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Abstract

Multi-label classification is a generalization of multi-

class classification, where a single data sample can have

multiple labels. While deep neural networks have depicted

commendable performance for multi-label learning, they

require a large amount of manually annotated training data

to attain good generalization capability. However, anno-

tating a multi-label data sample requires a human oracle

to consider the presence/absence of every single class in-

dividually, which is extremely laborious. Active learning

algorithms automatically identify the salient and exemplar

instances from large amounts of unlabeled data and are

effective in reducing human annotation effort in inducing

a machine learning model. In this paper, we propose a

novel active learning framework for multi-label learning,

which queries a batch of (image-label) pairs and for each

pair, poses the question whether the queried label is present

in the corresponding image; the human annotators merely

need to provide a binary feedback (“yes/no”) in response

to each query, which involves much less manual work. We

pose the image and label selection as a constrained opti-

mization problem and derive a linear programming relax-

ation to select a batch of (image-label) pairs, which are

maximally informative to the underlying deep neural net-

work. Our extensive empirical studies on three challenging

datasets corroborate the potential of our method for real-

world multi-label classification applications.

1. Introduction

Multi-label learning has attracted significant research at-

tention in recent years, where each data sample can have

multiple classes associated with it [42]. For instance, classi-

fying the contents of a natural scenery image is a multi-label

problem, as a single image can have multiple class labels

(such as sunset, ocean, mountains etc.) associated with it.

Deep neural networks have revolutionized the field of com-

puter vision and have depicted state-of-the-art results in a

variety of applications, including multi-label learning [16].

However, deep models are extremely data hungry and re-

quire a large amount of labeled training data to furnish good

generalization capability. While gathering unlabeled data is

cheap and easy, annotating them with class labels is an ex-

pensive process in terms of time, labor and human expertise.

The problem is even more severe for multi-label classifica-

tion, since the human annotator 1 has to meticulously in-

spect the presence/absence of every single class to annotate

a given data sample. Hence, developing a strategy to min-

imize the human annotation effort in a multi-label problem

is of immense practical importance.

Active Learning (AL) algorithms automatically identify

the most informative samples from large amounts of unla-

beled data and are instrumental in reducing human annota-

tion effort in inducing a machine learning model [20]. In a

typical serial query based setup, the learner queries a sin-

gle sample in each AL iteration and the model is updated

after every individual query. This results in frequent model

updates, which can be computationally expensive, particu-

larly for deep neural networks. Further, serial query AL can

only utilize a single human annotator at any given point of

time; in crowdsourcing platforms like AMT, multiple anno-

tators can provide labels to queried samples simultaneously.

To alleviate these challenges, batch mode active learning

(BMAL) techniques have been developed which query a

batch of unlabeled samples in each AL iteration. Batch

mode AL has been successfully used in a variety of com-

puter vision applications, such as image recognition [37],

semantic segmentation [1], object detection [3] and image

regression [19] among others.

In this paper, we propose a novel AL framework for

multi-label classification. Our algorithm identifies a batch

of exemplar images, together with a label for each, and

poses the question: “does image xi contain label yj?”; the

human annotator has to merely provide a binary answer

“yes / no”. Providing such binary feedback is much more

efficient and less laborious than annotating all the labels in

a given sample. We derive a criterion based on informative-

ness, diversity, and label correlation to quantify the useful-

ness of every (image-class) pair. The active image and label

selection problem is then solved through a single integrated

framework to derive a batch of informative pairs for manual

1we use the terms annotator, oracle, labeler and user interchangeably in

this paper
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annotation. Although validated on image data in this work,

the proposed framework is generic and can be used in any

application involving multi-label data, such as text mining,

music and audio analysis among others.

The rest of the paper is organized as follows: we present

a survey of related techniques in Section 2; our framework

is detailed in Section 3; the results of our experiments are

presented in Section 4 and we conclude with discussions in

Section 5.

2. Related Work

In this section, we present a survey of active learning in

general, followed by a survey of active learning for multi-

label classification.

Active Learning (AL): AL is a well-researched topic in

the machine vision literature. Uncertainty sampling, in a

variety of forms, is the most commonly used strategy for

AL, where samples with the highest prediction uncertain-

ties are queried for their labels [11, 13]. With the advent

and popularity of deep neural networks, deep active learn-

ing (DAL) has become popular, where the goal is to query

informative unlabeled samples for manual annotation and

simultaneously learn discriminating feature representations

using a deep neural network. Common DAL techniques

include a task agnostic scheme which learns a loss pre-

diction function to predict the loss value of an unlabeled

sample and queries samples accordingly [37], a technique

which decomposes the training loss for DAL into learning

the network parameters and active sampling through alter-

nating optimization [22], an AL strategy based on temporal

output discrepancy that queries samples based on the dis-

crepancy of outputs given by the models at different op-

timization steps during training [9] and an AL framework

that queries unlabeled samples that can provide the most

positive influence on model performance [17]. Techniques

based on adversarial learning have depicted particularly im-

pressive performance in DAL [6, 24, 46].

AL for Multi-label Classification: Active learning has

also been studied in the context of multi-label classifica-

tion [29]. Existing methods can be broadly categorized into

two groups: (i) methods that query all the labels of a given

unlabeled sample; and (ii) methods that query (sample-

label) pairs. Several criteria have been studied to identify

the informative samples in the first category, such as un-

certainty sampling [12], uncertainty and diversity [2], un-

certainty and representativeness [38], expected loss reduc-

tion [34] and prediction inconsistency [21] among others.

However, these methods query all the labels of a given unla-

beled sample and can be costly especially when the number

of labels is large. Further, these methods ignore the intrinsic

relationships embedded in the label distribution, which can

be useful in formulating the sampling strategy of multi-label

active learning [43].

Techniques in the second category query the informa-

tive (sample-label) pairs of the form (x∗, y∗) and pose the

binary question whether the label y∗ is present in the unla-

beled sample x∗ or not. These methods can further reduce

the annotation cost (since they only need to acquire part of

labels of an unlabeled sample) and can also exploit the cor-

relations among the different labels to drive the AL process.

They have attracted significant research attention over the

years [7,8,10,18,28,30,31,35,36,39,40,43,44]. We present

an overview of some of the techniques here. A two dimen-

sional AL strategy was proposed by Qi et al. [18], which

minimized a multi-label Bayesian error bound to identify

the informative (image-label) pairs. Guo et al. [7] and Wu

et al. [28] exploited low-rank feature representation with

an informativeness criterion to mine label correlations for

multi-label AL. Wu et al. [31] also exploited the label de-

pendency with the input features and used the informative-

ness of each (image-label) pair for active sampling. A semi-

supervised multi-label AL framework was proposed by Wu

et al. [30] which utilized classification prediction informa-

tion, label correlation information, and example spatial in-

formation to select unlabeled (image-label) pairs for an-

notation. Huang et al. proposed QUIRE [8], a min-max

AL strategy that combined informativeness and representa-

tives for active (image-label) selection. Huang and Zhu also

proposed AUDI [10], which exploited both uncertainty and

diversity in the instance space as well as the label space,

and actively queried (image-label) pairs. Yu et al. re-

cently proposed a cost effective MLAL framework called

CMAL, which queries (subexample-label) pairs, instead of

the (example-label) pairs [38]. It operates in two steps,

where it first selects the most informative (example-label)

pairs by leveraging uncertainty, label correlation and label

space sparsity; it then greedily queries the most probable

positive (subexample-label) pairs of the selected (example-

label) pair in a multi-instance learning setup.

Although these methods have demonstrated promising

performance, most of them query only a single (image-

label) pair in each AL iteration and the underlying model is

updated after every individual query [7,18,28,30,35,36,44].

As mentioned before, frequent model updates can be com-

putationally expensive, especially for deep neural networks.

Further, querying a single (image-label) pair cannot lever-

age the presence of multiple labeling oracles (who can si-

multaneously label samples) resulting in a wastage of avail-

able resources. A few methods are designed to query k

(image-label) pairs, by querying the optimal pair repeat-

edly k times [8, 10, 31, 32]. However, they do not con-

sider the redundancy among the queried data, resulting

in sub-optimal performance (as validated in our empiri-

cal studies). Moreover, most of the existing multi-label

AL techniques use SVMs or Binary Relevance k Near-

est Neighbors (BRkNNs) as the underlying classification
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model [7, 12, 28, 30–32, 38–40]; we employed deep neu-

ral networks as the base model in our experiments, which

are largely unexplored for the multi-label AL problem. Our

contributions in this paper can be summarized as follows:

(i) We propose a novel active sampling framework to si-

multaneously query batches of (image-label) pairs for man-

ual annotation in a multi-label setup. We incorporate la-

bel correlations and sample redundancy in our framework

to avoid querying duplicate images / labels.

(ii) We pose the image and label selection as a con-

strained optimization problem and derive a linear program-

ming relaxation to solve the same.

(iii) We conduct extensive experiments to study the per-

formance of our framework using state-of-the-art deep neu-

ral network architectures.

We now describe our framework.

3. Proposed Framework

3.1. Problem Setup

Consider a multi-label learning problem where we are

given a labeled training set L and an unlabeled set U , with

|L| � |U |. Let N denote the number of unlabeled images,

N = |U |. Also, let Y denote the set of labels in the dataset.

The samples in L are fully annotated with all the |Y | labels.

Let θ denote the deep neural network trained on L. We are

given a query budget k and a parameter Ymax, which de-

notes the maximum number of labels that can be queried

per image in a given AL iteration (to ensure that the queries

are distributed across a large number of images). Our objec-

tive is to select a batch of k (image-label) pairs (xi, yj), and

for each pair, pose the question: “does image xi contain the

label yj ?”, such that the user annotation augments maximal

information to the deep learning model.

In order to identify the optimal set of images and labels

to be queried, we need a function to quantify the utility

score of a batch of (image-label) pairs. We used a function

based on class presence uncertainty, label correlation and

image redundancy for this purpose. The first criterion

ensures that we query those (image-label) pairs where

there is maximal uncertainty regarding the presence of

the given label in the given image; the second criterion

exploits the correlation among the labels of a given image

in formulating the active query strategy; the redundancy

criterion ensures that we query a diverse set of images in

our batch and avoid duplicate image queries. These are

detailed below.

Computing Class Presence Uncertainty: Let pij de-

note the probability that image xi contains the label yj
(computed using the current deep neural network θ). We

used Shannon’s entropy to compute the prediction uncer-

tainty of the presence of label yj in image xi:

Hij = pij log pij + (1− pij) log(1− pij) (1)

A high value of Hij denotes high uncertainty of the deep

model in predicting the presence of label yj in sample xi,

and thus, a more useful pair for active query.

Computing Label Correlations: The labels in a multi-

label dataset usually share a correlation among each other,

that is, information about the presence / absence of a par-

ticular label in a particular sample often provides relevant

information about the presence / absence of the other labels

in the same sample. Appropriately exploiting the label cor-

relations can potentially result in more efficient active sam-

pling. Common methods of estimating label correlations in-

clude mutual information [18], association rule mining [41]

etc. However, as noted by Wu et al., these methods can

only identify positive correlations of simultaneous appear-

ances of the labels [30]. Real-world applications often ex-

hibit negative correlations, where the presence of one label

decreases the probability of the presence of another label in

a pair of labels, which is not modeled by many of the corre-

lation estimation methods. To account for this, we utilized

the chi-square statistic to estimate the correlations among

the labels, as it considers all possible positive and negative

combinations of labels in a pair. It is very easy to compute

and has been used in previous multi-label learning research

with promising results [28, 30]. Let µij denote the corre-

lation between label yj of sample xi with the other labels

of sample xi, which can be estimated from the labeled data

L. A high value of this term denotes that label yj of sample

xi is highly correlated with the other labels of sample xi;

hence, querying label yj of this sample will reveal maximal

information about the other labels of xi. A high value of

µij is thus desirable from an active query perspective. To

compute µij , we proceed as follows. We first compute a

contingency table for each label pair yi and yj :

yj yj
yi A B

yi C D

Table 1. Contingency table for the label pair yi and yj .

The label correlations calculated by chi-square estimation

can be defined as follows [30]:

Mij =
AD −BC

√

(A+B)(A+ C)(C +D)(B +D)
(2)

Note that the chi-square statistic values are symmetric, i.e.

Mij = Mji. When Mij < 0, the relationship between yi
and yj is negative; otherwise, the relationship is positive.

Mij = 0 indicates that there is no relationship between
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these two labels. The higher the value of Mij is, greater

is the correlation between the two labels.

Now, let Y denote the set of labels in the dataset. Con-

sider a sample xi for which some of the labels are known

and the others are unknown. For our active label query (de-

tailed next), we would like to compute the correlation be-

tween an unknown label of this sample and the other un-

known labels. Let µij denote the correlation between the

unknown label j and the other unknown labels of sample

xi. It is computed as the average of the label correlations of

this unknown label with other unknown labels in the same

sample [30]:

µij =

{

1
lu

∑|Y |
k=1 |Mjk|.sign(yk ∈ UL(xi)), if lu > 1

0, if lu = 1

where lu is the number of labels of sample xi for which

the values are not yet known, UL(xi) is the set of labels

of sample xi for which the values are not yet known and

sign(.) is a sign function whose value is 1 of the predicate

inside the function evaluates to true and 0 otherwise.

Given Hij and µij , we computed a confidence matrix

C ∈ <|Y |×N , where C(j, i) denotes the confidence of the

deep model in predicting the presence of class yj in im-

age xi, while also considering the correlation between label

yj and the other labels of each unlabeled image xi. Since

we would like to maximize both Hij and µij in our ac-

tive queries, we computed a weighted summation of the

two terms, and inverted that to form our confidence ma-

trix C (high entropy corresponds to low confidence and vice

versa):

C(j, i) =
α

Hij + βµij

i = 1, . . . N, j = 1, . . . |Y | (3)

where α and β are constants.

Computing Image Redundancy: Since our method is

designed to query a batch of (image-label) pairs (to utilize

multiple labeling oracles and to avoid frequent model up-

dates), it is important to consider data redundancy, so that

duplicate images are not queried. We computed a redun-

dancy matrix R ∈ <N×N , where R(i, j) denotes the re-

dundancy between images xi and xj in the unlabeled set.

The cosine similarity was used to quantify the redundancy

between a pair of samples; negative values were replaced

with 0, so that R contains only non-negative entries:

R(i, j) = max(0, cos(F(xi),F(xj))) (4)

where cos(F(xi),F(xj)) =
F(xi)

>F(xj)
||F(xi)||.||F(xj)|| , and F(x)

denotes the deep feature representation of image x. A low

value of R(i, j) implies that images xi and xj have low

redundancy between them. Note that, the label correlation

term quantifies the relationship among the labels for a given

image, whereas the redundancy term quantifies the redun-

dancy between a pair of images. Cosine similarity has been

previously used to compute similarity in AL research, with

promising results [5]. Depending on the application, other

metrics can also be used to compute the uncertainty, corre-

lation and redundancy terms.

3.2. Active Sampling Framework

Given C and R, our objective is to query a batch of

(image-label) pairs such that in each pair, the deep model

has low confidence in predicting the presence of the given

class in the given image, the given label is highly correlated

with the other labels in the given image, and the queried

images have minimal redundancy among them. We define

a binary matrix Q ∈ {0, 1}N×|Y |, where each row corre-

sponds to an unlabeled image and each column corresponds

to a label. A value of 1 in a row denotes that the image

should be selected for annotation, and the position(s) of 1
in a particular row of Q denote the label(s) that should be

used to pose the binary queries for this image. We also de-

fine a binary vector w ∈ {0, 1}N×1 where wi = 1 denotes

that image xi is selected for annotation, and wi = 0 denotes

that it is not selected. The active selection of (image-label)

pairs can thus be posed as the following optimization prob-

lem:

min
Q,w

Tr(QC) + λw>Rw

s.t. 〈Q,E〉 = k

(Q.e)i ≤ Ymax, ∀i

wi = min(1, (Q.e)i), ∀i

wi, Qij ∈ {0, 1}, ∀i, j (5)

where λ > 0 is a weight parameter governing the relative

importance of the two terms, E is a matrix of size N × |Y |
(same size as Q) with all entries 1, e is a vector of size

|Y | × 1 with all entries 1, k is the labeling budget, 〈., .〉 de-

notes the inner product operator and Tr denotes the trace

of a matrix. The first term in the objective function de-

notes that the deep model has low confidence in predict-

ing the presence of the selected labels in the correspond-

ing selected images and that the selected labels are highly

correlated with the other labels of the selected images; the

second term ensures that the selected images have minimal

redundancy among them. The first constraint denotes the

total number of queries posed by Q is equal to the specified

budget; the second constraint ensures that the number of 1s

in each row of Q is less than or equal to Ymax, that is, the

number of queries posed for each image is less than or equal

to the pre-specified limit Ymax; the third constraint denotes

that wi is equal to 1 if there is at least one entry with value

1 in row i of Q (image xi is selected for annotation), and wi
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is equal to 0 if all the entries in row i of Q have value 0 (im-

age xi is not selected); the fourth constraint denotes that w

is a binary vector and Q is a binary matrix. We now discuss

an efficient strategy to solve this optimization problem, as

presented in the following theorem.

Theorem 1. The optimization problem defined in Equation

(5) can be expressed as an equivalent linear programming

(LP) problem.

Proof. We simplify the definition of w in the third con-

straint and rewrite the optimization problem as:

min
Q,w

Tr(QC) + λw>Rw

s.t. 〈Q,E〉 = k

(Q.e)i ≤ Ymax, ∀i

Qij ≤ wi, ∀i, j

wi, Qij ∈ {0, 1}, ∀i, j (6)

The constraint Qij ≤ wi, ∀i, j denotes that if row i in Q

has at least one entry as 1, then wi has to be 1. If row i in

Q has all entries as 0, then wi is free to be 0 or 1. How-

ever, we are solving a minimization problem with w>Rw

in the objective, and R has only non-negative entries; this

criterion will force wi to be equal to 0, as that will result

in a better (lower) value of the objective. This shows that

the constraint wi = min(1, (Q.e)i), ∀i in Equation (5) is

equivalent to the linear constraint Qij ≤ wi, ∀i, j in Equa-

tion (6).

The first term in the objective function can be expressed

as a linear term: Tr(QC) =
∑

i,j Cij .Qji. Also, let dij =
wi.wj . Clearly, D is a binary matrix of size N ×N with all

entries 0 or 1. The second term in the objective can then be

written as: w>Rw =
∑

i,j dij .rij
The optimization problem can thus be expressed as:

min
Q,w,D

∑

i,j

Cij .Qji + λ
∑

i,j

dij .rij

s.t.
∑

i,j

Qij = k

dij = wi.wj , ∀i, j

(Q.e)i ≤ Ymax, ∀i

Qij ≤ wi, ∀i, j

wi, Qij , Dij ∈ {0, 1}, ∀i, j (7)

Now, we attempt to express the quadratic equality dij =
wi.wj , ∀i, j as a linear term. The quadratic equality implies

that dij equals 1 only when both wi and wj are 1 and equals

0 otherwise. This can be expressed as the linear inequality

wi+wj ≤ 1+2dij , ∀i, j. From the inequality, we note that

when both wi and wj are 1, dij is forced to be 1. When wi

and wj are both 0, or one of them is 0 and the other one is 1,

dij is free to be 0 or 1. Using the same argument as before,

we note that we are solving a minimization problem with
∑

i,j dij .rij in the objective and R has only non-negative

entries; thus, the nature of the problem will force dij to be 0
as it will produce a lower value of the objective. Replacing

the quadratic equality with the linear inequality, we express

the optimization problem as follows:

min
Q,w,D

∑

i,j

Cij .Qji + λ
∑

i,j

dij .rij

s.t.
∑

i,j

Qij = k

wi + wj ≤ 1 + 2dij , ∀i, j

(Q.e)i ≤ Ymax, ∀i

Qij ≤ wi, ∀i, j

wi, Qij , Dij ∈ {0, 1}, ∀i, j (8)

In this optimization problem, both the objective function

and the constraints are linear in the variables Q, w and D.

It is thus a linear programming (LP) problem.

We vectorize the variables Q, w and D, append them

one below the other and express the objective function and

the constraints in terms of this new variable. The integer

constraints are then relaxed into continuous constraints and

the problem is solved using an off-the-shelf LP solver. Af-

ter obtaining the continuous solution, we recover the integer

solution of our variable of interest Q, using a rounding ap-

proach where the k highest entries in Q are reconstructed

as 1 and the other entries as 0, observing the constraints.

The pseudo-code of our algorithm, for one active learning

iteration, is outlined in Algorithm 1.

3.3. Computational Considerations

Computing the redundancy matrix R (Equation (4)) in-

volves quadratic complexity. We first note that R needs to

be computed only once in our framework (before the start

of the AL iterations). Moreover, the theory of random pro-

jections can be used to reduce the computational overhead.

Random projections have been successfully used to speed

up computations, where an original data matrix A ∈ <m×D

is multiplied by a random projection matrix X ∈ <D×d to

obtain a projected matrix B ∈ <m×d in the lower dimen-

sional space d: B = 1√
d
AX , where d � min(m,D) [27].

We plan to study this as part of our future research.

Further, Sridhar et al. [25] proposed an algorithm to

solve large-scale LP problems and showed that we can re-

cover solutions of comparable quality by rounding an ap-

proximate LP solution instead of the exact one. These

approximate LP solutions can be computed efficiently

by applying a stochastic-coordinate-descent method to a
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Algorithm 1 The Proposed Multi-label Active Learning Al-

gorithm with Binary User Feedback

Require: Labeled training set L, unlabeled set U , query

budget k, parameters α, β, Ymax and λ, a deep neural

network architecture for multi-label classification

1: Train the deep model on the training set L

2: Compute the prediction entropy matrix H (Equation

(1))

3: Compute the label correlation matrix µ (detailed in Sec-

tion 3.1)

4: Compute the confidence matrix C using α, β, H and µ

(Equation (3))

5: Compute the redundancy matrix R (Equation (4))

6: Solve the LP problem in Equation (8) after relaxing the

integer constraints

7: Round the solution to derive the matrix Q

8: Select the unlabeled images and the corresponding la-

bels to pose the binary queries based on the entries in

Q

9: Update the deep model with the user response to the

binary queries (detailed in Section 4)

quadratic-penalty formulation of the LP. A parallel version

of the algorithm was also proposed, which is suitable for

execution on multi-core, shared-memory architectures. In

their empirical studies, the authors reported computational

speedup by a factor of 2.8 to 9.0 (time taken by an off-the-

shelf LP solver divided by the time taken by their method),

with corresponding solution quality of 1.04 and 1.21 (ra-

tio of the solution objective obtained by this method to that

by an off-the-shelf LP solver) for solving LP minimization

problems, similar to the one in this paper. Thus, this method

has the potential to substantially reduce the computation

time, without sacrificing too much on the solution quality.

We plan to explore this framework to further improve the

computation time of our algorithm, as part of future work.

Please refer to [25] for further details about this algorithm,

its convergence analysis and worst-case complexity bounds.

4. Experiments and Results

Datasets: We used three challenging datasets to study

the performance of our algorithm: NUS-Wide [4], MIML

[45] and COCO [14]. All these datasets are widely used as

benchmarks in multi-label learning research.

Experimental Setup: Each dataset was divided into

three parts: an initial training set (where all the images were

completely annotated with all the labels), an unlabeled set

and a test set. Each algorithm queried k (image-label) pairs

in each AL iteration (where k is a pre-specified query bud-

get); the label information of these queried pairs was ob-

tained from the human annotators and were then appended

to the training set. The deep CNN was updated, and its

performance was evaluated on the held-out test set. The

process was continued iteratively until a stopping condition

was satisfied (taken as 25 iterations in this work). The goal

was to study the improvement in performance on the test set

with increasing label queries.

The query budget k was taken as 200 for NUS-WIDE, 40
for MIML and 60 for the COCO dataset. The parameters λ,

Ymax, α and β were taken as 0.025, 5, 1 and 0.1 respec-

tively based on preliminary experiments. The F1-score was

used as the evaluation metric as commonly done in multi-

label learning research [28, 30, 31]. All the results were av-

eraged over three runs to rule out the effects of randomness.

Implementation Details: We used the ResNeXt-50 [33]

deep model, pretrained on the ImageNet-1k dataset, as the

underlying Convolutional Neural Network (CNN) architec-

ture in our experiments 2. The input images were scaled and

normalized to a fixed size of 256 × 256 pixels and fed into

the CNN. The features extracted were fed into one dropout

layer, followed by 1 fully connected layer with |Y | neu-

rons. We used the Adam optimizer with a learning rate of

0.0001 and a batch size of 32, and the network was trained

for a maximum of 35 epochs in each active learning iter-

ation. We used the binary cross entropy loss to train the

deep CNN, due to its promising performance in multi-label

classification [15]:

−
1

n

n
∑

i=1

|Y |
∑

j=1

[yij log(σ(fij))+(1−yij) log(1−σ(fij))] (9)

where n denotes the number of training samples, |Y | de-

notes the number of labels in the dataset, yij denotes the

ground truth information as to whether label yj is present in

sample xi (yij = 1) or not (yij = 0), fij denotes the output

of the CNN corresponding to label yj of sample xi and σ

denotes the sigmoid activation function.

Comparison Baselines: It is well-established in the

multi-label AL literature that querying (image-label) pairs

results in much better performance than querying all the la-

bels of a given image [29]. We therefore used five multi-

label AL techniques which query (image-label) pairs as

comparison baselines in our work: (i) Random Sampling,

which queries a batch of k (image-label) pairs at random;

(ii) QUIRE, which selects (image-label) pairs for anno-

tation by simultaneously considering informativeness and

representativeness through a min-max optimization frame-

work [8]; (iii) AUDI, which selects (image-label) pairs for

query based on uncertainty and diversity in the instance

space, as well as the label space [10]; (iv) LMMAL, which

trains a low-rank mapping matrix to identify the relation

2https : / / pytorch . org / hub / pytorch _ vision _

resnext/
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