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Abstract

This work introduces a multi-camera tracking dataset
consisting of 234 hours of video data recorded concur-
rently from 234 overlapping HD cameras covering a 4.2
mile stretch of 8-10 lane interstate highway near Nashville,
TN. Video is recorded in cooperation with Tennessee State
Department of Transportation and its policies. The video is
recorded during a period of high traffic density with 500+
objects typically visible within the scene and typical object
longevities of 3-15 minutes. GPS trajectories from 270 ve-
hicle passes through the scene are manually corrected in
the video data to provide a set of ground-truth trajectories
for recall-oriented tracking metrics, and object detections
are provided for each camera in the scene (159 million to-
tal before cross-camera fusion). Initial benchmarking of
tracking-by-detection algorithms is performed against the
GPS trajectories, and a best HOTA of only 9.5% is obtained
(best recall 75.9% at IOU 0.1, 47.9 average IDs per ground
truth object), indicating the benchmarked trackers do not
perform sufficiently well at the long temporal and spatial
durations required for traffic scene understanding. Video
data, scene information, and vehicle trajectories are made
publicly available at i24motion.org.

1. Introduction

Much concerted work has been spent on multiple object
tracking benchmarks in recent years, primarily from the per-
spective of pedestrian tracking in crowds [11, 35] or vehi-
cle tracking from an AV perspective [8, 16]. These datasets
generally have high object density, short scenes (1-2 min-
utes), and short object longevity (∼10 seconds), focusing

on high localization accuracy, precision and recall. As a
result they do not emphasize challenging aspects of long-
term tracking: appearance changes, long-term occlusions,
and increasing chance of fragmentation or ID swaps with
increasing track length.

Crucially, there is no existing multiple object tracking
dataset with a high object density (over 250), long mov-
ing object durations (over 5 minutes), and more than 25
overlapping cameras covering a single scene or scenario
at the same time. As a result, researchers cannot answer
whether existing tracking algorithms are suitable for track-
ing objects through dense scenes over tens of thousands of
frames, because there is no dataset to perform this evalu-
ation on. Such tracking is crucial in the context of traffic
science, where origin-destination information for individ-
ual vehicles and long-term vehicle behavior are paramount
for designing well-fitting models of human driver behav-
ior [24, 27]. It is our goal to provide a video dataset of a
different spatial and temporal scale than previous works to
enable object tracking research in this vein.

To this end, we present the Interstate 24 Video (I24V)
dataset. The dataset consists of a single scene, 1 hour in
duration, of 4.2 miles of interstate roadway, covered by
234 cameras with overlapping fields of view. Given the
scale of this dataset (over 2000 times the video duration
of MOTChallenge [11], 500x the duration of KITTI [16]
and 80x the scale of CityFlow [44]) traditional manual an-
notation of objects is infeasible. To combat this difficulty,
we provide a set of 270 manually-corrected GPS trajecto-
ries from over 100 instrumented vehicles on the roadway
during the recording duration. Objects persist for an aver-
age of 6.6 minutes (11880 frames average at 30 frames per
second (FPS)) and a high object density (> 500 across the
scene) is typically observable. This annotation set is suit-
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Figure 1. Example fields of view from each of the 234 cameras included in the I24V dataset. Each camera is recorded in 1920 × 1080
resolution and at 30 frames per second. Scene information is provided for each roadway direction of travel in each camera.

able for assessing object tracking algorithms along recall-
oriented metrics. Initial experiments show that existing
high-performing trackers fall well short of acceptable track-
ing performance on data of this scale, and further work is
needed to develop suitable algorithms for long-term track-
ing tasks. We take considerable care to make the data use-
ful for computer vision applications, developing new tech-
niques for keeping camera homographies more accurately
aligned than existing stabilization methods allow. Suc-
cinctly, the contributions of this work are:

1. The largest multi-camera video dataset (234 cameras
and 234 hours of video covering a scene with high ob-
ject density and long object durations).

2. A sparse set of 270 GPS-produced annotations corre-
ponding to 1782 minutes of labeled vehicle trajectory.

3. Preliminary benchmarking of existing object tracking
algorithms on this dataset.

4. Precise scene information and a unified curvilinear co-
ordinate system for the entire scene, useful for filter-
based tracking and downstream traffic science.

5. Methods for precisely re-aligning camera homogra-
phies to account for drift outperforming existing image
stabilization techniques in over 99% of cases.

The rest of this paper is organized as follows: Section 2
situates this work within existing literature. Section 3 intro-
duces the dataset, its attributes, and methods used to ensure
its fidelity. Section 4 describes the numerical experiments
and Section 5 the results for homography re-estimation
methods and for object tracking algorithms benchmarked
on the dataset. Much additional explanation and analysis
omitted for brevity is available in the supplement.

2. Related Work

This section provides a brief overview of existing multi-
ple object tracking and multiple camera datasets, and briefly
explores existing multi-camera tracking approaches.
Multiple Object Tracking Datasets: The task of multi-
ple object tracking (MOT) has been well studied, thanks
to a number of MOT datasets in different contexts includ-
ing traffic monitoring [48], drone footage [57], crowded
pedestrian scenes [11, 35], and autonomous vehicle scenar-
ios [8, 16, 42]. Objects are annotated either as 2D rect-
angular bounding boxes [11, 35, 48, 57] or 3D rectangular
prisms projected from a from a ground-plane into the im-
age [8, 16, 42]. 3D annotations are primarily seen in the
AV context as the collocation of cameras with rich sensor
suites such as LIDAR and depth sensors makes the semi-
automated production of annotations possible [8]. As a
result of this abundance of datasets, a huge variety of ac-
curate MOT methods have been developed in these con-
texts [33]. A variety of simple yet successful approaches to
this task work in an online tracking-by-detection paradigm
[4,5,10,49]. Many modern approaches to the MOT problem
solve tracking and object detection jointly, sharing informa-
tion such as object priors, multiple frames, or scene hidden
states to aid in detection [2, 34, 37, 56].
Multi-camera Multiple Object Tracking Datasets: Rel-
atively less work has been devoted to the task of multiple-
camera, multiple object/target tracking (MCMT), perhaps
due to the fact that such datasets are harder to produce
and until recently relatively few have been available. The
PETS dataset [14], CamNeT [53] and EFPL [15] datasets
each track a few pedestrians across up to 8 cameras for
relatively short durations in each of a few scenes [9, 15].
The Wildtrack Dataset [9] and DukeMCMT dataset [19]
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Dataset Cameras Video (hr) Scene (min)
DukeMTMC [19] 8 11.3 85
Wildtrack [9] 7 1.0 8.6
CityFlow [44] 25 3.3 6.5
Synthehicle [22] 7 17 3
EPFL-Terrace [15] 4 14 3.5
PETS [14] 8 0.2 0.3
pNEUMA Vision [26] 10 3.9 13
I24-3D [17] 17 1.0 1.5
I24-Video (proposed) 234 234 60

Table 1. This table summarizes the most comparable existing
multi-camera datasets according to Cameras, the total number of
camera fields of view covering a single scene, Video, the total
length of all included video, and typical Scene duration as esti-
mated from available information for each work.

track pedestrians across 7 and 8 cameras for much longer
scene durations (up to 85 minutes). Modern AV datasets
include a variety of cameras onboard so can be utilized
as multi-camera datasets [8], but have short scene dura-
tions and object longevity. More recently, the CityFlow
dataset [44] contains 40 total cameras (up to 25 for a single
scene, with some non-overlapping) totaling over 4 hours of
video data in a traffic monitoring context. The pNEUMA
Vision dataset [26] provides up to 10 drone-mounted cam-
era views and scenes of up to 13 minutes in duration, though
has known annotation shortcomings. Synthehicle [22] con-
tains synthetic 3-minute scenes with up to 7 cameras in a
traffic monitoring context, totalling over 17 hours of video
footage, and the I24-MC3D dataset has scenes with up to 17
cameras and 1.5 minutes in length [17] Table 1 summarizes
existing works. Crucially, there is no multi-camera dataset
with a high object density (over 100), long object durations
(5+ minutes), and more than 25 overlapping cameras.
Multi-camera Tracking Approaches generally handle
multiple inputs by one of 3 methods: i.) Detector input
fusion performs object detection utilizing frames from all
cameras simultaneously [25, 39, 50, 54]. ii.) Detection fu-
sion combines all object detections in a shared space via
non-maximal suppression [8], hierarchical clustering of de-
tections [32,43], Gaussian mixture models [28,41], or other
methods [12] before performing object tracking via tra-
ditional approaches. iii.) Tracklet fusion methods com-
bine single-camera MOT tracklets with graph-based for-
mulations [40, 51, 53], trajectory to tracklet matching [21],
or greedy methods based on trajectory similarity measures
[23, 45], often also incorporating camera-link based mod-
els [21,23,52] or performing smoothing to output more fea-
sible trajectories [47].

3. Dataset
This section describes the data released in this work.

This dataset includes: i.) 234 hours of video concurrently
recorded from 234 cameras. ii.) Scene information for each

roadway direction of travel in each camera. iii.) A uni-
fied curvilinear coordinate system aligned with the primary
roadway direction of travel. iv.) Ground truth GPS trajecto-
ries for 270 vehicle runs through the camera fields of view
v.) Object detections produced at 30Hz on the video scene.
Each is described in more detail in the following sections.

3.1. Video Data

3.1.1 Location

Video of a single complex traffic scene was recorded using
the I-24 MOTION traffic testbed [18]. Briefly, this system
is comprised of 294 IP pan-tilt-zoom cameras densely cov-
ering a 4.2 mile stretch of 8-10 lane interstate roadway near
Nashville, Tennessee. The main system features 40 ∼110-
foot tall traffic poles, each with six cameras mounted to pro-
vide seamless coverage of roughly 500 feet of the interstate.
The primary goal of this camera system is to provide accu-
rate, anonymized vehicle trajectory and dimension informa-
tion to enable traffic science. See [18] for more details. Fig-
ure 2 provides an overview of system features and a typical
camera coverage layout for a single camera pole. Due to the
layout of the cameras, any object passing through the whole
system is visible in a minimum of 185 cameras, and roughly
1-3 cameras at any point in time with a few exceptions for
overpasses and camera pole outages.

Figure 2. (top) Graphical overview of the I-24 MOTION system.
Each blue dot represents a camera pole with 6 cameras. Red dot
indicates a camera pole outage (Pole 25). (orange) drone image
showing 8 of the 40 system camera poles. (purple) Typical 6 cam-
era per pole coverage layout. Best viewed zoomed-in.

3.1.2 Recording Details

On a morning in November 2022, video data was recorded
from 234 of the 296 cameras simultaneously from 6:00AM
to 10:30AM, roughly covering the morning rush hours. The
7:00-8:00AM hour is published here. HD video (1920 ×
1080 pixels) was recorded at 30 frames per second from
each of the cameras and stored in H.264 compressed format,
totaling ∼1 TB. Example videos can be found in the supple-
ment. As in [44], any visible license plates are redacted us-
ing [38]. Each video is then manually inspected, to remove
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Figure 3. Typical homography error dynamic and the representation of the Sunflower Effect: (a.) uncorrected displacement of image points
showing the magnitude of error (in feet) that using the original homography without accounting for drift would cause. The red polygon
area represents the camera FOV, (b.) The displacement error of a typical camera over the day. Gray vertical line indicates the time instant
shown in (a). (c.) Mean average displacement of all the cameras for the westbound roadway side, sorted by magnitude of error.

any pedestrians, private property, or other personally iden-
tifiable information (see supplement). The one-hour scene
has notable features, including i.) several anomalous events,
including at least 10 stopped vehicles, ii.) high object den-
sity (>500 objects present at most times during the record-
ing), and iii.) significant occlusion of vehicles by taller ve-
hicles with moderate frequency.

3.2. Scene Homography

Particular care with scene information is taken in this
work as an accurate transformation from image pixel space
to a unified coordinate system is a vital pre-requisite for
precise multi-camera tracking. The standard approach [20]
utilizes a homography, which relates two planar surfaces
via a linear transformation, in this case the road surface
visible within camera frames and a suitable world coor-
dinate system (We use Tennessee State Plane coordinates
(EPSG:2274), which are preferred to other systems such
as WSG84 (standard GPS convention) in that they utilize a
globally orthonormal basis.) The road surface is treated as
a planar surface (for each direction of travel) within a lim-
ited field of view (FOV) for each camera. Intrinsic-extrinsic
camera calibration as used in the AV context [8, 16, 42] is
infeasible here as cameras were not accessible prior to in-
stallation, can be replaced or moved, the focus is not fixed,
and in-situ intrinsic camera calibration is not possible.

To compute each homography, lane marking corners are
utilized as well-defined, semantically meaningful features.
World coordinate system points are obtained by manually
labeling aerial survey footage (∼1 inch/pixel), while the
corresponding image coordinates are produced with semi-
automatic labeling on the recorded images. Manual aid was
required because the lane markings are identical and repet-
itive, so additional visual clues were required to uniquely
label each lane marking. The homography matrix is fit to
these correspondence points via a least-squares formulation
as implemented in OpenCV [6]. See supplement for details.

3.2.1 Homography Re-estimation

Ideally, homographies ensure that multiple views of the
same point map to a single unique point on the state plane.
In reality, camera fields-of-view are constantly changing
due to inaccuracies in the pan-tilt mechanism during hom-
ing, settlement of the foundation, and most significantly
the sunflower effect (the tilting of metal infrastructure poles
away from the sun due to differential heating of the sun and
shade-facing sides of the pole) [13]. Uncorrected, these
factors produce significant homography errors sometimes
greater than 10 feet. Figure 3a shows the magnitude of these
shifts at one time for a typical camera homography. Figure
3b illustrates how the average shift for a camera changes
over time, due to both the initial error (due to long term phe-
nomena since the initial camera calibration) and the fluctu-
ations in error over a single morning due to the rising morn-
ing temperature and changing cloud cover (peaks and val-
leys).

Repeated manual correction is not feasible, and proper
correction of the camera movement is challenging because
traditional video stabilization methods (utilizing feature-
matching techniques, based on e.g. SIFT [30] or SURF [1])
are ill suited for our scenes; a.) a large portion of the image
corresponds to “noise” (e.g. trees, grass), producing hard-
to-match feature points, b.) feature points are usually not
semantically meaningful and potentially do not lie on the
plane of the road surface, thus are unsuitable for homogra-
phy estimation, c.) the relevant features on the ground plane
in the region of interest are frequently occluded by vehicles,
d.) a large number of co-moving vehicles can skew the cal-
culation of optical flow along the direction of vehicle travel.
To circumvent these issues, we propose the following ho-
mography re-estimation procedure:

1. Average frames for a suitable time (∼ 1 min) to remove
vehicles from the scene.

2. Find an initial, rough alignment based on a SIFT and a
FLANN-based matcher [36] (as in OpenCV [6]).
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Figure 4. Camera fields of view (a and b) are related to (c) state
plane coordinates, a rectilinear coordinate system, via perspective
transforms. State plane coordinates are related to curvilinear road-
way coordinates (d) via straightforward mathematical equations.

3. Shift original correspondence points using rough
alignment. Use to seed re-detection of lane markers.

4. Filter and refine the detected lane marker corner points.
5. Calculate the homography matrix using successfully

re-identified corner points.

For a specific time instance this automatic re-detection
and homography re-estimation often fails, either due to
i.) lane marking occlusion in heavy traffic or ii.) failure
of FLANN matcher. To provide a robust homography in
spite of these failures, two methods are proposed and im-
plemented: i.) calculation of a single, static homography
for an extended period (e.g. all-day) by filtering and av-
eraging homographies over the period, and ii.) a dynamic,
time-varying homography. The later a time-varying kernel-
based filter of the homography parameters, with a variable
window size. Each method is computed offline (utilizing
all information for the whole day). Additional details are
given in the supplement. The effectiveness of each solu-
tion is compared to the existing approach (FLANN-based
matcher) in Section 4.1.

3.3. Roadway Coordinate System

We define an additional roadway coordinate system with
the primary (X) axis aligned with the roadway direction
of travel, and the secondary(Y) axis always perpendicular
to the roadway direction of travel. Since the roadway is
not perfectly straight, a curvilinear coordinate system is re-
quired to achieve the desired attributes, resulting in a locally
orthonormal coordinate basis (see Figure 4 for a compari-
son). Such a coordinate system enables strongly domain-
informed filter-based trackers [4] to be implemented triv-
ially (e.g assume that the primary direction of motion for
objects is along the primary axis and enforce reasonable ve-
hicle physics). This coordinate formulation is also preferred
for traffic science because quantities such as lane position
and inter-vehicle spacing within a lane can be easily com-
puted. A full description is given in the supplement.

3.4. GPS Tracks and Correction

Concurrent with video recording, a fleet of 103 GPS in-
strumented vehicles was driven through the portion of road-
way observed by the I-24 MOTION testbed. Details on ve-
hicle instrumentation can be found in [7]. On these vehicles,
positional data was recorded at 0.1s intervals. A total of 270
vehicle passes through the roadway were made during the
recording period, providing the same number of vehicle tra-
jectories for comparison.

3.4.1 GPS Track Refinement

Initial attempts to compare GPS track data against known,
ground truth object positions (manually annotated) revealed
that GPS data contained positional errors (mainly bias along
primary direction of travel, and mainly high variance per-
pendicular to direction of travel), consistent with the GPS
sensor’s reported error metric of 2.5m circular error proba-
ble (CEP) (see Figure 5). Additionally, a small time discrep-
ancy between some GPS track data and the camera network
is observable. The following protocol was utilized to make
GPS trajectories suitable for direct comparison against ob-
ject tracking outputs from camera data:

1. Manually annotate a ‘perfect’ position for each GPS
track, once per camera pole (e.g. 37+ annotations for
a GPS track that travels the full length of the camera
system). See Figure 5.

2. Correct GPS bias in the roadway coordinate system
primary (longitudinal) axis direction by finding the
mean offset between GPS positions and manually an-
notated object positions.

3. Determine the time offset in the range [-2s,2s] that
minimizes the variance in GPS positional offsets rel-
ative to manually annotated object positions.

4. Correct residual error in the longitudinal direction by
linearly interpolating the required offset between con-
secutively labeled offsets between GPS and manually
annotated object positions.

5. Linearly interpolate lateral coordinate between manu-
ally annotated object positions for each GPS track.

Figure 5 shows the alignment between manually anno-
tated object positions (circles) and GPS positions (lines) for
a single typical GPS track. In total 7885 manual annotations
are made. Figure 6 shows a histogram of GPS intersection-
over-union alignment with object detections (see Section
3.5) before and after correction. Corrected GPS tracks align
more closely with CNN-produced object detections than
original GPS tracks (IOU of 45% vs 8%). After correc-
tion, 270 vehicle trajectories were produced with an average
length of 6.6 minutes and 17560 feet. Each object is virtu-
ally always visible in at least one camera, corresponding to
a minimum of 3207600 roughly annotated bounding boxes.
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Figure 5. (left) GPS tracks (lines) and corresponding manual annotations (circles) for westbound (top) and eastbound (bottom) roadway
directions of travel. One GPS trajectory is highlighted in green. (right) Detail for highlighted trajectory, showing relative x-position (top)
and y-position (bottom) of nearby object detections (black dots), manual annotations (green circles), and the uncorrected corresponding
GPS track. Deviations of over 20ft x / 12ft y position can be seen. Detections closely matching corrected GPS track shown in red.
(Detections for every 30th frame are plotted for clarity.)

3.5. Detections

To allow preliminary analysis of existing object track-
ing methods, a baseline set of object detections was pro-
duced. Because the cameras in this dataset have widely
varying fields of view, a viewpoint agnostic monocular ob-
ject detector was utilized (i.e. an object detector that does
not explicitly or implicitly code scene information into its
structure or parameter weights). This allows a single set of
network parameters to be utilized for all camera fields of
view (rather than training a separate model for each cam-
era field of view, which was infeasible based on storage,
implementation, and training time constraints). This work
utilized a Retinanet ResNet50-FPN backbone object detec-
tor [29] to provide detections. The network outputs were
parameterized to produce rectangular prism representations
for 3D bounding boxes in addition to 2D bounding box out-
puts for predicted objects (see supplement). Detections are
nominally produced at 30 Hz with some frames skipped to
provide ± 1/60s synchronization across all cameras. The
resulting dataset contains 158,976,915 detections, each in-
cluding a 3D bounding box defined in the roadway coordi-
nate system, a 2D bounding box in image coordinates, ve-
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Figure 6. (left) Intersection-over-union histogram between GPS
and closest automatically detected object position, before (black,
mean 0.083) and after (green, mean 0.445) manual correction.
(right) Examples of corrected (green) and uncorrected (black)
GPS positions in a camera field of view.

hicle class (sedan, midsize, van, pickup, semi truck or other
truck), timestamp, camera, and detection confidence.

4. Experiments

This section first describes experiments used to assess
the accuracy of the homography re-estimation method pro-
posed in this work, then describes initial MOT algorithm
benchmarking performed using baseline object detections.

4.1. Homography Re-estimation

To assess the effectiveness of homography re-estimation
methods proposed in Section 3.2.1, we utilize the homogra-
phy goodness-of-fit (equation 1) which indicates how well
the homography maps between the image plane and state
plane, and the error metric defined in equation 2 which in-
dicates average the positional error in points translated be-
tween the image plane and state plane via the computed ho-
mography. For each method, homographies are computed
at 1 minute intervals overlapping by 50%. The computed
homography’s fitness is assessed according to:

fitness(t) = ||At, I ′
t

Ht−−→ ||2 (1)

where I ′
t is the subset of correspondence points successfully

rediscovered in the image at time t, At is the corresponding
subset of points in state plane coordinates, Ht−−→ indicates a
linear transform between coordinate spaces using Ht, the
homography matrix fit directly to the rediscovered points at
time t. Error is computed as:

error(t) = ||I Ht−−→, I H∗
t−−→ ||2 (2)

where I is the full set of correspondence points labeled in
the original reference image, Ht is the homography fit di-
rectly to time t between the rediscovered points I ′t and the
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Figure 7. (a.) Typical homography fitness for a single camera, (b.) error dynamics for a single camera over time with each homography
re-estimation methods, (c.) Remaining error for each camera after (black) SIFT-FLANN feature-matching, (orange) one-day best fit
homography re-estimation, and (red) dynamic homography re-estimation methods relative to orignal reference homography baseline (blue).
Cameras are grouped by position on pole (see Figure 2) and by side of roadway (westbound homographies on top, eastbound on bottom).

corresponding state plane points At, and H∗
t is the homog-

raphy for time t produced by the selected method. Because
Ht is prone to error, any reported error may come either
from the instantaneous homography Ht or the method-fit
homography H∗

t (i.e. Ht is a good baseline when suffi-
ciently many correspondence points are rediscovered.) We
report other metrics independent from Ht in supplement.

4.2. MOT Algorithm Benchmarking

A limited set of detection-fusion tracking algorithms
(SORT [4], IOUT [5], KIOU [10], and ByteTrack with both
Euclidean distance and IOU as similarity metric [55]) is im-
plemented based on the criteria that i.) algorithms must not
require retraining on the tracking data as no training data
for object detection is made available, ii.) must not require
additional inputs (e.g. appearance embeddings), and iii.)
must be tracking by detection-based (not joint detection and
tracking-based) methods. These criteria are necessary be-
cause, on a dataset of this size, generating auxiliary infor-
mation or conducting one-off algorithm runs on all videos
is prohibitively time-intensive. For comparison, an oracle
tracker is implemented which selects all detections close to
a GPS trajectory and linearly interpolates tracklet positions
between these selected positions. The oracle represents per-
formance theoretically obtainable using the existing set of
object detections with a perfect motion model. This evalu-
ation is merely a first step at gauging the difficulty of this
dataset; we make annotations and evaluation protocols pub-
lic so that researchers may evaluate their own algorithms
and report state of the art performance.

Tracking methods are evaluated using recall, assigned
IDs per ground truth trajectory, and Multiple Object Track-
ing Precision (MOTP) in terms of both IOU and Eu-
clidean distance from [3], Longest Consecutive Subse-
quence (LCSS) by distance and time from [46], and DetA,
AssA, and HOTA from [31]. Because the dataset does not
densely label objects, a false positive count cannot be ob-

tained. Thus, the DetA metric from [31] is modified:

DetA∗
α =

TP

TP + FN
(3)

where TP represents the number of object positions that
are matched to a ground truth position with at least α IOU
overlap, and FN represents the number of ground truth ob-
ject positions with no such match. We follow the rest of the
protocol from [31] for calculating AssA and HOTA.

4.2.1 Evaluation Protocol

Each object tracker is run using the detection set from Sec-
tion 3.5. GPS trajectories and detections from each camera
are obtained at slightly different times. To account for this,
tracking evaluation is performed at fixed 0.1 second inter-
vals, and each GPS trajectory and object tracklet position is
linearly interpolated at each evaluation time. Evaluation is
performed as in [3]. For all metrics other than HOTA met-
rics, a lax IOU of 0.1 is required for an object tracklet and
GPS trajectory to be matched.

5. Results
5.1. Homography Re-estimation Performance

Figure 7a reports the homography (Ht) goodness-of-fit
metric (equation 1 over time for a typical camera using the
homography re-estimation process defined in Section 3.2.1.
This ∼2ft tightness is guaranteed by outlier removal pro-
cesses during homography fitting; remaining error is due
primarily to camera lens distortions and errors in the flat-
plane assumption. The fitness of Ht represents an “error
floor” for a homography based on the same assumptions.

Figure 7b show the additional error above the error floor
for different homography re-estimation methods utilizing
the error metric from equation 2. The reference (blue) in-
dicates the resulting error without any mitigation, showing
both long term (high mean) and short term (high variance)
error (3.78 feet whole-day average). The SIFT-FLANN
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Tracker HOTA DetA AssA Recall IDs/GT ↓ LCSSt (s) LCSSd (ft) MOTPi MOTPe (ft) ↓ TD (s)
SORT [4] 9.5 51.3 1.8 73.6 53.1 51.9 2609 68.0 2.70 12.3
IOU [5] 1.1 7.4 0.2 20.4 60.0 16.8 53.2 36.7 7.31 8.4
KIOU [5, 10] 8.5 51.2 1.4 73.9 47.9 40.6 2181 66.9 2.72 15.1
ByteTrack (L2) [55] 9.5 51.5 1.8 73.6 53.3 51.5 2575 70.0 2.71 12.4
ByteTrack (IOU) [55] 8.5 53.1 1.4 75.9 50.3 44.1 2390 67.1 2.72 14.9
Oracle 53.1 55.1 51.0 86.4 1.2 636 14699 75.3 2.53 690

Table 2. Tracking results for limited benchmark algorithm set. For each metric, a higher score is better unless indicated with a ↓. DetA
and AssA indicate the detection and association components of HOTA, respectively. LCSS denotes the average longest consecutive
subsequence (in seconds or feet) averaged across all trajectories. MOTP indicates the average precision (by IOU of object footprint or
Euclidean distance) for all matched object bounding boxes, averaged over all trajectories. TD indicates mean tracklet duration.

method (the existing optical flow-based ”camera stabiliza-
tion” [6]), is inferior (2.74 feet whole-day average) in al-
most all cases to the proposed methods utilizing semanti-
cally meaningful lane markers. The static, all-day aver-
age homography removes the long term error, although it
is mostly unable to remove the error caused by the sun-
flower effect especially in highly fluctuating cases (1.39
feet whole-day average). Lastly, the dynamic homography
utilizes nearby (temporally) homography estimations for a
given time instance, and can cope with short-term fluctua-
tions caused by camera pole movement, substantially reduc-
ing (0.33 feet whole-day average) the residual error caused
by the static homography.

Figure 7c compares the whole-day average error, per
camera, for each homography re-estimation method. The
SIFT-FLANN based method (black line) improves on the
reference homography (baseline) for 98.6% of cameras.
The static all-day reestimated homography (green) im-
proves on the baseline for 100% of cameras and outper-
forms the SIFT-FLANN method for 88.1% of cameras.
The dynamic homography method (red) improves upon the
baseline in 100% of cases and on the SIFT-FLANN method
in 99.7% of cases. The mean average error over all cam-
eras is 2.78 feet for the reference homography , 1.42ft for
the SIFT-FLANN method (49% reduction), 1.03ft for the
all-day average method (63% reduction), and 0.33 for the
dynamic method (88% reduction).

5.2. Multiple Object Tracking Performance

Table 2 shows multiple object tracking performance for
the implemented trackers. First, note that HOTA is quite
low for all trackers; driven primarily by low AssA scores.
This indicates that object tracklets are not strongly persis-
tent (this is also supported by the relatively low LCSS and
mean tracklet durations compared to the 6.6 minute mean
trajectory length, and high average IDs per ground truth).
Such high fragmentation means the tracking outputs are not
useful for traffic science applications requiring long and ac-
curate object tracklets. All trackers with a motion model
(all but IOU) achieve higher mean recall than raw object
detections of 44.5% (see Figure 6), which indicates that the
motion model is crucial for filling in object positional infor-

mation when detections are missing.
The purpose of this initial benchmarking is not to claim

that no existing tracker can perform well on the I24V
dataset, but rather to show that popular off-the-shelf meth-
ods are not suitable without substantial enhancement such
as more strongly physics and scene-informed models. For
instance ByteTrack [55] achieves high performance on
datasets such as MOTChallenge, where ID switches and
fragmentations play a relatively smaller role in overall
scores, but performs poorly on this dataset where object
persistence plays a more outsized role in overall tracking
performance, especially in the AssA component of HOTA.

6. Conclusion

This work introduced the I24-Video Dataset, with con-
current video from 234 cameras recorded for one continu-
ous hour capturing rush-hour traffic along 4.2 miles of inter-
state roadway, scene information for each camera, and 270
manually corrected GPS trajectories within the video data.
These GPS trajectories were used to perform a preliminary
benchmarking of object tracking algorithms, indicating that
trackers utilizing stronger motion and appearance models
are crucial for high performance on this dataset. The work
also introduced new methods for keeping traffic camera ho-
mographies more precisely synchronized over time than ex-
isting methods allow. In the future, we plan to use this
dataset to explore and design additional tracking algorithms
that prioritize long term (10 minute, 18000 frame) object
persistence, necessary for many traffic science applications.
Several additional hours of GPS data are also recorded for
future public benchmark competitions.
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