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Abstract

Most object-level mapping systems in use today make use
of an upstream learned object instance segmentation model.
If we want to teach them about a new object or segmen-
tation class, we need to build a large dataset and retrain
the system. To build spatial AI systems that can quickly be
taught about new objects, we need to effectively solve the
problem of single-shot object detection, instance segmenta-
tion and re-identification. So far there is neither a method
fulfilling all of these requirements in unison nor a bench-
mark that could be used to test such a method. Addressing
this, we propose ISAR, a benchmark and baseline method
for single- and few-shot object Instance Segmentation And
Re-identification, in an effort to accelerate the development
of algorithms that can robustly detect, segment, and re-
identify objects from a single or a few sparse training ex-
amples. We provide a semi-synthetic dataset of video se-
quences with ground-truth semantic annotations, a stan-
dardized evaluation pipeline, and a baseline method. Our
benchmark aligns with the emerging research trend of unify-
ing Multi-Object Tracking, Video Object Segmentation, and
Re-identification.

1. Introduction

Object-level scene understanding is fundamental to the
development of robust and effective spatial AI systems.
The ability for an AI system to accurately perceive objects
within a scene is crucial to many applications in robotics,
augmented reality, navigation, and autonomous vehicles.

Working towards the goal of general-purpose, spatial AI
systems, the research community has become increasingly
interested in developing object-level mapping pipelines [2,
15,25,31,35,42,51,64–66,72,83,85,90] for use in robotics,
augmented reality and other spatial AI applications. All
of these pipelines assume known object models [66] or an

upstream object segmentation pipeline, either to assign a
semantic class to static parts of the scene [25, 64], or to
deal with dynamic objects separately from the static back-
ground mapping and reconstruction [2, 15, 31, 35, 42, 65,
72, 83, 85, 90]. Additionally, systems have been proposed
which incrementally build databases of objects and their
geometry to help with object manipulation [23, 45]. Such
systems also rely on object instance segmentation. Cru-
cially, this object-level segmentation is currently produced
using learned object segmentation models such as Mask R-
CNN [27], Sharp-Mask [57], PSPNet [91] or Detic [96].
Such learned object segmentation models require classes to
be known at training and dataset building time. Fine-tuning
them to handle a new class requires annotating thousands
of diverse examples and many expensive optimization iter-
ations. To build general-purpose robots and spatial AI sys-
tems that can deal with arbitrary objects, one needs to be
able to teach them about new objects at run-time. Teaching
the spatial AI system and adding new objects to an object
tracking and segmentation pipeline should be as easy as se-
lecting the new objects through a user interface. Effectively,
this means solving the problem of single- or few-shot object
instance segmentation and re-identification.

So far, the computer vision community has studied the
problems of few-shot semantic segmentation, Video Object
Segmentation (VOS) and Re-identification (re-ID) individ-
ually. While tremendous progress has been made on all of
these tasks independently, we can still not teach our spa-
tial AI systems effectively about new objects. Few-shot se-
mantic segmentation systems use dense object segmenta-
tion masks, which are expensive to obtain, and they do not
make use of the temporal structure in the video data that
spatial AI systems inherently operate on. VOS methods
perform extremely well, and make full use of video data,
but require an initial dense segmentation mask. Further,
they do not deal with re-identifying the objects across dif-
ferent scene contexts, which we define as the surrounding
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environment in which an object is recorded, including the
pose of the objects in the environment. As a result, the in-
the-wild usability of VOS methods for the previously men-
tioned tasks is limited.

In summary, existing methods for object instance seg-
mentation and re-identification either do not use the tempo-
ral structure of video data, rely on initial dense segmenta-
tion masks and/or struggle to re-identify objects across dif-
ferent scenes. Consequently, there is an apparent gap which
could be filled by combining few-shot semantic segmenta-
tion, VOS and re-ID methods into one approach.

To address this gap, we propose ISAR, a benchmark and
baseline method for single- and few-shot object Instance
Segmentation And Re-identification. Our benchmark is de-
signed to accelerate research progress towards robust algo-
rithms that will enable teaching spatial AI systems through
a single or a few sparse training examples. We aim to
unify few-shot semantic segmentation, Video Object Seg-
mentation (VOS) and Re-identification (re-ID) – tradition-
ally mostly separately studied research topics. This reflects
the emerging trend in recent years towards combining these
topics [48]. As our goal is to build spatial AI systems
that can deal with objects in any configuration, including
moving objects, we aim to make it hard to rely purely on
spatial information as the primary means of object descrip-
tion. Instead, we advocate the development of vision-based
object-centric methods, which do not rely on the context
in which the object is first perceived. Through this ap-
proach, we strive to advance the representations of object
instances, making them more detailed and distinguishable,
which in turn may enable more robust re-identification and
object-level mapping of dynamic environments. Our semi-
synthetic benchmark dataset is recorded using the Habitat
AI Simulator [50, 73] with scenes of Replica [71] and the
Habitat-Matterport 3D research dataset [62], using objects
from the YCB dataset [8]. The dataset and evaluation code
are available at https://nicogorlo.github.io/
isar_wacv24/.

To summarize, our contributions are the following: 1. A
semi-synthetic dataset of video sequences with high-quality
ground-truth semantic annotations; 2. A standardized evalu-
ation pipeline to measure the performance of different meth-
ods on this task against each other; 3. A baseline method to
segment and re-identify objects.

2. Background
In this section, we cover some of the work done on re-

lated problems, and show that none of these fully address
the needs of modern object-centric spatial AI systems.

2.1. Video Object Segmentation

The primary goal of Video Object Segmentation (VOS)
is to segment object instances in a video sequence. VOS

has been categorized into four major subcategories: Semi-
Supervised, Unsupervised, Referring and Interactive VOS.

Semi-Supervised VOS requires propagating a mask,
provided in the first frame, to subsequent frames in a video.
Facilitated by various benchmark datasets [6, 7, 33, 56, 58,
86], large steps in performance have been achieved [5, 13,
38,68]. In particular, recent methods [11,43,77] have shown
very strong performance on these benchmarks. However,
their reliance on a costly annotation in the initial frame and
their dependence on the object being salient and staying in
the same context reduces their in-the-wild applicability for
spatial AI systems, as the initial annotation is hard to pro-
vide in an online setting and objects are not guaranteed to
be salient (i.e., prominent in the video frame).

In Unsupervised VOS the goal is to segment the salient
objects in a video clip without any labeling cues or training.
Using the same benchmark datasets as Semi-Supervised
VOS and some specialized ones [19, 37, 53, 78], equally
impressive steps in performance of methods have been
achieved [14,46,49]. However, unsupervised VOS methods
by definition rely on the fact that the objects are salient and
the overall scene context does not change. Consequently, it
is not applicable when these assumptions are not met. How-
ever, in in-the-wild scenarios, there no guarantees that the
assumptions are met.
In Video Instance Segmentation (VIS), the goal is to seg-
ment all instances in a video from a set of object cate-
gories. YouTube-VIS [87], the most popular benchmark for
VIS is built on the YouTube-VOS [86] benchmark dataset
and therefore suffers from the same problem of few re-
appearing and non-salient objects as YouTube-VOS. Fur-
ther, it is constrained to the predefined object categories.

The novel task of Referring VOS replaces the segmen-
tation in the initial frame of Semi-Supervised VOS with
a language prompt. The benchmarks Youtube-VOS [67]
and DAVIS-2017 [29] have been extended with natural
language prompts describing the objects. A number of
methods have already achieved promising results on this
task [4, 29, 36, 67, 80, 81].

In Interactive VOS [6, 7] the initial full mask of the
semi-supervised scenario is replaced with interactive user
inputs, given as scribbles, to refine the video object segmen-
tation throughout the video. The interactive user input is
provided in up to 8 rounds for the frame with the worst pre-
diction among candidate frames. The strong performance
of state-of-the-art [10, 12] methods on this task shows that
one does not have to rely on expensive mask annotations
like Semi-Supervised VOS.

While many benchmarks have been created for different
types of VOS [6,7,16,19,37,53,56,58,59,78,86,87], these
mostly focus on segmenting salient objects, which rarely
move out of frame or reappear in a different context. In ad-
dition, recently it was shown on MOSE [16] and OVIS [59],
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datasets for VOS and VIS in complex scenes that state-of-
the-art VOS and VIS methods, achieving near perfect scores
on DAVIS 2016 [56], struggle with heavy occlusion and
more complex scenes. This strengthens the case that current
VOS and VIS benchmark datasets do not properly mimic
an in-the-wild scenario. However, even in the MOSE and
OVIS benchmark datasets, the scene context mostly stays
the same. Therefore, methods developed for these tasks are
not fit to deal with reappearing, dynamic objects or for iden-
tifying previously seen objects in a new context.

Our benchmark, separating annotated and annotation-
free scenes into distinct scene contexts, goes beyond the
current scope of tasks in the field. This benchmark is de-
signed to fuel the advancement of methods that combine
VOS with re-identification across varying scene contexts.
Instead of providing full segmentation masks, we provide
point- and bounding box annotations as hints. This main-
tains some of the advantages of Interactive VOS, preventing
methods from relying on costly segmentation.

2.2. Vehicle and Person Re-identification

Instance re-identification has been mainly explored
within vehicle and person re-identification, as well as
for face recognition. Facilitated by datasets for per-
son [24, 28, 63, 84, 92–94] and vehicle [32, 40, 44, 74, 88]
re-identification, impressive accuracy has been achieved
in distinguishing and re-identifying vehicles and people,
despite few differences among the instances that need to
be distinguished from one another. State-of-the-art meth-
ods [1,22,34,52,60,76,79,95,98] now effectively solve the
task with little error on the most popular datasets.

However, direct application of these methods to other ob-
ject classes is infeasible, as the methods rely on training on
large datasets of the same class. These challenging circum-
stances demand the development of techniques that can per-
form efficiently even with scarce data or no prior class infor-
mation. Further, these methods only tackle re-identification
and not object instance segmentation from videos.

As we deal with re-identifying objects of any class rather
than specific classes, our definition of re-ID differs from
these standard re-ID frameworks in that we do provide
single- or few-shot labels. In standard re-ID frameworks,
no labels are provided, but rather all objects of a specific
class need to be re-identified.

2.3. Few-shot Semantic Segmentation

Few-shot semantic segmentation (FSS) [17, 20, 21, 55,
69, 75] methods predict pixelwise masks for novel classes
given a few annotations. Most methods are based on met-
ric learning [17]. Later works have introduced support
query features and attention mechanisms [41, 70, 89], oth-
ers have introduced fine-tuning [97], memory modules [82],
and learned classifiers [47].

FSS methods are typically evaluated on the PASCAL-5i

[18, 69] and the COCO-20 [39] datasets, which hold out a
certain number of classes that are used for few-shot eval-
uation. In these datasets, the training set actually contains
some instances of the test classes already, but those are not
labeled. FFS methods focus on simply segmenting the ob-
ject class and do not detect or re-identify the same instances
of an object. In the test phase, a full segmentation mask is
provided, instead of a sparse prompt like a bounding box
or pixel coordinate. They also operate on individual images
instead of video, which rules out the use of methods which
leverage temporal structure in the data. For an object-level
SLAM type application, figuring out how to rely on sparser
expert labels and how to make the best use of video data is
necessary.

3. Problem Formalization
In the following, we denote with Dtrain and Deval respec-

tively an annotated training set and an evaluation set, both
of which we assume to consist of one or more ordered im-
age sequences. Let the train sequences be indexed with
i ∈ {1, . . . ,Ωtrain} and the evaluation sequences be indexed
with j ∈ {1, . . . ,Ωeval}. In particular, we define a train-
ing sequence I train

i = {Itrain
1 , Itrain

2 , ..., Itrain
Ni

} ∈ Dtrain as a se-
quence of Ni posed RGB or RGB-D images Itrain

r = (fr, pr)
(i.e., tuples of image fr and 6-DoF pose pr in the world
coordinate frame), with r ∈ {1, . . . , Ni}, and an evalua-
tion sequence Ieval

j = {Ieval
1 , Ieval

2 , ..., Ieval
Mj

} ∈ Deval as a se-
quence of Mj posed RGB or RGB-D images. Each training
sequence I train

i contains Ki annotated objects. Each anno-
tation consists of the image index in which the annotation
occurs, a bounding box given by the 2D image coordinates
of the top left and bottom right corners, and a point that is
part of the object. Let Atrain

i denote the set of all annota-
tions for sequence I train

i . For the train data annotation, there
are two scenarios: a single-shot scenario and a multi-shot
scenario. In the single-shot scenario, there is only one train
sequence (|Dtrain| = 1) and there is only one annotation per
object. In the multi-shot scenario, there can be both more
than one train sequence and more than one annotation per
sequence. The evaluation sequences only contain ground-
truth mask annotations for evaluation.

For each object Ok we seek to learn a mapping

Fk : {I train
i }i≤Ωtrain × {Atrain

i }i≤Ωtrain×
{Ieval

j (0), ..., Ieval
j (t⋆)} ∈ Ieval

j

7→ Meval
k,j (t

⋆),

(1)

such that the discrepancy between Meval
k,j (t

⋆) and
Meval

k,j,gt(t
⋆) is minimized for all frames in each evalu-

ation sequence Ieval
j and all objects Ok, k ≤ K. Here

Meval
k,j (t

⋆) denotes the predicted binary instance segmen-
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tation mask of object Ok in the sequence Ieval
j at time t⋆

and Meval
k,j,gt(t

⋆) its corresponding ground-truth annotation.
Therefore, the goal is to sequentially produce pixelwise
masks on the evaluation sequences, given the training
sequence and the annotations.

The desired properties of the mappings Fk include:
1. Consistency with annotations: For every object instance
Ok, the mapping Fk, if applied to a train sequence I train

i

should produce segmentation masks that are consistent with
the provided annotations. 2. Temporal consistency: Given
the temporal nature of the input video sequences, the map-
ping Fk should produce segmentation masks that are tempo-
rally consistent. In other words, for each object instance Ok,
the predicted instance segmentation masks across different
frames in a sequence should correspond to the same ob-
ject. 3. Spatial Consistency: Both the predicted segmenta-
tion masks and its boundary should match the ground-truth
segmentation mask. 4. Generalization to different scenes:
The mappings Fk should be able to generalize to entirely
different scene contexts in the evaluation data and should
therefore be able to produce coherent segmentation masks
in all the sequences {Ieval

j }j∈{1,...,Ωeval} regardless of the
scene context that the sequences may be recorded in.

We measure adherence to these properties with evalua-
tion metrics introduced in Section 5. The overall objective
of this task is to derive such mappings Fk that fulfill the
desired properties. Importantly, the entire train sequence
and the associated sparse annotation data can be used to
form object representations that enable re-identification of
the objects in a different scene context. An example of such
object representations is outlined in Section 6.1.

For in-the-wild applicability, methods tackling this task
should not pre-train on any data contained in the dataset.
However, they may and are expected to make use of general
pretraining on other data. In the case of our benchmark, for
instance, pre-training on the Replica [71] or Matterport 3D
datasets [62] is not allowed nor is using data containing the
YCB [8] objects, as the objects are contained in our dataset.

4. Dataset
The benchmark contains 24 test cases, each consisting

of a training set Dtrain of one sequence and an evaluation
set Deval of 1 to 5 evaluation sequences. For each test case,
annotations for a single-shot and a multi-shot scenario are
provided. In the single-shot scenario, a single annotation
per object is provided, while in the multi-shot scenario there
are between 6 and 14 annotations per object, varying across
test cases. This is to test how different algorithms perform
with a varying amount of supervision. Each test case con-
tains up to 8 objects to track. In total, the dataset consists
of 84 combined train and evaluation sequences. The length
of each sequence is 400 frames at a frame-rate of 30Hz.
In Table 1 we compare its size to commonly used VOS

benchmark datasets. Note that, in contrast to these, our
dataset is only meant for evaluating, not training models
and that, unlike for instance YouTube-VOS [86], its focus
is not on achieving large scale. In particular, the amount of
data provided for each object is chosen so as to prevent us-
ing the training sequences to overfit to the characteristics of
the benchmark.

Benchmark # instances per
sequence (avg.)

# Annotations

Ours 3.52 124,681
DAVIS 2016 [56] 1 3,455
DAVIS 2017 [58] 2.56 10,474
YouTube-VOS [86] 1.74 197,272

Table 1. Comparison of dataset size to the three most common
VOS benchmarks. # Annotations is the total number of unique
object annotations. # instances per sequence (avg.) is the average
number of annotated object instances per sequence

As our benchmark is designed to test single- and few-
shot methods, we limit the amount of data available in train-
ing sequences and rather propose to test methods across a
wide range of test scenarios. Methods tackling this task can
make use of external data, as long as they do not contain
data from the Matterport, Replica or YCB datasets.

The scenes in which the video sequences are recorded
are indoor scenes of the Replica [71] and the Habitat-
Matterport 3D research dataset [62]. We use data from
the YCB dataset [8] as objects to be segmented and re-
identified. A few sample frames of the dataset can be seen
in Figure 1.

4.1. Data Recording

The scenes are recorded using the Habitat AI Simula-
tor [50, 73]. To generate coherent sequences, we manually
set the 6-DoF poses of keyframes and subsequently inter-
polate the positions using B-splines and the orientation us-
ing spherical quadrangular interpolation of the quaternion
orientations with cubic splines. This results in smooth tra-
jectories with continuous linear and angular accelerations.
Using semantic annotations of the Replica [71] and Habitat
Matterport 3D research dataset [62] allows us to circumvent
expensive manual labeling and yields pixel-perfect annota-
tions while retaining near photo-realistic data.

4.2. Attributes

Taking inspiration from the DAVIS dataset [56], we as-
sign attributes to every training/evaluation sequence. These
attributes are chosen to point out the strengths and weak-
nesses of methods tackling the benchmark. The attributes
and their number of occurrences are shown in Table 2.
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Figure 1. Samples from the dataset. The first and third rows show examples of sparsely annotated train sequences. The second and fourth
row show dense ground truth segmentations from the evaluation set. In both cases, the train sequence is static, while the shown evaluation
sequence is dynamic (pen falling off the countertop; toy airplane flying through the room). Best viewed in color.

ID Description #

DYN The scene contains dynamic objects 26
CLT The scene is cluttered with other objects 78
CLA The scene contains multiple distinct ob-

jects of the same class (e.g., 2 different
cans)

43

SML The mean ratio between object bounding
box and image area is smaller than 0.005

58

SMF There are frames with a ratio between the
object bounding box and the image area
smaller than 0.001

73

FST The recording contains fast camera move-
ments, defined as linear velocity >
1.5m/s or angular velocity > 1.0 rad/s

64

Table 2. Attributes of the dataset scenes with associated descrip-
tions and number of occurrences.

5. Evaluation

To facilitate the comparison of different methods, we
first draw a distinction between two possible scenarios: one
where the object is visible within a frame, and the other
where the object is not present in the frame. This cate-
gorization is designed so that we can separately compute
evaluation metrics for each scenario. In the scenario where
the object instance k is visible (the number of pixels in the
mask Mk,j,gt(t̂) is larger than zero), we compute four dif-
ferent metrics:

1. The Jaccard index J (Intersection over Union) defined
by

J =
Mk,j(t̂) ∩Mk,j,gt(t̂)

Mk,j(t̂) ∪Mk,j,gt(t̂)
∈ [0, 1] (2)

measures the accuracy of the mask prediction, when
the object is visible. Here, Mk,j(t̂) is the predicted bi-
nary segmentation mask of the object in a single frame
and Mk,j,gt(t̂) is the corresponding ground truth mask.

2. The boundary F1-score F . For this we define the
boundary of a segmentation mask B as ∂B = B\Bo,
where B denotes the closure of B and Bo its inte-
rior. These are the boundary pixels of the segmenta-
tion masks. The F1-score of the boundary of the two
segmentation masks is calculated with

F =
2 TP

2 TP + FP + FN
, (3)

where TP = |∂Mk,j(t̂) ∩ ∂Mk,j,gt(t̂)|,
FP = |{∂Mk,j(t̂) /∈ ∂Mk,j,gt(t̂)}| and
FN = |{∂Mk,j,gt(t̂) /∈ ∂Mk,j(t̂)}|. In the scenario
of spatial perception, this measure is of particular
interest, as it quantifies to what degree a mask either
leaks into the background or undershoots and fails to
cover the entire object. Preventing such leakage is
crucial for building up a good 3D representation of an
object.

Both for J as well as F we calculate the mean over an
entire sequence and report this as the final measure, with
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higher values indicating better performance. These two
measures follow DAVIS [56]. Additionally, we define:

3. The visible misclassification rate Jmis, v as the ratio of
frames, where J < tmis = 0.4. This measures the
ratio of frames where at most a small part of the object
was correctly classified.

4. The visible false detection rate Jfd, v: the ratio of
frames, where J < tfd = 0.1 and |Mk,j | >
|Mk,j,gt| × J . This measures the ratio of frames in
which an object that is not the same instance as the
correct object is segmented, even though the correct
object is visible.

When the object is not visible (|Mk,j,gt| = 0), we mea-
sure the non-visible false detection rate Jfd, n as the ratio of
frames, where |Mk,j | > 0.

6. Baseline Method
We provide a baseline method for the benchmark that

methods can be compared against. It relies on building
feature descriptors of an object instance and on instance
segments from the Segment Anything Model (SAM) [30].
The feature descriptors are used to re-identify the objects in
other scene contexts by constructing a simple classifier for
each object.

In this section we describe our method, provide an eval-
uation on our benchmark and perform an ablation study of
the different components of our method.

6.1. Pipeline

Our method builds on pixel-wise features, which we use
to describe our objects. An overview of the pipeline can be
seen in Figure 2.

In the initial step, SAM is prompted with the bound-
ing box and point prompt of the annotations in the train-
ing sequence. Inspired by [3], we leverage image features
learned on a massive, diverse dataset to describe object in-
stances. Therefore, each of the images is passed through a
pretrained DINOv2 [54] backbone to extract a feature ten-
sor TDINO ∈ R40×40×1024. This tensor is upsampled to the
image size, using bicubic upsampling. A linear maximal
margin classifier (SVM) is trained for each object, using the
dense DINOv2 features that lie within the predicted mask
on the train images as positive samples; as negative sam-
ples, we use DINOv2 feature vectors sampled from out-
side of the predicted mask. To prevent overfitting to the
current scene context, we include a set of DINOv2 feature
vectors previously extracted from a diverse set of random
images as negative examples. For frames in the evaluation
dataset, we similarly compute upsampled DINOv2 feature
vectors and use the classifier to determine instance member-
ship pixel-wise. Optionally, the resulting masks are refined

Annotated images
in training sequence

Segmentation masks for
train images

Pixel-wise
Classification

Evaluation sequence
(frame by frame)

mask-predictions
on evaluation sequence

Mask Refinement
using SAM

Segmentation
(SAM)

Pixel-wise feature
extraction
(DINOv2)

Training SVM
classifier for each

objectTraining
sequence

Pixel-
wise

DINOv2
feature
vectors

SVM
classifiers

Pixel-wise feature
extraction
(DINOv2)

Evaluation
sequence

Segmented
instances with

pixel-wise
classification

Pixel-
wise

DINOv2
feature
vectors

Figure 2. Pipeline of the baseline method. First, on anno-
tated images of a training sequence, the point and bounding box
prompts are transformed into masks using SAM [30]. Second,
DINOv2 [54] features are extracted on these images. Using the
masks, a dataset of positive and negative DINOv2 features is cre-
ated for each annotated object. This dataset is used to train a linear
SVM for each object. These linear SVMs are sequentially applied
to the dense upsampled DINOv2 features of images in evaluation
sequences to determine instance membership. Finally, the result-
ing masks are refined with SAM.

using SAM. To do this, we compute the dot product be-
tween all (pixel-wise) features and the SVM weights for an
object. This effectively scores each pixel in terms of simi-
larity to the object instance. Then, we select the 5 largest lo-
cal maxima of this dot product to prompt SAM. This results
in multiple mask proposals by SAM. These mask proposals
are allocated to the object instances using linear assignment,
maximizing the dot product of the SVM weights for an ob-
ject and the feature vectors that lie beneath a mask proposal.
Finally, if the average of the features that are covered by a
mask lie on the negative side of the decision boundary of an
assigned SVM, the mask is discarded.

The benefits of the method include the fact that it does
not rely on external training with segmentation or video data
and purely uses out of the box models. Further, it is agnostic
to the class of the objects.

6.2. Quantitative Results

We evaluate the baseline method on the proposed bench-
mark. The J with respect to scene attributes can be seen
in Figure 3. The method performs best in scenarios with
little clutter and no objects of the same semantic class and
achieves lowest performance in scenes with clutter, objects
of the same class, and small objects. The evaluation metrics
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averaged over all evaluation sequences can be seen in Ta-
ble 3.

J F Jfd,v Jfd,n Jmis

single shot 0.2686 0.1249 0.1319 0.0998 0.7092
multi shot 0.3224 0.1474 0.0629 0.0401 0.6545

Table 3. Performance of the baseline method expressed in the met-
rics of Section 5. Averaged over all evaluation sequences.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Jaccard Score

CLA
CLT

DYN
FST
SMF
SML

At
tri

bu
te

multi_shot
single_shot

Figure 3. Mean J score of the baseline method with respect to
scene attributes.

6.3. Qualitative Results

Using SAM to transform the point and bounding-box
prompts into masks in general works well, however even
small failures lead to inconsistencies over the entire evalu-
ation sequence, as no additional data from the training se-
quence is used. A good and a bad example can be seen
in Figure 4. This is especially apparent when the object is
composed of multiple parts. Performance at this stage is
critical, as negative features to train the SVM are sampled
from the area outside the mask. Therefore, a mask that does
not capture the entire object might lead to failure later on.
However, this was observed in few sequences.

Figure 4. Qualitative results showing the effectiveness of SAM as
a way to transform the given prompts into initial segmentations.
Left: good example, right: bad example.

While the segmentation quality on the evaluation data
is high (in frames where the correct instance is segmented,
the J score is generally above 0.9), the mask quality varies
from frame to frame, as no temporal information is taken
advantage of.

6.4. Failure Cases

The high rate of misclassifications (frames where J <
0.4) shows that the robustness of the method can be im-
proved. Especially in scenarios where the object is small
and few pixels are available, the DINOv2-model [54] fails
to extract enough meaningful information to re-identify an
object. Further, as the segmentation method (SAM [30]) is
not optimized with respect to the the boundary F1-measure
F , the latter is very low.

Moreover, as addressed in the previous paragraph, pre-
dictions in two subsequent frames may be entirely different
due to no temporal knowledge being used.

Lastly, in the single-shot setting the baseline sometimes
completely fails with objects of the same semantic class (for
instance it fails in a test case that requires distinguishing be-
tween a flat and a crosshead screwdriver that are both small
in the image). This is caused by the SVM classifier not
being aware of the other instance in the scene. Therefore,
the features of the very similar looking screwdriver might
lie on the same side of the decision boundary as the one to
track, as no negative examples of the same class exist. A
way to improve this would be to combine the method with
state-of-the-art VOS methods (e.g., [11, 43, 77]) to track an
object while it is visible in subsequent frames. This then
may be used in the training sequence to generate additional
data for the object’s SVMs to be trained on. It could also
be beneficial in the evaluation sequences to improve robust-
ness.

6.5. Ablation on Method Components

We perform ablations on the different components in
our baseline method. First, we discuss the choice of ob-
ject descriptors. We test CLIP [61], SAM [30], and DI-
NOv2 [54] features. For the SAM features, we used a simi-
lar pipeline as in Section 6.1, simply replacing the DINOv2
feature tensor TDINO with the result of the SAM backbone
TSAM ∈ R64×64×256.

To be able to use CLIP feature vectors as descriptors,
we take a different approach, as they are global and not lo-
cal like the features resulting from the SAM or DINOv2
backbones. This method relies on CLIP features [61] ex-
tracted from object bounding box proposals. The bounding
box proposals are generated by OW-DETR [26] which is a
method for open world object detection based on DETR [9].
First, on annotated frames of the training sequence, CLIP
features are extracted from the image cropped at the bound-
ing box annotation. For each frame in the evaluation se-
quence OW-DETR bounding box proposals are generated.
CLIP features are extracted from each bounding box and
compared under the cosine similarity metric with the train
features. The bounding box corresponding to the features
that achieve the highest similarity is selected. If the max-
imum similarity Sc,max ∈ R is smaller than a threshold
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tsim ∈ R, no object is selected. From the selected bounding
box, a segmentation mask is inferred by prompting SAM
with the bounding box.

We noticed that this performs badly when object in-
stances of the same or a similar semantic class are present,
as CLIP features mostly encode class-level knowledge. Fur-
ther, it is sensitive to viewpoint changes, struggles with
small objects and the best threshold tsim varies by the type
of object.

In contrast to the SAM and CLIP features, DINOv2 fea-
tures used in combination with a SVM as described above
are a better fit not only for distinguishing objects belonging
to two different semantic classes, but also for differentiating
between two objects of the same class. This approach using
DINOv2 features consistently outperforms SAM and CLIP
features on almost every sequence in the benchmark. The
discrepancy in how these features encode semantic knowl-
edge can be shown by visualizing the first three principal
components of the pixel-wise upsampled feature vectors in
an RGB image. The dimensionality reduction is fit to the
masked features of an object instance. An example can be
seen in Figure 5. The DINOv2 features used in the way
that we outlined seem to be significantly better object de-
scriptors than the SAM features.

Figure 5. An example of how different models encode instance-
level knowledge. Left: Image with segmentation mask used to fit
a PCA transformation. Middle: Inference image (different per-
spective). top right: Largest three principal components of the
upsampled SAM features, visualized on the entire image. bottom
right: Largest three principal components of the upsampled DI-
NOv2 features, visualized on entire image. Note that the DINOv2
features better encode the class- and instance membership of the
pixels of the larger can.

Additionally, we discuss the use of the mask-refinement
step using SAM outlined in Section 6.1. Performing this
step greatly improves the boundary F1-score F and in-
creases the method’s ability to deal with objects of the same
class. However, it struggles with objects that are assembled
of multiple parts, as SAM proposes masks for each part in-
dividually. An example illustrating the strengths and weak-
nesses of the mask-refinement step can be seen in Figure 6.

Figure 6. Selected examples of the benefits and drawbacks of us-
ing the final mask-refinement step with SAM. Left: Mask pre-
dictions using no SAM refinement. Right: Mask predictions with
SAM refinement. Notice that SAM refinement helps with multiple
object instances of the same class, but decreases the performance
when the object consists of multiple parts.

7. Conclusion

We presented a benchmark for few-shot Video Object
Instance Segmentation and Re-Identification. The goal of
the benchmark is to improve object segmentation and re-
identification in different scene contexts. It offers vari-
ous different scenarios: single-object/multi-object segmen-
tation, single-shot/few-shot annotation data in the training
sequences, RGB/RGB-D data and 6-DoF camera poses/no
camera poses available to the user. The dataset and evalua-
tion code will be released upon publication.

We also developed a method as a baseline solution for
the task, tackling the problem by forming DINOv2 [54]-
based instance descriptors and training a SVM classifier in
a single- or few-shot manner (depending on the scenario).
We ablate on the descriptor used in the baseline method and
show that among three popular state-of-the-art vision mod-
els (DINOv2, SAM and CLIP), DINOv2 embeddings are
best at encoding instance knowledge.

Future work might focus on better leveraging motion and
correlation in the video sequence. Another avenue would be
building up richer, perhaps 3D, representations on-the-fly of
the objects and using those for detection, tracking, segmen-
tation and outlier filtering. Another possibility would be the
use of a representation not directly based on point features,
for example by modeling local neighborhoods or patches
of features on the objects and using those to build a better,
less ambiguous representation. Our goal is to build more
malleable and teachable spatial AI systems and we hope to
apply these techniques in such downstream systems.
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moghadam, Álvaro Garcı́a-Martı́n, Andreas Robinson, An-
ton Varfolomieiev, Awet Haileslassie Gebrehiwot, Bedirhan
Uzun, Bin Yan, Bing Li, Chen Qian, Chi-Yi Tsai, Christian
Micheloni, Dong Wang, Fei Wang, Fei Xie, Felix Jaremo
Lawin, Fredrik Gustafsson, Gian Luca Foresti, Goutam Bhat,
Guangqi Chen, Haibin Ling, Haitao Zhang, Hakan Ce-
vikalp, Haojie Zhao, Haoran Bai, Hari Chandana Kuchib-
hotla, Hasan Saribas, Heng Fan, Hossein Ghanei-Yakhdan,
Houqiang Li, Houwen Peng, Huchuan Lu, Hui Li, Javad
Khaghani, Jesus Bescos, Jianhua Li, Jianlong Fu, Jiaqian Yu,
Jingtao Xu, Josef Kittler, Jun Yin, Junhyun Lee, Kaicheng
Yu, Kaiwen Liu, Kang Yang, Kenan Dai, Li Cheng, Li
Zhang, Lijun Wang, Linyuan Wang, Luc Van Gool, Luca
Bertinetto, Matteo Dunnhofer, Miao Cheng, Mohana Mu-
rali Dasari, Ning Wang, Ning Wang, Pengyu Zhang, Philip
H. S. Torr, Qiang Wang, Radu Timofte, Rama Krishna Sai
Gorthi, Seokeon Choi, Seyed Mojtaba Marvasti-Zadeh,
Shaochuan Zhao, Shohreh Kasaei, Shoumeng Qiu, Shuhao
Chen, Thomas B. Schön, Tianyang Xu, Wei Lu, Weiming
Hu, Wengang Zhou, Xi Qiu, Xiao Ke, Xiao-Jun Wu, Xiaolin
Zhang, Xiaoyun Yang, Xuefeng Zhu, Yingjie Jiang, Ying-
ming Wang, Yiwei Chen, Yu Ye, Yuezhou Li, Yuncon Yao,
Yunsung Lee, Yuzhang Gu, Zezhou Wang, Zhangyong Tang,
Zhen-Hua Feng, Zhijun Mai, Zhipeng Zhang, Zhirong Wu,
and Ziang Ma. The eighth visual object tracking vot2020
challenge results. In Adrien Bartoli and Andrea Fusiello,
editors, Computer Vision – ECCV 2020 Workshops, pages
547–601, Cham, 2020. Springer International Publishing. 2

[34] Ratnesh Kumar, Edwin Weill, Farzin Aghdasi, and Parth-
sarathy Sriram. Vehicle Re-Identification: an Effi-
cient Baseline Using Triplet Embedding, Aug. 2019.
arXiv:1901.01015 [cs]. 3

[35] Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi, Car-
oline Pantofaru, Leonidas J Guibas, Andrea Tagliasacchi,
Frank Dellaert, and Thomas Funkhouser. Panoptic neural
fields: A semantic object-aware neural scene representation.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12871–12881, 2022.
1

[36] Dezhuang Li, Ruoqi Li, Lijun Wang, Yifan Wang, Jinqing
Qi, Lu Zhang, Ting Liu, Qingquan Xu, and Huchuan Lu.
You Only Infer Once: Cross-Modal Meta-Transfer for Re-
ferring Video Object Segmentation. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(2):1297–1305, June
2022. Number: 2. 2

[37] Fuxin Li, Taeyoung Kim, Ahmad Humayun, David Tsai,
and James M. Rehg. Video segmentation by tracking many
figure-ground segments. In 2013 IEEE International Con-
ference on Computer Vision, pages 2192–2199, 2013. 2

[38] Xiaoxiao Li, Yuankai Qi, Zhe Wang, Kai Chen, Ziwei Liu,
Jianping Shi, Ping Luo, Xiaoou Tang, and Chen Change Loy.
Video object segmentation with re-identification, 2017. 2

[39] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 3

[40] Hongye Liu, Yonghong Tian, Yaowei Wang, Lu Pang, and
Tiejun Huang. Deep relative distance learning: Tell the dif-
ference between similar vehicles. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2167–2175, 2016. 3

[41] Lizhao Liu, Junyi Cao, Minqian Liu, Yong Guo, Qi Chen,
and Mingkui Tan. Dynamic extension nets for few-shot se-
mantic segmentation. In Proceedings of the 28th ACM inter-
national conference on multimedia, pages 1441–1449, 2020.
3

[42] Yu Liu, Yvan Petillot, David Lane, and Sen Wang. Global
localization with object-level semantics and topology. In
2019 International Conference on Robotics and Automation
(ICRA), pages 4909–4915, 2019. 1

[43] Yong Liu, Ran Yu, Fei Yin, Xinyuan Zhao, Wei Zhao, Wei-
hao Xia, and Yujiu Yang. Learning Quality-aware Dy-
namic Memory for Video Object Segmentation, July 2022.
arXiv:2207.07922 [cs]. 2, 7

[44] Yihang Lou, Yan Bai, Jun Liu, Shiqi Wang, and Lingyu
Duan. Veri-wild: A large dataset and a new method for vehi-
cle re-identification in the wild. In 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 3230–3238, 2019. 3

[45] Shiyang Lu, Rui Wang, Yinglong Miao, Chaitanya Mitash,
and Kostas Bekris. Online object model reconstruction and
reuse for lifelong improvement of robot manipulation. In
2022 International Conference on Robotics and Automation
(ICRA), pages 1540–1546. IEEE, 2022. 1

[46] Xiankai Lu, Wenguan Wang, Chao Ma, Jianbing Shen, Ling
Shao, and Fatih Porikli. See More, Know More: Un-
supervised Video Object Segmentation with Co-Attention
Siamese Networks, Jan. 2020. arXiv:2001.06810 [cs]. 2

[47] Zhihe Lu, Sen He, Xiatian Zhu, Li Zhang, Yi-Zhe Song,
and Tao Xiang. Simpler is better: Few-shot semantic seg-
mentation with classifier weight transformer. In Proceedings

4393



of the IEEE/CVF International Conference on Computer Vi-
sion, pages 8741–8750, 2021. 3

[48] Wenhan Luo, Junliang Xing, Anton Milan, Xiaoqin Zhang,
Wei Liu, and Tae-Kyun Kim. Multiple object tracking: A
literature review. Artificial Intelligence, 293:103448, Apr.
2021. 2

[49] Sabarinath Mahadevan, Ali Athar, Aljoša Ošep, Sebastian
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