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Abstract

In recent years, continuous latent space (CLS) and dis-
crete latent space (DLS) deep learning models have been
proposed for medical image analysis for improved perfor-
mance. However, these models encounter distinct chal-
lenges. CLS models capture intricate details but often lack
interpretability in terms of structural representation and ro-
bustness due to their emphasis on low-level features. Con-
versely, DLS models offer interpretability, robustness, and
the ability to capture coarse-grained information thanks to
their structured latent space. However, DLS models have
limited efficacy in capturing fine-grained details. To ad-
dress the limitations of both DLS and CLS models, we pro-
pose SynergyNet, a novel bottleneck architecture designed
to enhance existing encoder-decoder segmentation frame-
works. SynergyNet seamlessly integrates discrete and con-
tinuous representations to harness complementary infor-
mation and successfully preserves both fine and coarse-
grained details in the learned representations. Our ex-
tensive experiment on multi-organ segmentation and car-
diac datasets demonstrates that SynergyNet outperforms
other state of the art methods including TransUNet: dice
scores improving by 2.16%, and Hausdorff scores improv-
ing by 11.13%, respectively. When evaluating skin lesion
and brain tumor segmentation datasets, we observe a re-
markable improvement of 1.71% in Intersection-over-Union
scores for skin lesion segmentation and of 8.58% for brain
tumor segmentation. Our innovative approach paves the
way for enhancing the overall performance and capabilities
of deep learning models in the critical domain of medical
image analysis.
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The project is supported by the NIH funding: R01-CA246704, R01-
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1. Introduction
Medical image segmentation, a key step in gaining vital
anatomical insights, assists clinicians in injury identifica-
tion, disease monitoring, and treatment planning. As re-
liance on medical image analysis grows, the demand for
precise, robust segmentation techniques rises. In this re-
gard, deep learning has greatly improved our ability to do
this. Existing deep learning models can be divided into con-
tinuous latent space (CLS) and discrete latent space (DLS)
models. The CLS models represent latent variables as con-
tinuous values, enabling fine-grained representation.

CLS Models such as FCNs [17], UNet [23], and Tran-
sUNet [5] and others [4,14,19] have shown an ability to cap-
ture spatial relationships and fine-grained details for medi-
cal image segmentation. However, these models offer lim-
ited latent interpretable representations of structural infor-
mation and robustness [25] in terms of generalization. DLS
methods employ discrete codes instead of continuous val-
ues for latent variables. They use techniques such as vec-
tor quantization to discretize the latent space into a finite
set of elements representing anatomical structures. This
enables efficient and generalized data representation. Ap-
proaches such as VQVAE [27] and VQGAN [10] have
shown promise in image generation, representation learn-
ing, and data compression.

Recent studies [12,13,15,20,25] highlight the effectiveness
of DLS models in achieving interpretable and robust medi-
cal segmentation, particularly for organs like lungs, retinas,
optic discs, and prostates. However, DLS models strug-
gle to capture fine-grained details and complex spatial rela-
tionships, especially in multi-organ and cardiac segmenta-
tion tasks. Accurate modeling of spatial interdependencies
between organs is crucial for precisely segmenting intri-
cate boundaries and overlapping structures. Recent studies
[5,11,16,18,21,22,28,29] have highlighted the advantages
of learning complementary information across various do-
mains, including medical imaging. Motivated by this trend,
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our study aims to address the pivotal question: “How can
we effectively integrate complementary information from
discrete and continuous latent space models for improved
medical image segmentation?”.

We present SynergyNet, a novel bottleneck architecture de-
signed specifically for encoder-decoder segmentation mod-
els, aiming to enhance medical image segmentation results
by integrating continuous and discrete latent spaces. Syn-
ergyNet includes the Quantizer, DisConX, and Refinement
modules. The encoder extracts a detailed continuous rep-
resentation, while the quantizer module maps it to a com-
pact discrete representation using vector quantization. By
reducing dimensionality, the quantizer module enables ef-
ficient, structured representation while preserving essential
information. The DisConX module serves as a bridge, em-
ploying cross-attention to effectively combine the discrete
and continuous representations. Leveraging their comple-
mentary information, the DisConX module enhances pat-
tern capture and interpretation. The refinement module fur-
ther enhances the fused features, using hard attention to em-
phasize essential elements and filter out noise. The refine-
ment module improves discriminative power and segmenta-
tion quality by focusing on relevant features. Our contribu-
tions are as follows:

• We propose SynergyNet, a novel method that inte-
grates discrete and continuous representations to en-
hance medical image segmentation performance. This
integration has not been explored in prior studies for
medical image segmentation tasks.

• Our study demonstrates the effectiveness of combining
CLS and DLS models in improving model generaliza-
tion across diverse datasets. By leveraging CLS mod-
els for fine-grained detail capture and DLS models’
structured latent space for encoding coarse-grained de-
tails, we observe notable enhancements in learning and
generalization. This integration effectively utilizes the
strengths of each approach, resulting in improved per-
formance across various datasets.

• SynergyNet is extensively evaluated on four diverse
datasets, including Synapse multi-organ segmentation,
ACDC dataset for cardiac segmentation, ISIC 2018
dataset for skin lesion segmentation, and brain tumor
segmentation dataset. Results show that SynergyNet
outperforms both CLS [5, 9, 19, 23] and DLS-based
methods [27] across all evaluated datasets. Qualitative
analysis confirms the efficacy of SynergyNet in captur-
ing intricate anatomical structures and achieving more
precise segmentation compared to existing methods

2. Proposed Method
We first discuss the preliminaries (Section 2.1) and then
present our newly proposed algorithm (SynergyNet) and its
architecture (Section 2.2).

2.1. Preliminaries

2.1.1 Problem Statement

Medical image segmentation aims to automatically label
anatomical structures or pathological regions within med-
ical images. Mathematically, this involves finding a map-
ping function f that assigns labels y to pixels x in the input
image domain X . The goal is to maximize the conditional
probability of the ground truth segmentation labels ŷ given
the input image x, i.e., ŷ = argmaxy P (y|x). Learning the
parameters of the mapping function f involves assigning the
correct labels to each pixel using training data. The learning
process employs a loss function that usually consists of Bi-
nary Cross Entropy (BCE) and Dice similarity coefficient.
This loss function can be defined as follows:

Lseg = BCE(y, ŷ) + (1−Dice(y, ŷ)), (1)

where BCE(y, ŷ) calculates the binary cross entropy loss
between the predicted labels y and the ground truth seg-
mentation ŷ, and Dice(y, ŷ) computes the dice similarity
coefficient between y and ŷ.

2.1.2 Vector Quantization

Following VQVAE [27], Vector quantization (VQ) trans-
forms continuous latent space vectors zcon ∈ Rdim into dis-
crete codes ek from a predefined codebook E ∈ RK×dim,
where K is the codebook size. The objective of VQ is
to find the code ek from the codebook that minimizes the
euclidean distance to the input vector zcon. This code ek
serves as the discrete representation zdis of zcon. Dur-
ing training, the codebook E and the mapping functions
between the continuous and discrete representations are
learned by minimizing the quantization loss Lquant =
∥zcon − ek∥22. The quantization process efficiently encodes
and decodes data while preserving important information
in discrete representations. We use the total loss function
Ltotal = Lseg + Lquant for end-to-end model training.

2.1.3 Multi-head Cross-attention Mechanism

The multi-head cross-attention mechanism extends the
cross-attention by incorporating multiple attention heads.
Each attention head attends to different subspaces of queries
and keys, capturing diverse relationships and dependen-
cies. Given a set of queries Q and keys K, multiple
sets of attention weights are computed, one for each at-
tention head. The relevance scores between a query qi
and a key kj are obtained using a similarity function de-
noted as score(qi, kj) = sim(qi, kj). The softmax func-
tion is applied to transform the relevance scores into atten-
tion weights for each attention head:

A(h)
soft(qi, kj) =

exp(score(h)(qi, kj))∑
j′ exp(score

(h)(qi, kj′))
(2)
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Figure 1. Figures (a) and (b) compare the bottleneck architecture of our proposed SynergyNet with the existing work [5]. Figure (c)
illustrates the workflow of our architecture, where the input image is encoded to generate a continuous representation zcon. This contin-
uous representation is quantized to obtain discrete codes ek and forms a discrete representation zq . The DisConX module (Section 2.2.1)
is applied to both the continuous and discrete representations, resulting in a synergized representation zattndc . The continuous represen-
tation zcon, discrete representation zq , and attended representation zattndc are then fused and processed through the refinement module
(Section 2.2.2). The output of the refinement module is passed to the decoder to obtain the final result.

The multi-head cross-attention mechanism then computes a
weighted sum of the values associated with the keys using
the attention weights of each attention head h:

zattnh =
∑
j

A(h)
soft(qi, kj) · vj . (3)

Here, zattnh represents the aggregated result for the given
query qi, considering the importance assigned by the atten-
tion weights of the h-th attention head. The outputs from
all the attention heads are concatenated and linearly trans-
formed to produce the final output:

zattn = Concat(zattn1 , zattn2 , . . . , zattnh ) ·WO. (4)

The multi-head cross-attention mechanism enables the
model to capture various interactions and dependencies be-
tween queries and keys, enhancing its representation and
information retrieval capabilities.

2.2. Proposed Architecture

Our proposed architecture, illustrated in Fig. 1(c), consists
of three key components: the encoder, bottleneck, and de-
coder. The bottleneck incorporates the Quantizer, DisConX,
and Refinement modules. Starting with an input image X ,

the encoder function f generates the continuous represen-
tation zcon. The Quantizer module (Section 2.1.2) maps
zcon to a more compact discrete representation zdis, captur-
ing essential information efficiently. The DisConX module
(Section 2.2.1) combines the discrete and continuous rep-
resentations through cross-attention, leveraging both bene-
fits to enhance data interpretation. The Refinement module
(Section 2.2.2) further improves the representation by em-
phasizing relevant features. This step enhances the model’s
discriminative power for the given task.

2.2.1 DisConX Module

The DisConX module integrates the discrete representa-
tion zdis and continuous representation zcon using cross-
attention, as discussed in Section 2.1.3. It calculates rel-
evance scores between discrete queries qi and continuous
keys kj , and computes attention weights using a softmax
function. The module then performs a weighted sum of the
continuous values vj associated with the keys based on the
attention weights. The computation happens as:

zattndc =
∑
j

A(hs)
soft(zdis, zcon) · zcon. (5)

Here, hs represents the index of the attention heads, zdis
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denotes the discrete query, and zcon represents the contin-
uous key/value. The resulting zattndc is the aggregated rep-
resentation, considering the attention weights from all at-
tention heads. This integration of discrete and continuous
representations enables the exchange of complementary in-
formation, enhancing the model’s ability to capture com-
plex patterns and improving performance in tasks such as
semantic segmentation. Next, the information of zdis, zcon,
and zdcattn is fused as zf = Fusion(zdis, zcon, z

attn
dc ).

The fusion operation integrates complementary information
from discrete and continuous representations, enhancing the
overall representation for subsequent refinement modules.
We empirically choose addition for fusion.

2.2.2 Refinement Module

The proposed refinement module incorporates a hardness-
aware self-attention mechanism, which captures the rele-
vance and similarity between elements in the fused repre-
sentation. This mechanism enhances the overall represen-
tation quality by emphasizing important elements and fil-
tering out the noise. The element with the highest rele-
vance score is identified as the most important. The atten-
tion weight for each element is determined by comparing its
similarity to other elements. The equation below represents
this calculation:

A(hh)
hard(zfi) = I(sim(hh)(zfi , zfj) = max

j
sim(hh)(zfi , zfj )).

(6)
Here, the indicator function I checks if the similarity be-
tween element zfi and any other element zfj is the max-
imum among all similarities. hh is the index of atten-
tion head. Next, the self-attention mechanism calculates a
weighted sum of the values associated with the selected el-
ements using the attention weights for each attention head:

zref =
∑
j

A(hh)
hard(zfi) · (zfj ). (7)

The refined information zref represents the output of the
self-attention mechanism for the hh-th attention head. This
process is repeated for all attention heads. The resulting
refined information from all the attention heads is then con-
catenated and linearly transformed to produce the final re-
fined representation. It highlights the most important ele-
ments within the fused representation, considering multiple
attention heads. This refined representation enhances the
discriminative power and overall quality of the fused fea-
tures. Finally, the fused representation zf is added to zref
and then passed through the decoder.

3. Experimental Platform
Datasets: We utilized four open-source medical segmenta-
tion datasets for our experiments. The Synapse Multi-Organ

Segmentation dataset [1] consists of 30 clinical CT cases
with annotated segmentation masks for eight abdominal or-
gans. We followed the configuration described in [5], using
18 cases for training and 12 cases for testing. The ACDC
dataset [2] is a cardiac MRI dataset with 100 exams, includ-
ing labels for the left ventricle (LV), right ventricle (RV),
and myocardium (MYO). We divided the dataset into 70
training samples, 10 validation samples, and 20 testing sam-
ples as per [5]. For skin lesion segmentation, we adopted
the ISIC 2018 dataset [8] and followed the division into
train, validation, and test sets as per previous work [3, 24].
The Brain Tumour Segmentation (BTS) dataset [7] com-
prises 233 volumetric T1-weighted contrast-enhanced im-
ages from 233 patients (with a total of 3064 2D slices), in-
cluding three types of brain tumors (meningioma, glioma,
and pituitary tumor) with corresponding binary masks. We
maintained an approximate 80:20 ratio for the training and
test sets.

Metrics: We utilize the Dice Similarity Coefficient (DSC)
and the 95% Hausdorff Distance (HD) metrics for the
synapse and ACDC datasets to follow the segmentation
challange standards and benchmarking. For the ISIC-18
and BTS datasets, we employ a more comprehensive range
of metrics per segmentation challenge benchmarking, in-
cluding the Intersection over Union (IOU), DSC, Specificity
(SP), Sensitivity (SE), and Accuracy (ACC). For HD, lower
is better. For other metrics, higher is better.

Implementation Details: We use PyTorch framework and
train the models on three RTX 2080 GPUs, each with 11GB
of memory. The input image size was set to 224 × 224. Dur-
ing training, we used a batch size of 8 and a learning rate
of 0.01. We utilized the SGD optimizer with a momentum
of 0.9 and weight decay of 0.0001. We employed data aug-
mentations, such as flipping and rotating.

Architecture Configuration: SynergyNet employs a
ResNet50 encoder pre-trained on the ImageNet dataset, al-
though we have no restriction on the choice of architec-
ture for encoder. The quantizer module utilizes a codebook
size of K = 1024. The quantizer, DisConX and Refine-
ment module maintain a hidden dimension of dim = 512.
We evaluate multiple SynergyNet variants, for example,
SynergyNet-8s2h implies that hs = 8 and hh = 2, i.e., it
has 8 DisConX heads and 2 refinement heads. The pre-and
post-quantization blocks consist of two convolution blocks.
The decoder has the same depth as the encoder.

Techniques for Comparison: We compare SynergyNet
against four CLS methods, i.e., UNet [23], Att-UNet [19],
DeeplabV3+ [6] R50ViT [5, 9], TransUNet [5] and two
DLS methods, i.e.,VQUNet [25–27] and TransVQUNet.
TransVQUNet architecture is a combination of VQUNet
and TransUNet. It consists of an encoder followed by a
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Table 1. Quantitative results for multi-organ segmentation: Green - best, Blue - second-best (R50=ResNet50).

Method Mean scores Organ-wise dice similarity coefficient (DSC)

DSC HD Aorta Gallbladder KidneyL KidneyR Liver Pancreas Spleen Stomach

R50 UNet 74.68 36.87 87.74 63.66 80.60 78.19 93.74 56.90 85.87 74.16
DeepLabV3+ 77.63 39.95 88.04 66.51 82.76 74.21 91.23 58.27 87.43 73.53
R50 Att-UNet 75.57 36.97 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95
R50 ViT 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95
TransUNet 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

VQUNet 63.44 68.79 78.99 50.74 67.32 61.91 89.94 33.96 73.83 50.87
TransVQUNet-2s2h 65.44 40.79 80.95 48.29 71.42 61.89 90.90 36.88 77.59 55.61
TransVQUNet-8s2h 68.41 35.05 83.57 54.53 73.73 66.21 92.39 39.45 80.26 57.10

SynergyNet-2s2h 78.81 26.19 85.31 61.14 81.89 79.75 94.42 56.66 89.81 81.51
SynergyNet-8s2h 79.65 23.29 86.10 65.49 82.78 79.23 95.06 58.28 88.95 81.30
SynergyNet-8s8h 77.33 20.56 85.79 61.11 81.69 77.07 94.44 64.80 86.40 75.28

quantizer module and a transformer bottleneck, similar to
the bottleneck of TransUNet. We kept the hyperparameters
and architectural design consistent across all the methods
for consistency.

4. Experimental Results
4.1. Synapse multi-Organ segmentation

Table 1 compares SynergyNet with both CLS and
DLS methods. SynergyNet outperforms both CLS and
DLS methods by a significant margin. Quantitatively,
SynergyNet-8s2h achieves a 2.17pp improvement in DSC
and a 12.20pp deterioration in HD compared to TransUNet,
while showing an 11.24pp improvement in DSC and an
11.16pp deterioration in HD compared to TransVQUNet-
8h (pp= percentage point). SynergyNet-8s8h variant shows
the best results in terms of HD metric. SynergyNet demon-
strates superior accuracy in delineating the organs and cap-
turing the boundary between them. It outperforms other
methods in learning both coarse-grained anatomical struc-
tures (e.g., stomach and liver) and fine-grained anatomi-
cal structures (e.g., gallbladder and spleen). TransUNet,
a well-engineered CLS method, exhibits comparable per-
formance in learning fine-grained structures. On the other
hand, DLS methods can capture coarse anatomical struc-
tures but struggle to capture fine-grained boundaries. Syn-
ergyNet benefits from the complementary information ex-
tracted by continuous and discrete latent spaces. Fig. 3
further highlights the effectiveness of SynergyNet in accu-
rately segmenting fine/coarse and complex structures. Syn-
ergyNet yields more robust and precise segmentation results
even in the presence of intricate variations.
Interpretability Analysis: Here, we analyze the bottleneck
architecture to evaluate learned representations. Fig. 2 visu-
alizes the GradCAMs, revealing that CLS methods excel in
capturing fine organ boundaries, while DLS methods excel

in locating organs but struggle with fine boundary details.
In contrast, SynergyNet effectively captures both fine and
coarse boundaries, emphasizing the importance of lever-
aging complementary information. These findings further
support the significance of synergistic effects.

SynergyNetVQUNetUNetGT

C
as

e-
1

C
as

e-
2

Figure 2. Grad-CAM visualization.

4.2. Cardiac Segmentation

From Table 2, we note that the proposed SynergyNet out-
performs both continuous and discrete baselines. Synergy-
Net can effectively capture complex heterogeneous struc-
tures. Compared to TransUNet and TransVQUNet-8s2h,
SynergyNet-8s2h demonstrates 0.07pp and 11.61pp higher
DSC and 0.06pp and 3.23pp lower HD. The qualitative re-
sults are shown in Fig. 3 further validate effectiveness of our
approach in delivering more accurate segmentation results.

4.3. Skin Lesion Segmentation

Table 3 demonstrates the quantitative results on the ISIC
2018 dataset. Compared to CLS methods, DLS-based ap-
proaches can effectively capture shapes like lesions, which
typically exhibit less variability in terms of shape and
size compared to organs and cardiac structures. However,
the proposed SynergyNet method consistently outperforms
both CLS and DLS-based methods, showcasing its ability
to generalize well across different scenarios. Fig. 4 further
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Figure 3. Delineations on Synapse (first and second row) and ACDC (third and fourth row) datasets are shown with color-coded (First row,
yellow: liver, blue: right kidney, green: left kidney, light blue: pancreas. Second row, blue, purple, and yellow represent the RV, LV, and
MYO, respectively.). The overlapping white bounding box represents errors made by models.

Table 2. Quantitaive results for cardiac segmentation

Method Mean Scores Class-wise DSC

DSC HD RV Myo LV

R50 UNet 87.94 2.01 84.62 84.52 93.68
DeepLabV3+ 88.35 4.45 85.65 85.55 93.85
R50 AttnUNet 86.90 2.10 83.27 84.33 93.53
R50 ViT 86.19 1.98 82.51 83.01 93.05
TransUNet 89.71 1.92 86.67 87.27 95.18

VQUNet 78.15 3.19 70.14 74.13 90.13
TransVQUNet-2s2h 74.40 4.27 64.69 72.75 85.77
TransVQUNet-8s2h 78.17 4.63 69.48 75.95 89.05

SynergyNet-2s2h 88.96 2.41 86.80 85.51 94.60
SynergyNet-8s2h 89.78 1.86 87.68 86.60 95.06
SynergyNet-8s8h 89.37 2.14 87.63 86.49 94.98

highlights SynergyNet’s ability to capture both coarse and
fine-grained structured skin lesions. CLS-based methods
tend to over-segment non-contour structures, while DLS-
based methods such as VQUNet tend to under-segment le-
sions. In contrast, SynergyNet successfully and accurately

segments lesions with smoother boundaries, demonstrating
the importance of learning synergistic representations.

Table 3. Quantitaive results for Skin lesion segmentation

IOU DSC ACC SP SE

R50 UNet 77.86 87.55 94.05 96.69 85.86
DeepLabV3+ 78.52 87.59 94.29 95.97 86.46
R50 AttnUNet 78.43 87.91 94.13 96.23 87.60
R50 ViT 78.13 87.45 93.53 96.13 87.10
TransUNet 78.97 88.25 94.32 96.48 87.60

VQUNet 79.13 88.35 94.46 97.09 86.29
TransVQUNet-2s2h 79.83 88.78 94.58 96.62 88.21
TransVQUNet-8s2h 79.68 88.69 94.54 96.64 88.01

SynergyNet-2s2h 79.80 88.77 94.56 96.59 88.26
SynergyNet-8s2h 80.68 89.31 94.91 97.37 87.28
SynergyNet-8s8h 80.05 88.92 94.66 96.81 87.98

4.4. Brain Tumour Segmentation

SynergyNet achieves the best score on all metrics on the
the BTS dataset (Table 4) and outperforms the second-best
method by a large margin. From Fig. 4, we note that DLS
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DSC:  95.67 DSC:  93.52 DSC:  92.60 DSC:  93.04 DSC:  93.92

DSC:  86.43 DSC:  78.44 DSC:  77.71 DSC:  81.11 DSC:  80.88
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a) Input Image b) GT Mask c) SynergyNet-8s2h d) Unet f) VQUnet g) TransVQUnet-8s2he) TransUnet

Figure 4. Segmentation maps on BTD (first two rows) and ISIC-2018 (last two rows) datasets. Actual and predicted pathological regions
are shown in Red and Green, respectively.

Table 4. Quantitaive results for Brain tumour segmentation

Method IOU DSC ACC SP SE

R50 UNet 63.90 78.00 99.33 99.77 77.22
DeepLabV3+ 65.23 78.90 99.60 99.77 77.22
R50 AttnUNet 63.15 77.65 99.21 99.57 76.88
R50 ViT 62.13 76.35 99.18 99.44 76.62
TransUNet 62.36 76.82 99.24 99.62 76.90

VQUNet 58.00 73.40 99.11 99.66 72.66
TransVQUNet-2s2h 60.92 75.72 99.10 99.53 72.24
TransVQUNet-8s2h 61.22 75.94 99.25 99.73 72.44

SynergyNet-2s2h 70.64 82.81 99.52 99.66 80.25
SynergyNet-8s2h 70.94 83.00 99.55 99.86 80.45
SynergyNet-8s8h 69.88 82.27 99.43 99.76 79.85

methods tend to lose boundary information, but they seg-
ment regions of interest more accurately than CLS methods
for this particular case. On the other hand, SynergyNet con-
sistently identifies regions of interest with smoother bound-
aries, surpassing both CLS and DLS methods. SynergyNet
accurately predicts lesions, even in case of varying loca-
tions, sizes, and modality views. It effectively suppresses
irrelevant information, such as the background.

5. Ablation Studies
Unless otherwise mentioned, we use K = 1024, dim =
512, hh = 8, hs = 2 and backbone as ResNet-50.

Table 5. Codebook size (K) analysis

K dim
Synapse ACDC

DSC HD DSC HD

1024 512 79.65 23.29 89.78 1.86
512 512 79.61 23.89 88.89 2.42
256 512 79.21 29.47 89.29 1.62
128 512 78.48 30.97 89.01 1.79
64 512 77.29 88.67 88.79 1.98

5.1. Codebook analysis

From Table 5, we observe a direct relationship between K
and the performance of SynergyNet on the Synapse dataset,
where increasing K leads to a notable improvement in HD
scores. On the ACDC dataset, the trend is different, such
that K = 256 gives the best HD score, and K = 128 and
K = 1024 give comparable results. A smaller codebook
size in the quantization module leads to higher compression
and more aggressive quantization, but it can result in the
loss of local information. This loss of fine-grained details
and subtle variations can negatively impact the segmenta-
tion model’s ability to capture intricate boundaries, leading
to lower HD scores. To achieve the best segmentation per-
formance, the codebook size needs to be chosen so as to
balance compression and preservation of local information.
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5.2. Hidden Dimension (dim) Analysis

From Table 6, we observe that using a codebook size of K =
1024 with dim (hidden dimension size) greater than 512 or
dim less than 512 leads to a deterioration in performance.
Empirically, we found that setting K to be twice the value
of dim (K = 2 * dim) yields the best performance. Thus,
multiple parameters, including the dataset characteristics,
influence the overall performance.

Table 6. Hidden Dimension (dim) Analysis

K dim
Synapse ACDC

DSC HD DSC HD

1024 2048 78.48 30.28 88.58 2.33
1024 1024 77.61 29.53 88.64 2.12
1024 512 79.65 23.29 89.78 1.86
1024 256 79.29 30.07 89.18 2.29
1024 128 78.98 35.81 88.87 2.60

5.3. Bottleneck Size Analysis

Table 7 presents the impact of the size of the DisconX mod-
ule and the Refinement Module of SynergyNet on the over-
all segmentation performance. The combinations hs =
8, hh = 0 and hs = 2, hh = 0 denote the configurations
without the refinement module. We observe a significant
deterioration in the overall performance when the refine-
ment module is not utilized. For the Synapse dataset, the
best value of DSC is obtained for hs = 8, hh = 2 and the
best value of HD is obtained for hs = 8, hh = 8. For the
ACDC dataset, the combination hs = 8, hh = 2 results in
the best values of DSC and HD. Overall, the optimal mod-
ule size is dataset and task-dependent. It is crucial to con-
sider these factors when determining the optimal sizes for
the DisConX and refinement modules.

Table 7. Bottleneck Size Analysis

hs hh
Synapse ACDC

DSC HD DSC HD

8 0 78.62 26.82 87.95 2.33
8 2 79.65 23.29 89.78 1.86
2 8 78.45 25.19 88.96 2.41
8 8 77.33 20.56 89.68 2.14
2 2 78.81 26.19 88.96 2.41
2 0 78.12 27.71 87.36 3.11

5.4. Contribution of DisConX Module

The DisConX module plays a crucial role in the Syn-
ergyNet’s ability to learn fine-grained local features. To
understand its contribution, we create a variant Synergy-
Net(Fusion), which replaces the DisConX module with a
simple feature fusion approach. It combines discrete and

continuous representations and passes them through a re-
finement module. As shown in Table 8, this variant at-
tains lower performance, which clearly demonstrates that
the DisConX module is essential for learning fine-grained
local features. Overall, results indicate that selectively at-
tending to complementary information preserves higher-
quality discriminative and semantic information.

Table 8. Contribution of DisConX module

Backbone Synapse ACDC

DSC HD DSC HD

SynergyNet(Fusion) 78.79 26.91 88.20 2.57
SynergyNet 79.65 23.29 89.03 2.17

5.5. Backbone Analysis

We evaluate SynergyNet with ResNet and EfficientNet
backbones. For the Synapse dataset, ResNet-50 achieved
a DSC score of 79.65%, and EfficientNet-B7 achieved the
lowest HD score of 21.53%. In the ACDC dataset, ResNet-
101 performed the best on both metrics. EfficientNet-B0
exhibited remarkable boundary delineation capabilities de-
spite its shallower architecture. Please Refer to the supple-
mentary materials for parameters analysis.

Table 9. Backbone Analysis

Backbone Synapse ACDC

DSC HD DSC HD

ResNet-18 77.28 27.88 88.82 2.08
ResNet-34 78.35 25.58 89.42 1.93
ResNet-50 79.65 23.29 89.78 1.86

ResNet-101 78.66 28.50 91.49 0.91
EfficientNet-B0 78.05 27.77 91.13 1.29
EfficientNet-B7 78.70 21.53 90.81 2.90

Limitations: i) The quantizer’s reliance on selecting the
most similar codebook item for input representation may
lead to difficulties in capturing intricate patterns, potentially
causing information loss. ii) Both CLS and DLS struggle to
effectively model inter-class relationships, resulting in in-
creased false negatives. SynergyNet reduces false negatives
compared to CLS and DLS but still can be further improved.

6. Conclusion
We propose SynergyNet, a novel bottleneck architecture for
learning complementary information from CLS and DLS.
Extensive experiments and ablation studies confirm that
SynergyNet captures both fine and coarse-grained details
in the learned representations and outperforms previous
works. SynergyNet is a promising framework for medical
image analysis that offers high performance.
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