This WACYV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

What’s in the Flow? Exploiting Temporal Motion Cues for Unsupervised Generic

Sourabh Vasant Gothe

Event Boundary Detection

Sourav Ghosh ®,

, Vibhav Agarwal ©,
Pranay Kashyap,

Jayesh Rajkumar Vachhani ©,

Barath Raj Kandur Raja

Samsung R&D Institute Bangalore, India

{sourab .gothe, vibhav.a, sourav.ghosh,

Abstract

Generic Event Boundary Detection (GEBD) task aims
to recognize generic, taxonomy-free boundaries that seg-
ment a video into meaningful events. Current methods typ-
ically involve a neural model trained on a large volume
of data, demanding substantial computational power and
storage space. We explore two pivotal questions pertain-
ing to GEBD: Can non-parametric algorithms outperform
unsupervised neural methods? Does motion information
alone suffice for high performance? This inquiry drives
us to algorithmically harness motion cues for identifying
generic event boundaries in videos. In this work, we propose
FlowGEBD, a non-parametric, unsupervised technique for
GEBD. Our approach entails two algorithms utilizing op-
tical flow: (i) Pixel Tracking and (ii) Flow Normalization.
By conducting thorough experimentation on the challenging
Kinetics-GEBD and TAPOS datasets, our results establish
FlowGEBD as the new state-of-the-art (SOTA) among unsu-
pervised methods. FlowGEBD exceeds the neural models on
the Kinetics-GEBD dataset by obtaining an F1@0.05 score
of 0.713 with an absolute gain of 31.7% compared to the
unsupervised baseline and achieves an average F1 score of
0.623 on the TAPOS validation dataset.

1. Introduction

In 2023, video has accounted for 82.5% of all web
traffic, making it the most popular form of content on the
internet. Increased video consumption has made video
understanding a critical task in computer vision, comprising
video classification [8, 23, 35], object segmentation [39,40],
action localization [3, 37, 41], and captioning [38, 42],
among others. However, the memory requirements of the
models, the feasibility of real-time inference, and domain
generalization are typical constraints on these solutions.

Current state-of-the-art video models [9,17,21,31,33]
have been mainly focused on building upon a limited set

jay.vachhani, kashyap.p, barathraj.kr} @samsung.com

Unsupervised Supervised
080 M SBoCo-TSN [15]
M SC-Transformer [19]
M DDM-Net [32]
075 W Li et al [20]

+ Ours (Ensembled)
*Ours(PT) * Qurs (FN) L

UBoCo- UBoCo-
Res50[15] TSN[15]

o M Gothe et al [10]

9
=]

[
3 065 ® CoSeg[36] B PC+Optical flow [30]
2 —m Supervised
— PC[30] baseline
[

0.60 B TCN [30]

0.50

Unsupervised
PA[30] _ baseline
0.40 -
@ PA—Random [20]
 SceneDetect [2]
0.20
* Non-parametric ® Parametric B Parametric

Figure 1. F1@0.05 scores of different methods on the Kinetics-
GEBD validation dataset. Our method FlowGEBD achieves
state-of-the-art results among unsupervised methods compared to
non-parametric [2] and parametric [15, 30, 36] benchmarks.

of predefined action classes and usually process short clips
to generate global video-level predictions. With the growth
of video content, the number of classes is expanding, and
the predefined target classes cannot encompass them all.
Recently, the GEBD [30] task was introduced with the objec-
tive of studying the long-form video understanding problem
through the lens of human perception [34]. GEBD aims to
locate class-agnostic event boundaries in a video, regardless
of its category. It considers the following high-level causes
of event boundaries: changes in subject, action, shot, envi-
ronment, and object of interaction. The outcome of GEBD
has many potential applications: video summarization, video
editing, short video segment sharing (Fig. 2), and enhancing
video classification and other downstream tasks [38].

There are three main approaches to the GEBD problem:
supervised, unsupervised, and self-supervised. Several
supervised methods [10, 12, 14,19,20,32] propose to decode
the self-similarity representation produced by the frame
features for boundary detection. The literature investigates
a wide variety of approaches, including efficient represen-

6941

tation learning [10, 14], transformer decoders [9], attention
masks [32], and the use of compressed domain features [20].
In unsupervised approaches, CoSeg [36] investigates
cognitively inspired parametric methods, and UBoCo [15]
yields the best results by employing a novel contrastive
loss. In self-supervised approaches, TeG [26] investigates
learning temporal granularity in video representations. In
contrast, Rai et al. [27] employ a differentiable motion
feature learning module to detect spatial and temporal
differences for GEBD. These methods incorporate explicit
motion features into their network structures and earn a high
F1 score as they are deep neural networks (DNN) guided
by the ground truth. However, we approach GEBD from
a different perspective, investigating a two-fold question:
(a) Can non-parametric algorithms outperform unsupervised
parametric methods? (b) Is motion information alone suffi-
cient to achieve high performance? We seek answers to these
questions by exploiting the motion information to detect the
generic event boundaries in a video algorithmically.

In this paper, we present two unsupervised, non-
parametric approaches to solve GEBD. (i) Pixel Tracking
(PT) method that relies on sparse optical flow in temporal
dimension to identify the boundary, and (ii) Flow normaliza-
tion (FN) method that traces the max temporal dense flow to
detect the event boundaries. The ensemble of both achieves
an F1 score of 0.713 on Kinetics-GEBD and an F1 score of
0.375 on the TAPOS.

As shown in Fig. 1, our method achieves 31.7% absolute
gain compared to the unsupervised baseline method and
outperforms the supervised baseline [30] by 8.8% on the
Kinetics-GEBD dataset. In summary, our main contributions
are as follows:

* We propose FlowGEBD, a non-parametric (algorith-
mic), unsupervised method for generic event boundary
detection.

* We design two algorithms by leveraging motion in-
formation: (i) Pixel Tracking (PT) and (ii) Flow-
Normalization (FN) using optical flow estimation in
framewise and patchwise mode to solve the GEBD task.

* We conduct extensive ablations, time complexity
analysis, and sensitivity analysis to demonstrate the
robustness of the proposed method.

¢ QOur results establish FlowGEBD as the new state-of-
the-art among unsupervised methods on the challenging
Kinetics-GEBD and TAPOS datasets.

2. Related Work

2.1. Generic Event Boundary Detection

Generic event boundary detection (GEBD) [30] aims
to localize the moments where humans naturally perceive

Moments Generated

Figure 2. FlowGEBD enables applications on smartphones, like
short video segment sharing, summarization, editing by identifying
generic video moments

taxonomy-free event boundaries that break a longer video
into shorter temporal segments. Previous methods [12, 30,
] formulate the GEBD task as binary classification, which
predicts the boundary label of each frame by considering the
temporal context information. However, it could be more
efficient because the redundant computation is conducted
while generating the representations of consecutive frames.
Kang et al. [14] proposed to use the temporal self-similarity
matrix (TSM) as intermediate representation and used
contrastive learning as an auxiliary to learn better from the
TSM results. Li et al. [20] proposed solving GEBD using the
compressed video features and achieved 4.5 x faster-running
speed than the baseline method [30] on GPU. Recently,
Gothe et al. [10] developed the most miniature model to
solve the GEBD task with the lowest inference time on GPU.
SC-Transformer [19] introduced a structured partition of se-
quences (SPoS) mechanism to learn structured context using
a transformer-based architecture for GEBD. To enrich mo-
tion information, optical flow is introduced as a new modality
in [13]. TeG [26] proposed a generic self-supervised model
for learning persistent and more fine-grained features
and uses a 3D-ResNet-50 encoder as its backbone. How-
ever, all these methods require substantial memory and
computational resources along with the labeled data.

Regarding unsupervised GEBD approaches, PySceneDe-
tect [2] is a Python library that detects shot changes by
considering pixel changes in the HSV colorspace. However,
generic event boundaries consist of various boundary
causes like the change of action, subject, and environment,
implying that only a tiny portion of event boundaries can
be detected with this approach. PredictAbility (PA) [30]
computationally assesses the predictability score over time
and then locates the event boundaries by detecting the local
minima of the predictability sequence. CoSeg [36] devises
a transformer-based frame feature reconstruction scheme
and adopts ResNet-18 [1 1] as the backbone. UBoCo [15]
proposes an unsupervised/supervised method using the
TSM as the video representation. UBoCo’s unsupervised
framework for GEBD combines Recursive TSM Parsing
(RTP) and the Boundary Contrastive (BoCo) loss. However
these models belong to a high memory regime.

6942

2.2. Learning motion and visual correspondences

Motion plays a crucial role in video understanding,
and many SOTA models [13, 18,22,27,32] incorporate
motion information by using optical flows. Lucas and
Kanade’s image registration method [24], also known as
gradient-based optical flow, enables motion estimation
possible with high-speed computation. Pyramidal Lucas and
Kanade [1], Gunnar Farneback [5-7] are other well-known
methods for motion estimation.

DDM-Net [32] applies progressive attention to multilevel
dense difference maps (DDM) to characterize motion pat-
terns and jointly aggregate motion and appearance cues in a
supervised setting. MotionSqueeze (MS) [8] introduces an
end-to-end trainable, model-agnostic and lightweight mod-
ule to extract motion features on the fly for video understand-
ing. However, it requires training via backpropagation and in-
tegration with pre-existing video architectures. Rai et al. [27]
presents a self-supervised model for GEBD by reformulat-
ing training objectives at frame-level and clip-level to learn
effective video representations using the MS [18] module.
However, these are parametric methods that require training
on large datasets. To the best of our knowledge, there is
no unsupervised and non-parametric (algorithmic) solution
with high performance in generic event boundary detection.

3. Proposed Methodology

GEBD takes a video as input and returns a set of boundary
timestamps. Mathematically, it maps an ordered sequence
of L frames, (f1, fo, ..., fr) (that may also be represented
as € F), to a set of timestamps {b1,bs,...,by} (=
B € B), that denote the event boundaries. It then naturally
follows that M < (L — 1). For all practical purposes, M <
L and Vb; € B, 3j, such that timestamp b; corresponds to a
unique frame f;. Thus, we formulate the GEBD task as:

T:F—>B (1)

Here, we describe our approach, FlowGEBD, that solves
this task using pixel tracking, flow normalization, and their
ensemble (with temporal refinement) as shown in Fig. 3.

3.1. FlowGEBD with Pixel Tracking (PT)

In this section, we present a method that leverages sparse
optical flow to determine event boundaries by monitoring
the flow of a subset of pixels.

3.1.1 Framewise mode

We process a video frame-by-frame, considering each frame
as a unit. Each frame f of width w and height A comprises
a 2-dimensional matrix of pixels, p,, ,, where u,v € Z*
(positive integers), u € [1,w], and v € [1, h]. We only con-
sider the luminance information of pixels. Hence, p,, ,, can
be represented as a real number (p,,,, € R), 0 < py,, < 1.

S EEESEEEEEEEEEEES
-

Pixel Tracking (PT) Flow Normalization (FN)

Framewise Patchwise Framewise Patchwise

[T 1T
e - v

Visualization of patches
. .& " . .

Boundary

Figure 3. FlowGEBD accepts a video as input and predicts a
set of event boundaries, B. Visual representation of patches with
nw = np, = 4 (right). [: Base patches, [J: Centroidal

The apparent motion of pixel p,, ,, between two consecu-
tive frames caused by the movement of an object or camera
is measured by optical flow. For each frame f; with a sub-
sequent frame f; 1, the optical flow ®; can be denoted as a
2-dimensional matrix of displacement vectors [31]. Each ele-
ment in the displacement vector d ,, , denotes the horizontal
and vertical motion of p,, , between frames f; and f; ;1.

Method. The key intuition is that an event boundary can
be determined by monitoring the optical flow of a subset of
pixels. This underlying assumption is supported by Shou
et al. [30] who consider change in brightness, rapid camera
movements, etc. as definitive indicators of event bound-
aries. So, for the first frame f; in the sequence F', we use
uniform random sampling or Shi-Tomasi corner detection
algorithm [29] to identify a set Ppqase comprised of key fea-
tures (pixels p,,,.,). Then, for every subsequent frame f;, we
compute the sparse flow for these pixels using the iterative
Lucas-Kanade method [24]. We consider a pixel as also an el-
ement of the current key pixel set Peyrrent (= Py), if and only if
it has non-zero displacement d ,, ,, from the previous frame.
In each of these frame-by-frame iterations, whenever the
ratio of elements in Pyrent 10 Phase falls below a predefined
threshold 6, we infer to have encountered an event boundary
and record the current frame index. In such a scenario, we
resample new key pixels Py, from the current frame. If
no such event boundary is encountered in an iteration, we
maintain Py, as a constant reference until a boundary is
identified. To determine the final set of boundaries, we apply
a temporal boundary refinement algorithm (Section 3.3).
At any time, this algorithm depends only on the past frame
to deduce an event boundary, thereby exhibiting the causal
property. The overall approach is detailed in Algorithm 1.

6943

Algorithm 1: FlowGEBD using Pixel Tracking
(Framewise mode)

Data: Video of resolution w X h as a sequence of L

frames, ? = {f1, f2,--, fL)
Result: Event Boundaries, B = {b1,b2,...,bu;}
Btemp — {}

P1 < Poase < samplePixels(f1)

/I O(1) for uniform random
for f; € (? — f1> do
®,; 1 < sparseFlow(f;_1, fi, Pi_1)
11O (wh | Poase|)

’ Eu,’u

7u,v€‘1’171

#0

fro)

if \7|97Zi‘| < 01 then

Btemp — Btemp U {Z}
P; Prase < samplePixels(f;)
end

/I Non-zero flow, O (wh,)

end
/I for-loop = O (Lwh | Prase|)
/I Refer to Algorithm 3

B < refine(Biemp)
return 3

samplePixels(-): Uniform random or Shi-Tomasi corner detection
sparseFlow (-): Sparse optical flow using iterative Lucas-Kanade method

01: A constant threshold

Can we improve further? The framewise approach
monitors the key pixels in a frame. However, for a video
of a moderately large field of view, it is often the case that
an event boundary may be denoted by the change in actions
of certain subjects in the video, even if the background
remains static. Furthermore, the main subjects of the
frame are typically positioned along the grid lines and at
the intersections to make it more aesthetically pleasing
following the Rule of thirds [4]. For such cases, the
event boundary can be determined more accurately if we
decompose a frame into a grid of patches instead of having
the entire frame as a single unit. Patchwise processing
provides advantages like capturing subject change in small
areas and detecting action change from one patch to another.
Thus, in the next section, we propose an approach that
processes each frame as a composition of multiple patches.

3.1.2 Patchwise mode

A patch g¢, derived from frame f, consists of a subset of the
frame pixels. More specifically, patch g;(u, v, wg, hy) con-
sists of all pixels, p; ; € f, wherei,j € Z1,i € [u,u+ wy)
and j € [v,v + hy). We denote the set of all such patches in
frame f as Gy.

We define two categories of patches where patches of
the same category do not overlap each other. The first
among these are “base patches”, which distribute the pixels
equally and independently along the width and height of
the frame. We refer to the other category as “centroidal
patches”, as each of their edges joins the centroids of adja-
cent base patches. Centroidal patches help capture events
that span across the intersections of base patches. Fig. 3
(right) depicts the arrangement of patches, where the total
number of patches (each of width w, and height h,) is given
by:

Ny = ny x np + (ny — 1) x (ny, — 1) (2)

Base patches Centroidal patches

Where n,, and n;, represent the cardinality of base patches
along the frame width and height, respectively.

Method. In this mode, we independently process the entire
frame sequence N, times, once for each patch, considering
only the corresponding patches. During this, we skip the tem-
poral boundary refinement stage mentioned in Algorithm 1.
We then take a union of the N, predicted boundary sets and
apply boundary refinement to derive B. It may be noted that
framewise mode is a specialized case of patchwise, where
ny=np=1= Ny=1

3.2. FlowGEBD with Optical Flow Normalization

We explore another approach that leverages dense opti-
cal flow and determines event boundaries by observing the
normalized optical flow.

3.2.1 Framewise mode

As we have observed in FlowGEBD with pixel tracking
(section 3.1.2), the framewise mode is a specialized case of
patchwise. Hence, we discuss the Optical Flow Normaliza-
tion method in the more generalized patchwise mode, and the
same can be adapted for framewise by using n,, = nj = 1.

3.2.2 Patchwise mode

Method. For every frame f;, we identify the set of N
patches, denoted by Gy,, for a fixed n,, and ny. Then, for
every consecutive frame f;_; and f;, we compute N, 4 dense
optical flows (one between each patch pair, gr,_, and gy,).
For this, we use the Gunnar Farneback algorithm [7]. Then,
we use the maximum flow displacement corresponding to all
patch pixels as the “flow of the patch” or its “PatchFlow”.
After processing L frames and their \V, patches, we accumu-
late the PatchFlow for each patch across temporal dimension
and normalize the displacement values. We hypothesize that
considerable displacement of PatchFlow in the temporal di-
mension constitutes a change in action or event. For any
patch, if the normalized value for frame index ¢ exceeds a
constant threshold 65, we deem to have encountered an event
boundary and add the corresponding frame index ¢ to our

6944

Algorithm 2: FlowGEBD using Optical Flow Nor-
malization (Patchwise mode)

Data: Video of resolution w X h as a sequence of L

frames, = (f1, f2,- .., fr); Parameters:
Patch width wg, and height h,
Result: Event Boundaries, B = {by, ba, .

Gy, « patches(f1,wg, hy)

for f; € (?—Jﬂ) do

Gy, patches(fi,wgahg)

®7 , —{}

for (gfi—lhqfi) € (GfifuGfl-|(m;7r'zzzfm> do
¢ < denseFlow(gy, ,,97,)
®7_ |+ B¢ U{max(p)}

end

b

/I Gets Ny patches (Fig. 3)

// Placeholder for all optical flows in frame f;

1O(wghg))

// inner-for-loop —- ()(;,\'[, wghg))
end
/1 outer-for-loop = O(LN wgzhg))
// We now have PatchFlows = {®7,®5, ..., S
// ... where i element = set @7 of patch optical flows for f;
Biemp < {}
for (<I>§7 D9, @%71) € PatchFlows | “ereds do
T (97, 95,....91_,)
D 2
2]l

Btemp < Btemp @] {arg?i>92 ((Ap) }
end

/I L2-norm

/ for-loop = O(LNy))
B < refine(Biemp)
return 3

/I Refer to Algorithm 3

denseFlow(-): Dense optical flow using the Gunnar Farneback’s algorithm

65: A constant threshold

working set of event boundaries Bimp. Finally, we apply
temporal refinement on Bicpp to compute the refined event
boundary set 3. This approach for patchwise processing of
dense optical flow is detailed in Algorithm 2.

3.3. FlowGEBD with ensembling of Pixel Tracking
and Flow Normalization

Pixel tracking helps determine event boundaries based on
the sparse optical flow of a few key pixels. On the other hand,
flow normalization aggregates the dense optical flow of all
pixels and offers a lossless method to determine a set of event
boundaries using “PatchFlow”. To obtain an ensemble of
both approaches, we independently take the event boundaries

from both without performing the temporal refinement stage.

Instead, we take a union of the predicted sets from these two
approaches and perform temporal refinement over the union.
Temporal refinement. We analyze the elements of a set
of predicted boundary timestamps along the corresponding

Algorithm 3: Temporal Refinement of Boundaries
Data: Event Boundaries, B = {b1,bz,...,bn}
Result: Refined Event Boundaries, B C B
Bemp < {}; B« sorted(3)

«~ () /1 Placeholder for a cluster of boundary elements
for b, € B do

it (K#0)n (ke ® | (|t -+ 2 6))
then

l”;’temp — l”;’temp U {median (?)}
K+«

end

K« K~ <b;>

11 O(M log M)

end
Btemp — Z?temp U {median (?)}

return By, as B

—
/I Flush K

63: A constant threshold

temporal dimension to identify ‘“rare boundaries” and
“popular boundaries”. Rare or isolated boundaries are those
where the event changes in a single patch and typically
with no neighboring timestamps, i.e., for a rare boundary b,.,
there exists no other boundary within the duration b, + 63.
On the other hand, popular boundaries are dense clusters
where multiple boundaries have been determined within the
temporal vicinity.

We may interpret contiguous popular boundaries as
belonging to one cluster and each rare boundary as a
standalone single-element cluster. Then, we select one
representative element for each cluster by identifying its
median boundary element and consider only such elements
for the final set of refined event boundaries. The generic
Algorithm 3 identifies such clusters and determines an
optimal boundary in each of them.

4. Experiments

In this section, we conduct multiple experiments and eval-
uate both algorithms, followed by the ensembled method.

4.1. Dataset

Kinetics-GEBD. Our approach is evaluated primarily on
the challenging Kinetics-GEBD [30], a benchmark dataset
for locating the boundaries of generic events in the video.
It consists of 54,691 videos of 10 seconds each that span a
broad spectrum of video domains in the wild and is open-
vocabulary, taxonomy-free. The ratio of the train, validation,
and test sets in Kinetics-GEBD is equal, with each set includ-
ing roughly 18,000 videos chosen from Kinetics-400 [16].
FlowGEBD is an algorithmic unsupervised method, so we
do not require train data. We evaluate our methods on the val-

6945

Supervision Rel.Dis. threshold 0.05 0.1 0.15 0.2 025 030 035 04 0.45 0.5 Avg
PC [30] (Baseline) 0.625 0.758 0.804 0.829 0.844 0.853 0.859 0.864 0.867 0.870 | 0.817
PC + Optical Flow [20] | 0.646 0.776 0.818 0.842 0.856 0.864 0.868 0.874 0.877 0.879 | 0.830
Gothe et al. [10] 0.712 - - - - - - - - - -
Supervised SBoCo-Res50 [15] 0.732 - - - - - - - - - 0.866
DDM-Net [32] 0.764 0.843 0.866 0.880 0.887 0.892 0.895 0.898 0.900 0.902 | 0.873
Lieral. [20] 0.743 0.830 0.857 0.872 0.880 0.886 0.890 0.893 0.896 0.898 | 0.865
SC-Transformer [19] | 0.777 0.849 0.873 0.886 0.895 0.900 0.904 0.907 0.909 0911 | 0.881
SBoCo-TSN [15] 0.787 - - - - - - - - - 0.892
PA - Random [30]7 0336 0435 0484 0512 0529 0.541 0.548 0.554 0.558 0.561 | 0.506
PA [30]° 0396 0.4838 0.520 0.534 0.544 0.550 0.555 0.558 0.561 0.564 | 0.527
CoSeg [36] 0.656 0.758 0.783 0.794 0.799 0.803 0.804 0.806 0.807 0.809 | 0.782
UBoCo-Res50 [15]F 0.703 0.839 0.862 0.885 0.889 0.893 0.894 0.898 0.900 0.902 | 0.866
Unsupervised UB0Co-TSN [15]* 0.702 0.846 0.862 0.879 0.888 0.889 0.895 0.897 0.904 0.905 | 0.866
SceneDetect [2]* 0.275 0300 0.312 0319 0324 0327 0330 0332 0.334 0.335 | 0.318
Ours (PT 1)* 0.702 0.819 0.844 0.855 0.860 0.863 0.866 0.867 0.869 0.870 | 0.841
Ours (FN 2)* 0.691 0.826 0.860 0.877 0.885 0.889 0.892 0.894 0.896 0.897 | 0.861
Ours (Ensembled)* 0.713 0.828 0.850 0.858 0.862 0.864 0.866 0.867 0.868 0.869 | 0.845

Table 1. F1 results on Kinetics-GEBD validation set with different Rel.Dis

unsupervised setting (31.7% absolute gain over unsupervised baseline, PA [

. thresholds. FlowGEBD achieves the best F1 @0.05 scores for
1. T : parametric (neural) Methods x : Non-parametric

Supervision Rel.Dis. threshold 0.05 0.1 0.15 0.2 025 030 035 0.4 0.45 0.5 Avg
PC [30] 0522 0.595 0.628 0.647 0.660 0.666 0.672 0.676 0.680 0.684 | 0.643

Supervised DDM-Net [32] 0.604 0.681 0.715 0.735 0.747 0.753 0.757 0.760 0.763 0.767 | 0.728
SC-Transformer [19] | 0.618 0.694 0.728 0.749 0.761 0.767 0.771 0.774 0.777 0.780 | 0.742

PA - Random [30]7 | 0.158 0.233 0.273 0310 0.331 0.347 0357 0369 0376 0.384 | 0.314

PA [30]* 0.360 0.459 0.507 0.543 0.567 0.579 0.592 0.601 0.609 0.615 | 0.543

Unsupervised SceneDetect [2]* 0.035 0.045 0.047 0.051 0.053 0.054 0.055 0.056 0.057 0.058 | 0.051
Ours (PT 1)* 0.355 0.489 0.562 0.619 0.655 0.677 0.693 0.703 0.714 0.721 | 0.619

Ours (FN 2)* 0.346 0.487 0.562 0.619 0.658 0.678 0.695 0.706 0.715 0.722 | 0.618

Ours (Ensembled)* | 0.375 0.502 0.569 0.624 0.658 0.677 0.695 0.703 0.711 0.717 | 0.623

Table 2. F1 results on TAPOS validation set with different Rel.Dis. thresholds. The ensembled method achieves the best F1 score compared
to other unsupervised methods. t : parametric (neural) Methods * : Non-parametric Methods

idation set, as the annotations of the test sets are not public.

TAPOS. In addition to Kinetics-GEBD, we experiment on
the TAPOS dataset [28] containing Olympics sports videos
with 21 actions. The dataset authors manually defined how
to break each action into sub-actions during annotation.
Following [30], we re-purpose TAPOS for the GEBD task
by performing boundaries localization between sub-actions
in each action instance. TAPOS contains 1790 instances for
validation, and we evaluate on the same.

Implementation and Evaluation. We run all our exper-
iments on Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz
equipped machine. We sample the video at 4 FPS and resize
it to 160 x 160 as preprocessing. As described in [30], we
use F1 at 0.05 Relative Distance (Rel.Dis.) as our primary
evaluation metric. The predicted boundary is deemed
accurate for a certain Rel.Dis. threshold if the difference
between the predicted and ground truth timestamps is
smaller than the threshold. We report F1 scores of different
thresholds to range from 0.05 to 0.5 with a gap of 0.05.

4.2. Main Results

Kinetics-GEBD. Table 1 illustrates the results of our meth-
ods on the Kinetics-GEBD validation set along with unsu-
pervised and supervised benchmarks. PT achieves a higher

F1@0.05 of 0.702 than FN, with a strong recall of 0.91 (av-
erage) and a 0.77 (average) precision. Intuitively, PT is able
to detect action change across patches along with subject
change as the cardinality of the patch increases. FN obtains
a high Avg. F1 value through a balanced precision and recall
of 0.81 and 0.90, respectively. The FlowGEBD (Ensembled)
outperforms all previous unsupervised methods with the
highest F1@0.05 of 0.713 using a refinement approach (Al-
gorithm 3) that combines PT and FN. Compared to unsuper-
vised baseline PA [30], FlowGEBD obtains a significant gain
of 31.7% in F1@0.05 and exceeds DNN-based unsupervised
methods [15,36], demonstrating the effectiveness of our pro-
posed algorithms. Additionally, compared to the supervised
baselines PC [30] and PC + Optical Flow [20], our method
achieves 8.8% and 6.7% absolute improvement, respectively.

TAPOS. We also conduct experiments on the TAPOS [28];
the results are summarized in Table 2. The dataset is not in-
herently well-suited for GEBD as it comprises a pre-defined
set of 21 action classes. Hence, we separate sub-action
instances from each action video and treat them as a
single video for GEBD. Shou et al. [30] have shown that
the GEBD model trained on TAPOS underperforms on
the Kinetics-GEBD dataset due to a change in boundary
semantics. However, our algorithm is robust enough to be

6946

“ELHE SR
RO W

AILEE LSS |8

1)

)

0.0

Temporal Dimension | Event Boundary | Threshold 61 = 0.4

Figure 4. Pixel Tracking: Visual representation of 3 X 3 patchwise
pixel tracking along temporal dimension (6; = 0.4)

Normalized
PatchFlow

tg }‘w LY i -

Ahm ‘ LWM i

0.0

)
o Wlla A
L Iy
00—~ S AN A
0 20 400 20 40 0 20 40

o 20 g
Temporal Dimension | Event Boundary : Threshold 82 = 0.25

Figure 5. Flow Normalization: Visual representation of normalized
3 x 3 patchwise max flow along temporal dimension (f2 = 0.25)

applied directly to the TAPOS dataset. Compared to the
unsupervised benchmark PA [30], our method obtains Avg.
F1 score of 0.623, gaining 8% absolute improvement. We
found no alternative SOTA unsupervised methods for GEBD
on the TAPOS dataset to compare our results directly.

Tuning Thresholds 6, and 05 serve as thresholds that gov-
ern the behavior of the PT and FN algorithms, respectively.
Additionally, 63 is a threshold regulating neighboring bound-
aries for clustering in the refinement process.

As per the hypothesis, in PT, a notable decrease in
pixel count during temporal tracking indicates pivotal event
changes, such as changes in subjects or environment. Our
empirical findings indicate that marking an event boundary
with a drop exceeding 60% (6, = 0.4) yields better perfor-
mance. In Fig. 4, it can be observed that the event boundaries
are perfectly aligned with the trough. Likewise, in FN, our
empirical observations indicate that marking a frame as an
event boundary is effective when it contributes to over 25%
(62 = 0.25) of the overall normalized motion, signifying
event changes in the video. Fig. 5 illustrates the alignment
of peaks with event boundaries, visually validating our ap-
proach. The third threshold 05 indicates the distance between
two boundaries to consider them as belonging to the same
cluster during refinement. Specifically, it is the Euclidean
distance to split observations into clusters. We set 83 = 0.50,
i.e., twice the unit timestamp (time per frame) considered in
our algorithm (4 FPS = 1 unit = 1/4 = 0.25).

N othd S Spatial Processing

Random Corners | Framewise Base Patch Centroidal F1@0.05

v v 0.492

v v 0.533

v v 0.659

PT-1 v v 0.678

v v v 0.678

v v v 0.702

v 0.486

FN-2 NA NA v 0.678

v v 0.691

Ensembled v v v 0.713

Table 3. Effect of Sampling and Spatial Processing on Pixel Track-
ing (PT) and Flow-Normalized (FN) Algorithms

F1@0.05

Ny == (m =71) pIT T FN2 | Ensembled
e =3 0.679 | 0.652 | 0.709
Ty = 4 0.69 | 0.694 | 0.710
N = 5 0.702 | 0.691 0.713

Table 4. F1 score of the proposed method with respect to patch size
on GEBD-Kinetics validation set

All the experiments reported in Tables 1 and 2 are con-
ducted in patchwise mode with n,, = n, = 5,0 =
0.4,05 = 0.25,05 = 0.5. However, it is demonstrated in
Section 4.4 that FlowGEBD is robust and insensitive to these
thresholds. Qualitative results of FlowGEBD are presented
in supplementary.

4.3. Ablation Studies

Effect of Sampling. Table 3 illustrates the result of two
sampling techniques. In random sampling, we uniformly
sample the fixed fraction of pixels from each patch. The
corner detection [29] looks for a significant change in pixel
intensity in all directions. This sometimes results in the
sampling of fewer corner pixels. Thus, we observe that
random sampling of pixels gives better F1 scores for PT. It
may be noted that the sampling method does not apply to
the FN since it computes dense optical flow.

Effect of Spatial Granularity. As detailed in Section 3.1.1
and 3.1.2, we conclude from Table 3 that computing patch-
wise offers higher performance than processing the entire
frame as a single unit. Further, by introducing Centroidal
patches, we can capture event change at the intersection of
the base patches, leading to a noticeable increase in F1.

Effect of Patch Size. Besides the spatial granularity, patch
size is essential to predict the accurate event boundaries,
as illustrated in Fig. 3. We capture the effect of varying
n,, in Table 4. A higher N, (indicative of a smaller patch
size) results in more candidate boundary sets, reducing the
likelihood of missing uncommon boundaries. Moreover,
it helps effectively trace events in tiny regions. We have
determined the ideal value for our approach to be n,, = ny
= 5. Processing beyond a specific patch size can introduce
noisy boundaries to the candidate pool, lowering the F1.

6947

Kinetics-GEBD o TAPOS

Ensembled

0.1 01 0308 0606 0904 0.101 0308 0606 0904
6162 01_62

Figure 6. Sensitivity analysis of thresholds 61, 62, 3. * marks the
best F1@0.05 score.

4.4. Sensitivity Analysis of thresholds

We conduct an extensive ablation study of thresholds and
analyze the impact on the performance. We sample 61, 05
uniformly between 0.1 to 0.9, and for 63, we vary it from
0.5 to 3.0 in steps of 0.5.

Fig. 6 shows the analysis of sensitivity of the thresh-
olds on Kinetics-GEBD and TAPOS datasets in patchwise
(ny = 5) mode. Our findings reveal that PT demonstrates
robust performance across a wide range of threshold values
(61 and 03), consistently exhibiting the same trend for both
the Kinetics and TAPOS datasets. In FN, as we increase the
normalized flow threshold 65, the number of detected bound-
aries will reduce gradually. The same effect is observed in
Fig. 6, where the gradual change in performance indicates
relative stability and generalization on both datasets.

The ensembled method shows the harmonious collabo-
ration of PT and FN, attaining optimal F1 scores across all
combinations (9 x 9 x 6). The mean standard deviations
of F1@0.05 for PT, FN, and Ensembled on Kinetics-GEBD
are 0.005, 0.02, and 0.0006, respectively, while on TAPOS,
they are 0.002, 0.01, and 0.01. These findings highlight the
robustness of FlowGEBD and its insensitivity to thresholds.

4.5. Time Complexity of FlowGEBD

We theoretically assess the time complexity of
FlowGEBD. From Algorithms 1, 2, 3, we ob-
serve that the time complexities (in patchwise
mode) of pixel tracking, flow normalization, and
temporal refinement are O (LNywghg |Poasel)
O(LNywghy), and O(MlogM) (= O(LlogL)), re-
spectively. So, the overall time complexity is given by

Method Params | Latency (ms) | F1@0.05
PC [30] 23.5 46.4 0.625
Gothe et al. [10] 6.79 1.2 0.712
Lietal. [20] > 34.6 4.7 0.743
PA [30] 23.5 46.4 0.396
On GPU | UBoCo-Res50 [15] | > 23.5 > 46.4 0.703
UBoCo-TSN [15] > 90 >90.2 0.702
Gothe et al. [10] 6.79 84.35 0.712
SceneDetect [2] NA 3491 0.275
On CPU Ours (PT 1) NA 2.26 0.702
Ours (FN 2) NA 6.42 0.691
Ours (Ensembled) NA 6.5 0.713

Table 5. Comparison of Latency with other methods and their
F1@0.05 on Kinetics-GEBD validation set.

O (LNgwghg |Poase| + LNgwghg + Llog L). We can
further simplify this to O (LNjwghg [Poase]). Since
in pixel tracking, we use a sparse set of key pixels
(i.e. |Poase| < wghyg), |Poase| is a fraction of w and h.
Additionally, Nywghg oc wh. So, we infer that the latency
of FlowGEBD is directly proportional to wh and L. Please
consult the supplementary materials for the analysis of the
inference time on sample videos.

Comparison of latency. Table 5 presents the latency per
frame across different methods. Most of these methods
employ ResNet-50 as their backbone, resulting in an average
inference time of at least 46.4 ms per frame at a resolution
of 160x 160 on a GPU [10]. In contrast, PT and FN exhibit
considerably lower inference time, consuming 2.26 ms
and 6.42 ms, respectively. The ensembled approach takes
6.5 ms on average without compromising the F1 score.
The reported inference time is measured on a Samsung
Galaxy S21 Ultra device with 12 GB RAM. Furthermore,
the estimation of optical flow can be accelerated on GPU
by utilizing NVIDIA Optical Flow SDK [25].

5. Conclusion and Discussion

We introduce FlowGEBD, a non-parametric, unsu-
pervised approach for generic event boundary detection.
FlowGEBD comprises two independent algorithms, (i)
Pixel Tracking and (ii) Flow Normalization, which can be
deployed framewise or patchwise. FlowGEBD achieves
the state-of-the-art results (Tables 1 and 2) on the Kinetics-
GEBD and TAPOS at a strict relative distance (F1@0.05).
This demonstrates that the motion information acquired
from an optical flow alone is sufficient and obviates the need
for complex neural models to achieve high performance.
We performed an extensive ablation study and threshold
sensitivity analysis to demonstrate the robustness of the
proposed method.

However, since FlowGEBD does not incorporate spatial
semantics (high-level DNN features), it is more suitable for
GEBD rather than specific action/event localization. The
same effect is observed in the evaluation of TAPOS. In future
work, we will explore the bi-directional processing of each
frame to improve the performance.

6948

References

(1]

(2]

(3]

4

—

5]

(6]

(7]

[8

—_—

[9

—

(10]

(11]

[12]

(13]

[14]

Jean-Yves Bouguet et al. Pyramidal implementation of the
affine lucas kanade feature tracker description of the algo-
rithm. Intel corporation, 5(1-10):4, 2001. 3

Brandon Castellano. Pyscenedetect: Intelligent scene cut
detection and video splitting tool, 2018. 1,2, 6, 8

Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Seybold,
David A Ross, Jia Deng, and Rahul Sukthankar. Rethinking
the faster r-cnn architecture for temporal action localization.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1130-1139, 2018. 1

Sagnik Dhar, Vicente Ordonez, and Tamara L Berg. High
level describable attributes for predicting aesthetics and inter-
estingness. In CVPR 2011, pages 1657-1664. IEEE, 2011.
4

Gunnar Farneback. Fast and accurate motion estimation us-
ing orientation tensors and parametric motion models. In
Proceedings 15th International Conference on Pattern Recog-
nition. ICPR-2000, volume 1, pages 135-139. IEEE, 2000.
3

Gunnar Farnebick. Polynomial expansion for orientation
and motion estimation. PhD thesis, Linkoping University
Electronic Press, 2002. 3

Gunnar Farnebick. Two-frame motion estimation based on
polynomial expansion. In Image Analysis: 13th Scandinavian
Conference, SCIA 2003 Halmstad, Sweden, June 29—-July 2,
2003 Proceedings 13, pages 363-370. Springer, 2003. 3, 4
Christoph Feichtenhofer. X3d: Expanding architectures for
efficient video recognition. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
203-213, 2020. 1

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 6202-6211, 2019. 1

Sourabh Vasant Gothe, Jayesh Rajkumar Vachhani, Rishabh
Khurana, and Pranay Kashyap. Self-similarity is all you need
for fast and light-weight generic event boundary detection.
In ICASSP 2023-2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
1-5.IEEE, 2023. 1,2, 6, 8

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016. 2

Dexiang Hong, Congcong Li, Longyin Wen, Xinyao Wang,
and Libo Zhang. Generic event boundary detection challenge
at cvpr 2021 technical report: Cascaded temporal attention
network (castanet). arXiv preprint arXiv:2107.00239, 2021.
1,2

Dexiang Hong, Xiaoqi Ma, Xinyao Wang, Congcong Li,
Yufei Wang, and Longyin Wen. Sc-transformer++: Struc-
tured context transformer for generic event boundary detec-
tion, 2022. 2, 3

Hyolim Kang, Jinwoo Kim, Kyungmin Kim, Taechyun Kim,
and Seon Joo Kim. Winning the cvpr’2021 kinetics-gebd

(15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

6949

challenge: Contrastive learning approach. arXiv preprint
arXiv:2106.11549,2021. 1,2

Hyolim Kang, Jinwoo Kim, Taehyun Kim, and Seon Joo
Kim. Uboco: Unsupervised boundary contrastive learning
for generic event boundary detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20073-20082, 2022. 1, 2, 6, 8

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 5

Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang,
Mingxing Tan, Matthew Brown, and Boging Gong. Movinets:
Mobile video networks for efficient video recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16020-16030, 2021. 1
Heeseung Kwon, Manjin Kim, Suha Kwak, and Minsu Cho.
Motionsqueeze: Neural motion feature learning for video un-
derstanding. In Computer Vision—-ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings,
Part XVI 16, pages 345-362. Springer, 2020. 3

Congcong Li, Xinyao Wang, Dexiang Hong, Yufei Wang,
Libo Zhang, Tiejian Luo, and Longyin Wen. Structured
context transformer for generic event boundary detection.
arXiv preprint arXiv:2206.02985, 2022. 1, 2, 6

Congcong Li, Xinyao Wang, Longyin Wen, Dexiang Hong,
Tiejian Luo, and Libo Zhang. End-to-end compressed video
representation learning for generic event boundary detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13967-13976, 2022.
1,2,6,8

Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Man-
galam, Bo Xiong, Jitendra Malik, and Christoph Feichten-
hofer. Mvitv2: Improved multiscale vision transformers for
classification and detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 48044814, 2022. 1

Xingyu Liu, Joon-Young Lee, and Hailin Jin. Learning video
representations from correspondence proposals. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 42734281, 2019. 3

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video swin transformer. In Pro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 3202-3211, 2022. 1

Bruce D Lucas and Takeo Kanade. An iterative image reg-
istration technique with an application to stereo vision. In
1JCAI'81: 7th international joint conference on Artificial
intelligence, volume 2, pages 674-679, 1981. 3

Abhijit Patait. An introduction to the nvidia optical flow
sdk, https://developer.nvidia.com/blog/an-introduction-to-the-
nvidia-optical-flow-sdk. NVIDIA Developer [online], 13,
2019. 8

Rui Qian, Yeqing Li, Liangzhe Yuan, Boging Gong, Ting
Liu, Matthew Brown, Serge Belongie, Ming-Hsuan Yang,
Hartwig Adam, and Yin Cui. Exploring temporal granular-

(27]

(28]

[29]

(30]

[31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

[39]

[40]

ity in self-supervised video representation learning. arXiv
preprint arXiv:2112.04480, 2021. 2

Ayush K Rai, Tarun Krishna, Julia Dietlmeier, Kevin McGuin-
ness, Alan F Smeaton, and Noel E O’Connor. Motion aware
self-supervision for generic event boundary detection. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 2728-2739, 2023. 2, 3

Dian Shao, Yue Zhao, Bo Dai, and Dahua Lin. Intra-and
inter-action understanding via temporal action parsing. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 730-739, 2020. 6
Jianbo Shi et al. Tomasi. good features to track. In 71994
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 593-600. sn, 1994. 3,7

Mike Zheng Shou, Stan Weixian Lei, Weiyao Wang, Deepti
Ghadiyaram, and Matt Feiszli. Generic event boundary detec-
tion: A benchmark for event segmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 8075-8084, 2021. 1,2,3,5,6,7, 8

Karen Simonyan and Andrew Zisserman. Two-stream convo-
lutional networks for action recognition in videos. Advances
in neural information processing systems, 27,2014. 1, 3
Jiaqi Tang, Zhaoyang Liu, Chen Qian, Wayne Wu, and Limin
Wang. Progressive attention on multi-level dense difference
maps for generic event boundary detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3355-3364, 2022. 1,2,3,6

Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In Proceedings of the
1EEE conference on Computer Vision and Pattern Recogni-
tion, pages 6450-6459, 2018. 1

Barbara Tversky and Jeffrey M Zacks. Event perception.
Oxford handbook of cognitive psychology, 1(2):3, 2013. 1
Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin,
Xiaoou Tang, and Luc Van Gool. Temporal segment networks
for action recognition in videos. IEEE transactions on pattern
analysis and machine intelligence, 41(11):2740-2755, 2018.
1

Xiao Wang, Jingen Liu, Tao Mei, and Jiebo Luo. Coseg:
Cognitively inspired unsupervised generic event segmentation.
arXiv preprint arXiv:2109.15170,2021. 1,2, 6

Xiang Wang, Zhiwu Qing, Ziyuan Huang, Yutong Feng, Shi-
wei Zhang, Jianwen Jiang, Mingqian Tang, Changxin Gao,
and Nong Sang. Proposal relation network for temporal action
detection. arXiv preprint arXiv:2106.11812,2021. 1
Yuxuan Wang, Difei Gao, Licheng Yu, Weixian Lei, Matt
Feiszli, and Mike Zheng Shou. Geb+: A benchmark for
generic event boundary captioning, grounding and retrieval.
In Computer Vision—-ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part
XXXV, pages 709-725. Springer, 2022. 1

Xiaohao Xu, Jinglu Wang, Xiang Ming, and Yan Lu. To-
wards robust video object segmentation with adaptive object
calibration. In Proceedings of the 30th ACM International
Conference on Multimedia, pages 2709-2718, 2022. 1

Yufei Xu, Qiming Zhang, Jing Zhang, and Dacheng Tao.
Vitae: Vision transformer advanced by exploring intrinsic

(41]

(42]

6950

inductive bias. Advances in Neural Information Processing
Systems, 34:28522-28535, 2021. 1

Chen-Lin Zhang, Jianxin Wu, and Yin Li. Actionformer: Lo-
calizing moments of actions with transformers. In Computer
Vision—-ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23-27, 2022, Proceedings, Part IV, pages
492-510. Springer, 2022. 1

Linchao Zhu and Yi Yang. Actbert: Learning global-local
video-text representations. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
8746-8755, 2020. 1

