetic, CEDAR,

MCYT-75

Wan [50] Euclidean distance / SigCNN
GPDSsynthetic, MCYT-75,
CEDAR, CSIG-WHU [50]

Ren [42]
Euclidean Distance /

Signature Graph Convolutional Network (SigGCN) CEDAR, BHsig-260

Huang [23]
Eucldiean Distance / Multiscale Global and

Regional Feature Learning Network (MGRNet) CEDAR, BHsig260, HanSig [23]

Table 1. Summary of the State-of-the-Art metric learning SV systems.

Ixx, Iyy and Ixy , the magnitude and direction of the gra-
dient and the normalized row x and column y for each sig-
nature trace pixel. It is noted that the evaluation of the sig-
nature image covariance matrix is only with respect to the
pixels of the signature trace I provided by the preprocess-
ing stage. The image covariance matrix C is then computed
(see supplementary). Hereafter, capital bold letters, e.g., C,
denote SPD matrices, while capital italic letters, e.g., X ,
denote symmetric matrices.

The Distance Pyramid. Let us recall the Rao’s Dis-
tance, in Eq. (2), as the distance between two SPD points
(Ci,Cj) induced by equipping the SPD Manifold with the

the Rao-Fisher metric [4].

d(Ci,Cj) =
∥∥∥logm((Ci)−

1
2Cj(Ci)−

1
2 )
∥∥∥
F

(2)

where, ∥ · ∥F is the Frobenius norm, and logm denotes the
matrix logarithm, computed by applying the element-wise
log function to the eigenvalues given by the spectral de-
composition of any real symmetric matrix X: logm(X) =
U log(D)UT .

Given a pair of covariance matrices (Ci,Cj), we can
now define their similarity vector representation, termed as
the Distance Pyramid (DP) vector, to be a set of real num-
bers with elements the union of local distances DP{a,b} =⋃
{d(Ci,Ck)a:b)} between corresponding (sub)SPD block
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Figure 1. Block diagram overview of the proposed meta learning framework. For any two signatures (Ci, Cj) that are mapped to S+
10, a

pairwise distance vector is computed based on the size of the windows and if they will be overlapping.

diagonal matrices Ci
a:b,C

j
a:b of the primary (Ci,Cj) co-

variance pair. An element d(Ci,Ck)a:b) of the DP{a,b}
is evaluated using Eq. (2) between two (sub)SPD pairs
(Ci

a:b,C
j
a:b) in which a : b points to the (sub)SPD,

block diagonal matrix of Ci with indices ranging from
a to b. Thus, setting {a, b} to a number of configu-
rations unfolds the DP structure to several dimensionali-
ties. For example, the DP{1,10} = {d(Ci,Ck)1:10)} =

d(Ci
1:10,C

j
1:10) asserts that the DP structure is a sin-

gle real valued number, while the DP{1,10},{1,3},{2,7} =

{d(Ci,Ck)1:10), d(C
i,Ck)1:3), d(C

i,Ck)2:7)} states that
the DP structure is comprised from three real valued num-
bers. For the purpose of this submission, we propose to ex-
plore two distinct DP structures by utilizing a moving win-
dow, that can either overlap with itself or not, and selects
(sub)SPD block diagonal matrices. The first one, termed
as non-overlapping DPNOL = DP{1,10},{1,5},{6,10} =

{d(Ci,Ck)1:10), d(C
i,Ck)1:5), d(C

i,Ck)6:10)} maps the
(Ci,Cj) covariance pair into a three dimensional vec-
tor, while the second one, termed as overlapping
DPOL = DP{1,10},{1,5},{2,6},...,{6,10},{1,7},...,{4,10} maps
the (Ci,Cj) covariance pair into a resultant eleven dimen-
sional vector. In Figure 2, we provide a toy example of the
process of creating two different DP vectors with a window
of size 5×5 in both overlapping and non overlapping modes
of operation.

4. Elements of the SPD Manifold

The space of all d-dimensional SPD matrices S+d is a
Riemannian submanifold [1, 10], as it is a non-vector space
of d2 dimensions, from which only d(d+1)/2 are indepen-
dent. The geometry of the manifold is frequently exploited
by equipping it with the Rao-Fisher metric [4], which al-
lows us to perform operations between two SPD operands
Y, Z, similar to the basic operations of addition and sub-
traction of the Euclidean space.

Figure 2. Toy examples of two DP vectors: Both red and dashed
green windows are used for the creation process of a DP over-
lapping vector DPOL = DP{1,5},{2,6},...,{6,10} with the use of
a 5 × 5 overlapping window. Only the green dashed windows
are used in the creation process of a DP non-overlapping vector
DPNOL = DP{1,5},{6,10} with the use of a 5× 5 non overlapping
window.

Points on the SPD manifold are mapped to the tangent
space of another manifold point, which is a vector space
with an inner product, to perform operations. The mapping
of an SPD point Y, to the tangent plane TXS+d , the vector
space of symmetric matrices, of a SPD point X, is computed
with the logarithmic map of Eq. (3) while the inverse, the
mapping of a tangent vector Y to the SPD manifold, use the
exponential map, by Eq. (4).

Y ≡ logX(Y) = X
1
2 logm

(
X− 1

2YX− 1
2

)
X

1
2 (3)
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Y ≡ expX(Y ) = X
1
2 expm

(
X− 1

2YX− 1
2

)
X

1
2 (4)

for which expm is calculated like logm, i.e., expm(X) =
U exp(D)UT, where exp denotes the element-wise ex-
ponential function. The Rao-Fisher metric induces the
geodesic distance between two SPD points, and its is the
Rao’s distance, formerly presented in Eq. (2).

An important concept in the optimization perspective of
machine learning is gradient descent, with which we opti-
mize a formulated objective function, l(x, y, w(t)), for the
task we wish to solve. Gradient descent basically utilizes
the gradients, ∇w(t)

l, generated by the differentiation of an
objective function w.r.t. some learnable parameters, w(t) in
order to update them in a way that optimizes the objective
function. For example, in the Euclidean space, updating
w(t) to w(t+1) is performed by adding a fraction (λ - learn-
ing rate) of the gradient, ∇w(t)

l, to the previous learnable
parameter, i.e., w(t), w(t+1) = w(t) + λ∇w(t)

l(x, y, w(t)),
where x, y are the input and output data. When the learnable
parameter belongs to the SPD manifold. e.g., W(t), gradi-
ent descent needs to utilize its’ tangent space, TW(t)

S+d .
In SPD manifolds, the gradient descent update step is per-
formed with the use of the retraction operation [1, 10],
in which a W(t) can be updated towards the direction
pointed by its’ gradient, ∇W(t)

, which actually resides in
its’ tangent space. The SPD retraction operation is given
by Eq. (5), which corresponds to the exponential map of the
SPD manifold. Usually, in popular deep learning libraries,
an automatic differentiation process is implemented [5,11],
which calculates gradients without caring about any kind of
preserving the structure of the learnable parameters, result-
ing in gradients that are not necessarily part of the tangent
space of any Riemannian manifold point. A workaround,
without the need to reimplement any part of the library, is
to use a projection operation, πM(·), that takes as input a
Euclidean vector, X, and projects it to the tangent plane of a
point M. For the SPD manifold, the projection operation is
given by Eq. (6). This leads to the frequent use of Eq. (7).

RW(t)

(
∇W(t)

)
= expW(t)

(
−λ∇W(t)

)
(5)

∇W(t)
≡ πW(t)

(
∇w(t)

)
= W(t)

(
∇w(t)

+∇T
w(t)

2

)
W(t)

(6)

RW(t)

(
∇w(t)

)
= expW(t)

(
−λπW(t)

(
∇w(t)

))
(7)

Gradient descent works well, reaching desirable values
for the objective function, as long as a diverse dataset of
sufficient size is used. It also works regardless of the data
used, as long as the objective function is differentiable w.r.t.
the learnable parameters. This leads to a disadvantage; the
gradient descent algorithms do not utilize any kind of infor-
mation from the data, which could be used to find a better
optima. To solve this issue, meta-learning was introduced.

Meta-learning in the SPD Manifold. In few words,
meta-learning is considered to be an algorithm that learns
how to learn [25]. In practice, it is a process, by means of
an algorithm/framework, that adapts and learns to update
the weights and biases of itself through a learning subsys-
tem it contains. Intuitively, meta-learning is similar to the
way humans adapt to new situations; they associate it to
another similar task they know of, by modifying their learn-
ing approach based on the requirements at hand [25]. In
the Euclidean space, Meta-learning has witness a number
of implementations, using recurrent networks [3,22,51], re-
inforcement learning [26] or simple neural networks [6, 7].
They have proven to be invaluable tools when it comes to
further enhance the ability of a system to perform a task,
especially in cases where data are sparse for a given task,
as they can leverage more information from them as stated
earlier.

For the Riemannian SPD manifold, there were no formu-
lations of a meta-learning framework until [17]. They pro-
posed the matrix LSTM (mLSTM), a variant of the LSTM
topology, that when given the gradient information ∇M of
an SPD parameter M, it can manipulate it without losing
it’s symmetric nature by utilizing the bilinear projection op-
eration, WT∇MW. The mathematical formulation of the
mLSTM is presented in Eq. (8) through Eq. (13):

I(t) = σ
(
WT

xiX(t)Wxi +WT
hiH(t−1)Whi

)
(8)

F(t) = σ
(
WT

xfX(t)Wxf +WT
hfH(t−1)Whf

)
(9)

O(t) = σ
(
WT

xoX(t)Wxo +WT
hoH(t−1)Who

)
(10)

C̃(t) = tanh
(
WT

xcX(t)Wxc +WT
hcH(t−1)Whc

)
(11)

C(t) = F(t) ⊙ C(t−1) + I(t) ⊙ C̃(t) (12)

H(t) = O(t) ⊙ tanh
(
C(t)

)
(13)

where the subscript (t) denotes the time step, Wab refers to
the weight for parameter a at equation b,⊙ is the Hadamard
product and X(t) refers to the symmetric data given to the
network, which in the case of the meta-learning system is
the gradient information, ∇M, of an SPD parameter M.
The matrices X,H, and C are of the same dimensional-
ity d and symmetric, i.e., X,H,C ∈ Symd, where Symd

is the d-dimensional space of Symmetric matrices, and
Wab ∈ Rd×d. Thus, the first ever meta-learning subsystem
has been formulated that operates with information from the
SPD manifold, defined by the Eq. (14) through Eq. (21), in
which M(t) is the SPD parameter to be optimized. In de-
tail, it utilizes two mLSTM networks, the first, mLSTMs

being responsible for the computation of the parameter up-
date while the second, mLSTMl computes the learning rate.

Sl,(t−1) =
[
Hl,(t−1), Cl,(t−1)

]
(14)

Ss,(t−1) =
[
Hs,(t−1), Cs,(t−1)

]
(15)

S(t−1) = Sl,(t−1) ⊙ Ss,(t−1) (16)
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Sl,(t) = mLSTMl

(
∇M(t)

, S(t−1)

)
(17)

Ss,(t) = mLSTMs

(
∇M(t)

, S(t−1)

)
(18)

U(t) = πM(t)

(
WT

s

(
Hs,(t) +∇M(t)

)
Ws

)
(19)

λ(t) = wT
l Hl,(t)wl (20)

M(t+1) = RM(t)

(
−λ(t)U(t)

)
(21)

In order to optimize the set
of the network parameters ϕ =
{Wxi,Whi,Wxf ,Whf ,Wxo,Who,Wxc,Whc,wl,Ws},
a two-part training algorithm is employed. It utilizes a set
of m SPD parameters, L(t) = {L(t),1, . . . ,L(t),m}, where
(t) denotes the parameter at time step t, that diminishes
unwanted training oscillations and an experience pool,
ψ, which stores previous knowledge and reused in every
learning epoch. The first part of the training procedure, the
observation stage, fills the experience pool with knowledge
from a Riemannian Gradient Descent algorithm, along with
the zero initialized network state S(0). In the learning stage,
the network is used to optimize the set of SPD parameters
for T steps, accumulating a global loss in each step. Once
completed, the gradient of the global loss w.r.t to ϕ, ∇ϕL
is computed and used to update the parameters of the
network, using the ADAM algorithm. If τ optimization
steps have been performed on any of the SPD parameters
of L(t), it and it’s corresponding network state S(t), are
reset to the identity matrix Id and the zero filled matrix
0d, where the subscript d denotes the rows and columns of
the two aforementioned matrices. Lastly, the set L(t) and
the state S(t) are inserted into the experience pool, and the
learning stage starts over.

5. Implementation
The proposed framework for WI-SV consists of two

parts: the meta-learning network of paragraph 4 and a
learnable covariance matrix M for the Mahalanobis dis-
tance in Eq. (22). We use the former to calculate the latter,
by introducing a modification of the original training algo-
rithm found in [17] in order to jointly train the optimizer
and calculate M. Algorithm 1 provides in detail the pro-
posed system implementation: Specifically, we introduce
an outer loop at the learning stage of the optimizer followed
by another loop that calculates the covariance matrix. With
this modification, we can invoke the learning stage multi-
ple times, such that both the meta-learning network and the
covariance parameter are improved in a similar rate. The
hyperparameters chosen for the optimization network are
also presented in a tabulated form in the supplementary.
For the training process, we opt to keep an equal popula-
tion of genuine-to-forgery and genuine-to-genuine samples
so as to avoid any bias from the ω+ and ω− distributions.
This was made by random sampling, while all the unpicked
ones formed the validation set.

Loss metric. We utilize the contrastive loss of Eq. (23)
as the objective function for filling the experience pool ψ
and updating the covariance parameter M. The objective
function needs to be modified in a way that accommodates
multiple calculations of it with multiple SPD parameters,
which for our case, we can simply perform a mean value
calculation of the loss function w.r.t the set of SPD parame-
ters L(t), as shown in Eq. (24).

d(xij,kl,M(t)) =
√
xTij,klM(t)xij,kl (22)

l(D,S,M(t)) =
1

|D|
∑

i,j,k,l∈D

(1− yij,kl)max(0, ζd − d)2

+
1

|S|
∑

i,j,k,l∈S

yij,kl max(0, d− ζs)2 (23)

L(D,S,L(t)) =
1

m

m∑
n=1

l(D,S,L(t),n) (24)

where D,S are sets of samples from the ω− and ω+ dis-
tributions, |D|, |S| are their cardinality, xij,kl corresponds
to the DP vector computed from the j-th and l-th samples
of the i-th and k-th writer accordingly, yij,kl is the label of
the corresponding DP vector which is 0 for dissimilar and
1 for similar pair of signatures, d in Eq. (23) refers to the
Mahalanobis distance of Eq. (22), and L(t) corresponds to
the batched SPD parameters required for the meta-learning
network’s training process to reduced training oscillations.

6. Experiments & Results
Datasets & Setups. Experiments were conducted, with

the use of two popular handwritten signature datasets of di-
verse origin. The first one is the CEDAR [24] dataset which
consists of 55 writers with 24 genuine and 24 skilled forgery
samples each. The second one is the Bengali part of the BH-
sig260 [39] (BHsig260-B) dataset, consisting of 100 writers
with 24 genuine and 30 skilled forgery samples each. In all
experiments, we learn the optimizer and the Mahalanobis
distance with a development set (training & validation) fol-
lowed by applying the testing set and measuring its effi-
ciency. Both development as well testing sets are blind, i.e.
they are disjoint. Having this in mind, we define two cat-
egories of dataset-oriented experiments. In the first, (i.e.
blind-intra) a 5-by-2 fold cross validation (CV) is applied,
meaning that on one fold, the development set is comprised
by randomly selecting a 50% of the dataset writers, while
the testing set is formed by the remaining 50%. For the
same fold index, we next exchange the roles of development
and testing set; and this is repeated 5 times. In the second,
(i.e. blind-inter or cross-lingual), one dataset is considered
as the development set while the other forms the testing set.

For both setups, we provide details on the formation of
the development set, that is the S,D populations of Eq. (23)
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Algorithm 1: Outline of the learning algorithm
Input: Rand. init. meta-learning optimizer

parameters ϕ. Rand. init. Mahalanobis
covariance parameter M(0). SPD
meta-learning network training batched SPD
parameter L(0) = {Id,1, . . . , Id,m} and the
corresponding mLSTM states
S(0) = {0d,1, . . . ,0d,m}. Experience pool
ψ = ∅

Output: Mahalanobis covariance parameter M(t)

while i ̸= observation_epochs do
Compute l with L(t) using Eq. (23) and∇L(t)

l.
Compute L(t+1) by Eq. (5).
L(t) ← L(t+1)

Insert {L(t), S(0)} into ψ.
end
while itr ̸= learning_iterations or convergence
do

while oitr ̸= optimizer_learning_epochs do
Randomly sample {L(t), S(t)} from ψ.
while step ̸= T do

Compute l with L(t), ∇L(t)
l

using Eq. (23).
Compute L(t+1) by Eq. (14)

through Eq. (21).
end
Compute L,∇ϕL by Eq. (24).
Update ϕ using the ADAM algorithm.
if t+ T > τ then

L(t) ← {Id,1, . . . , Id,m}
S(t) =← {0d,1, . . . ,0d,m}

end
Insert {L(t), S(t)} into ψ.

end
while litr ̸= learner_epochs do

Compute l with M(t),∇M(t)
l

using Eq. (23).
Compute M(t+1) by Eq. (14)
through Eq. (21).

end
Calculate validation metric v(t).
if v(t) ≈ v(t−1) for converge_epochs or v(t) ≥
0.99 then
convergence← True.

end
end
Return M(t).

which correspond to the ωD+ and ωD− classes. We des-
ignate with ωD+

WGG the set of genuine-to-genuine signature
pairs of any writer W that belongs to the development set.
Thus, the ωD+ class is comprised by concatenating all the

ωD+
WGG subsets of all developments writers. Let us also

define with ωD−
WGSF and ωD−

WGRF the genuine-to-skilled
forgery set and the genuine-to-random forgery set as de-
fined in the introduction. The ωD− class of the development
set is comprised by mixing these two subsets distributions
in different ratios. Specifically, if |D| is the cardinality of
the ωD+ category, then we are fixing the cardinality of the
ωD− category |S| equal to |D| by randomly sampling an
equal amount of genuine-to-forgery samples in order to not
induce any bias.

In this work, the ωD− category is formed under three se-
tups: In the first setup, named as (0%RF), the ωD− is com-
prised only by ωD−

WGSF samples, in the (50%RF) the ωD−

is comprised by a equal percentage of ωD−
WGSF and ωD−

WGRF

and finally in the (100%RF) the ωD− is comprised only by
ωD−
WGRF samples. For the blind-intra case, we partition the

development set of {ωD+, ωD−} to the training and valida-
tion sets {ωT+, ωT−} and {ωV+, ωV−}. Their cardinality
values, |T | and |V | were set to: |T | = 70%|S| and |V | =
30%|S|. For the cross-lingual case, the cardinality values,
|T | and |V | were set to: |T | = 90%|S| and |V | = 10%|S|.

The development set is employed in order to learn the
covariance matrix M of Eq. (22). For each writer of the
testing set, in both intra-or-inter-blind setups, we randomly
select 10 genuine samples as references. The rest of the gen-
uine along with the skilled forgeries are then used as ques-
tioned samples which form pairs with the ten references.
For each questioned sample, we compute its corresponding
distances and then, we select the minimum distance in order
to assign it a score. These scores, conditioned as genuine or
forgery are then used to calculate the writer’s Equal Error
Rate (EER%) through its Receiver Operating Characteristic
(ROC) curve, by finding the point in the curve where the
False Positive Rate and the False Negative Rate are equal.
We repeat this procedure 10 times and compute a mean,
user level EER%. Both for the blind-intra and cross-lingual
cases, we report the error rates by utilizing the three differ-
ent setups, mentioned to construct the negative distribution
of samples. In Table 2 we present the results, where the row
corresponds to the dataset and DP used for training, while
the column to the Random Forgery % (RF%) and dataset
used for testing. Cross-lingual testing is the result of the
latter training process, while intra-dataset EER% results are
calculated from the 5-by-2 CV procedure.

Inspecting Table 2, we notice that the DPNOL represen-
tation of BHsig260-B seems to have the best performance,
in both intra- and inter-blind-setups, when using 50% RF
for the ω− population, while for CEDAR, the best intra
dataset result is seen at the 50% RF mix as well, but the
best cross-lingual is seen in 0% RF. Following a similar
pattern, the best performance on both testing categories
of BHsig260-B DPOL is again at the 50% mix, while for
CEDAR’s overlapping DP vector is seen at the 0% RF. Al-
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RF% 0% 50% 100%
Training models BHsig260-B CEDAR BHsig260-B CEDAR BHsig260-B CEDAR

BHsig260-B: DPNOL 0.14 0.09 0.11 0.09 0.11 0.13
BHsig260-B: DPOL 0.08 0.09 0.07 0.02 0.07 0.05
CEDAR: DPNOL 0.08 0.12 0.11 0.08 0.13 0.09
CEDAR: DPOL 0.03 0.05 0.06 0.06 0.08 0.08

Table 2. Results on blind-intra- and cross-lingual-dataset testing EER (%) under the three different RF(%) setups.

1st Author #Ref Method / Features # Refs. CEDAR BHsig260-B

Liu [28] DCSM / MSDN 10 1.75 -
Hamadene [19] FDMT / CT 5 2.10 -
Parcham [40] CBCapsNet / CBCapsNet N/A 0 5.70

Hanif [21]
Mahalanobis Distance /
HOG + LBP + VLAD N/A 0 9.62

Chattopadhyay [12] ResNet-18 / SURDS N/A - 12.6
Lin [27] Euclidean Distance / 2C2L N/A 0 11.92
Lu [31] ADF / Spatial Transformer All 0 3.96

Natarajan [37] Euclidean Distance / SigNet N/A 0 4.38
Viana [49] Euclidean Distance / MHSRL 10 4.91 -
Wan [50] Euclidean Distance /SigCNN 1 0 -
Ren [42] Euclidean Distance / SigGCN 5 / 20 0 4.00

Huang [23] Euclidean Distance / MGRNet All 3.51 6.12
Ours, intra 100 RF% Mahalanobis Distance / DPNOL 10 0.09 0.11
Ours, inter 100 RF% Mahalanobis Distance / DPNOL 10 0.13 0.13
Ours, intra 100 RF% Mahalanobis Distance / DPOL 10 0.08 0.07
Ours, inter 100 RF% Mahalanobis Distance / DPOL 10 0.05 0.08

Table 3. Summary of State-of-the-Art results for metric learning SV systems with ours on the reported EER (%) metric.

though the eleven dimensional overlapping representation
performs better, the non-overlapping one performs remark-
ably well for a three element representation. Even so, DPOL

contains more information which is the most probable rea-
son as to why it performs better. In all cases, the error rates
are quite low, presenting minor differences with each other.
This could be the result of the random initialization of the
parameters, as some may have led to better optimas, but
weight initialization analysis and optimal parameterization
of the distribution used for the random initialization is out
of the scope of this paper.

Table 3 delivers the results of the 100% RF tests as a part
to a comparative summary of the WI-SV methods with met-
ric learning approaches found in the literature. We choose to
present the 100% RF population as we anticipate that when
an SV system is used outside of research environment, it
would be hard to collect skilled forgery samples. Motivated
by the low verification error results, we feel that our pro-
posed method can be considered, at least, to be a perfor-
mant approach to the challenging task of WI-SV. We run our
experiments on a NVIDIA-DGX equipped with four V100

GPU’s along with an RTX3060 Ti GPU.

7. Conclusion

In this work, we addressed writer independent signature
verification in the space of Symmetric Positive Definite ma-
trices under a metric meta-learning concept. First, pairs of
signatures were mapped to a vector with elements SPD dis-
tances, termed as the Distance Pyramid. These vectors are
used as the development data for the meta-learning signa-
ture verifier. The proposed system learns a covariance pa-
rameter M, of a Mahalanobis distance, and distinguishes
similar from dissimilar pairs, where the former must be
close to each other while the latter must be far away. The ex-
periments were performed with two datasets of diverse ori-
gin, in a blind intra and blind inter manner, with the results
indicating that our method is performant and efficient, with
a small number of parameters. Future work entails more
datasets and perhaps a meta-learning framework for optimal
parameterization and many other DP structures in order to
create more descriptive representations that advance signa-
ture verifiers.
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