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Abstract

Generic Event Boundary Detection (GEBD) task aims
to recognize generic, taxonomy-free boundaries that seg-
ment a video into meaningful events. Current methods typ-
ically involve a neural model trained on a large volume
of data, demanding substantial computational power and
storage space. We explore two pivotal questions pertain-
ing to GEBD: Can non-parametric algorithms outperform
unsupervised neural methods? Does motion information
alone suffice for high performance? This inquiry drives
us to algorithmically harness motion cues for identifying
generic event boundaries in videos. In this work, we propose
FlowGEBD, a non-parametric, unsupervised technique for
GEBD. Our approach entails two algorithms utilizing op-
tical flow: (i) Pixel Tracking and (ii) Flow Normalization.
By conducting thorough experimentation on the challenging
Kinetics-GEBD and TAPOS datasets, our results establish
FlowGEBD as the new state-of-the-art (SOTA) among unsu-
pervised methods. FlowGEBD exceeds the neural models on
the Kinetics-GEBD dataset by obtaining an F1@0.05 score
of 0.713 with an absolute gain of 31.7% compared to the
unsupervised baseline and achieves an average F1 score of
0.623 on the TAPOS validation dataset.

1. Introduction
In 2023, video has accounted for 82.5% of all web

traffic, making it the most popular form of content on the
internet. Increased video consumption has made video
understanding a critical task in computer vision, comprising
video classification [8, 23, 35], object segmentation [39, 40],
action localization [3, 37, 41], and captioning [38, 42],
among others. However, the memory requirements of the
models, the feasibility of real-time inference, and domain
generalization are typical constraints on these solutions.

Current state-of-the-art video models [9, 17, 21, 31, 33]
have been mainly focused on building upon a limited set

Figure 1. F1@0.05 scores of different methods on the Kinetics-
GEBD validation dataset. Our method FlowGEBD achieves
state-of-the-art results among unsupervised methods compared to
non-parametric [2] and parametric [15, 30, 36] benchmarks.

of predefined action classes and usually process short clips
to generate global video-level predictions. With the growth
of video content, the number of classes is expanding, and
the predefined target classes cannot encompass them all.
Recently, the GEBD [30] task was introduced with the objec-
tive of studying the long-form video understanding problem
through the lens of human perception [34]. GEBD aims to
locate class-agnostic event boundaries in a video, regardless
of its category. It considers the following high-level causes
of event boundaries: changes in subject, action, shot, envi-
ronment, and object of interaction. The outcome of GEBD
has many potential applications: video summarization, video
editing, short video segment sharing (Fig. 2), and enhancing
video classification and other downstream tasks [38].

There are three main approaches to the GEBD problem:
supervised, unsupervised, and self-supervised. Several
supervised methods [10,12,14,19,20,32] propose to decode
the self-similarity representation produced by the frame
features for boundary detection. The literature investigates
a wide variety of approaches, including efficient represen-
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tation learning [10, 14], transformer decoders [19], attention
masks [32], and the use of compressed domain features [20].
In unsupervised approaches, CoSeg [36] investigates
cognitively inspired parametric methods, and UBoCo [15]
yields the best results by employing a novel contrastive
loss. In self-supervised approaches, TeG [26] investigates
learning temporal granularity in video representations. In
contrast, Rai et al. [27] employ a differentiable motion
feature learning module to detect spatial and temporal
differences for GEBD. These methods incorporate explicit
motion features into their network structures and earn a high
F1 score as they are deep neural networks (DNN) guided
by the ground truth. However, we approach GEBD from
a different perspective, investigating a two-fold question:
(a) Can non-parametric algorithms outperform unsupervised
parametric methods? (b) Is motion information alone suffi-
cient to achieve high performance? We seek answers to these
questions by exploiting the motion information to detect the
generic event boundaries in a video algorithmically.

In this paper, we present two unsupervised, non-
parametric approaches to solve GEBD. (i) Pixel Tracking
(PT) method that relies on sparse optical flow in temporal
dimension to identify the boundary, and (ii) Flow normaliza-
tion (FN) method that traces the max temporal dense flow to
detect the event boundaries. The ensemble of both achieves
an F1 score of 0.713 on Kinetics-GEBD and an F1 score of
0.375 on the TAPOS.

As shown in Fig. 1, our method achieves 31.7% absolute
gain compared to the unsupervised baseline method and
outperforms the supervised baseline [30] by 8.8% on the
Kinetics-GEBD dataset. In summary, our main contributions
are as follows:

• We propose FlowGEBD, a non-parametric (algorith-
mic), unsupervised method for generic event boundary
detection.

• We design two algorithms by leveraging motion in-
formation: (i) Pixel Tracking (PT) and (ii) Flow-
Normalization (FN) using optical flow estimation in
framewise and patchwise mode to solve the GEBD task.

• We conduct extensive ablations, time complexity
analysis, and sensitivity analysis to demonstrate the
robustness of the proposed method.

• Our results establish FlowGEBD as the new state-of-
the-art among unsupervised methods on the challenging
Kinetics-GEBD and TAPOS datasets.

2. Related Work
2.1. Generic Event Boundary Detection

Generic event boundary detection (GEBD) [30] aims
to localize the moments where humans naturally perceive

Figure 2. FlowGEBD enables applications on smartphones, like
short video segment sharing, summarization, editing by identifying
generic video moments

taxonomy-free event boundaries that break a longer video
into shorter temporal segments. Previous methods [12, 30,
32] formulate the GEBD task as binary classification, which
predicts the boundary label of each frame by considering the
temporal context information. However, it could be more
efficient because the redundant computation is conducted
while generating the representations of consecutive frames.
Kang et al. [14] proposed to use the temporal self-similarity
matrix (TSM) as intermediate representation and used
contrastive learning as an auxiliary to learn better from the
TSM results. Li et al. [20] proposed solving GEBD using the
compressed video features and achieved 4.5× faster-running
speed than the baseline method [30] on GPU. Recently,
Gothe et al. [10] developed the most miniature model to
solve the GEBD task with the lowest inference time on GPU.
SC-Transformer [19] introduced a structured partition of se-
quences (SPoS) mechanism to learn structured context using
a transformer-based architecture for GEBD. To enrich mo-
tion information, optical flow is introduced as a new modality
in [13]. TeG [26] proposed a generic self-supervised model
for learning persistent and more fine-grained features
and uses a 3D-ResNet-50 encoder as its backbone. How-
ever, all these methods require substantial memory and
computational resources along with the labeled data.

Regarding unsupervised GEBD approaches, PySceneDe-
tect [2] is a Python library that detects shot changes by
considering pixel changes in the HSV colorspace. However,
generic event boundaries consist of various boundary
causes like the change of action, subject, and environment,
implying that only a tiny portion of event boundaries can
be detected with this approach. PredictAbility (PA) [30]
computationally assesses the predictability score over time
and then locates the event boundaries by detecting the local
minima of the predictability sequence. CoSeg [36] devises
a transformer-based frame feature reconstruction scheme
and adopts ResNet-18 [11] as the backbone. UBoCo [15]
proposes an unsupervised/supervised method using the
TSM as the video representation. UBoCo’s unsupervised
framework for GEBD combines Recursive TSM Parsing
(RTP) and the Boundary Contrastive (BoCo) loss. However
these models belong to a high memory regime.

6942



2.2. Learning motion and visual correspondences

Motion plays a crucial role in video understanding,
and many SOTA models [13, 18, 22, 27, 32] incorporate
motion information by using optical flows. Lucas and
Kanade’s image registration method [24], also known as
gradient-based optical flow, enables motion estimation
possible with high-speed computation. Pyramidal Lucas and
Kanade [1], Gunnar Farneback [5–7] are other well-known
methods for motion estimation.

DDM-Net [32] applies progressive attention to multilevel
dense difference maps (DDM) to characterize motion pat-
terns and jointly aggregate motion and appearance cues in a
supervised setting. MotionSqueeze (MS) [18] introduces an
end-to-end trainable, model-agnostic and lightweight mod-
ule to extract motion features on the fly for video understand-
ing. However, it requires training via backpropagation and in-
tegration with pre-existing video architectures. Rai et al. [27]
presents a self-supervised model for GEBD by reformulat-
ing training objectives at frame-level and clip-level to learn
effective video representations using the MS [18] module.
However, these are parametric methods that require training
on large datasets. To the best of our knowledge, there is
no unsupervised and non-parametric (algorithmic) solution
with high performance in generic event boundary detection.

3. Proposed Methodology

GEBD takes a video as input and returns a set of boundary
timestamps. Mathematically, it maps an ordered sequence
of L frames, ⟨f1, f2, . . . , fL⟩ (that may also be represented
as
−→
F ∈ F), to a set of timestamps {b1, b2, . . . , bM} (=

B ∈ B), that denote the event boundaries. It then naturally
follows that M ≤ (L− 1). For all practical purposes, M ≪
L and ∀bi ∈ B,∃j, such that timestamp bi corresponds to a
unique frame fj . Thus, we formulate the GEBD task as:

T : F→ B (1)

Here, we describe our approach, FlowGEBD, that solves
this task using pixel tracking, flow normalization, and their
ensemble (with temporal refinement) as shown in Fig. 3.

3.1. FlowGEBD with Pixel Tracking (PT)

In this section, we present a method that leverages sparse
optical flow to determine event boundaries by monitoring
the flow of a subset of pixels.

3.1.1 Framewise mode
We process a video frame-by-frame, considering each frame
as a unit. Each frame f of width w and height h comprises
a 2-dimensional matrix of pixels, pu,v, where u, v ∈ Z+

(positive integers), u ∈ [1, w], and v ∈ [1, h]. We only con-
sider the luminance information of pixels. Hence, pu,v can
be represented as a real number (pu,v ∈ R), 0 ≤ pu,v ≤ 1.

Figure 3. FlowGEBD accepts a video as input and predicts a
set of event boundaries, B. Visual representation of patches with
nw = nh = 4 (right). □: Base patches, □: Centroidal

The apparent motion of pixel pu,v between two consecu-
tive frames caused by the movement of an object or camera
is measured by optical flow. For each frame fi with a sub-
sequent frame fi+1, the optical flow Φi can be denoted as a
2-dimensional matrix of displacement vectors [31]. Each ele-
ment in the displacement vector

−→
d u,v denotes the horizontal

and vertical motion of pu,v between frames fi and fi+1.

Method. The key intuition is that an event boundary can
be determined by monitoring the optical flow of a subset of
pixels. This underlying assumption is supported by Shou
et al. [30] who consider change in brightness, rapid camera
movements, etc. as definitive indicators of event bound-
aries. So, for the first frame f1 in the sequence

−→
F , we use

uniform random sampling or Shi-Tomasi corner detection
algorithm [29] to identify a set Pbase comprised of key fea-
tures (pixels pu,v). Then, for every subsequent frame fi, we
compute the sparse flow for these pixels using the iterative
Lucas-Kanade method [24]. We consider a pixel as also an el-
ement of the current key pixel setPcurrent (=Pi), if and only if
it has non-zero displacement

−→
d u,v from the previous frame.

In each of these frame-by-frame iterations, whenever the
ratio of elements in Pcurrent to Pbase falls below a predefined
threshold θ1, we infer to have encountered an event boundary
and record the current frame index. In such a scenario, we
resample new key pixels Pbase from the current frame. If
no such event boundary is encountered in an iteration, we
maintain Pbase as a constant reference until a boundary is
identified. To determine the final set of boundaries, we apply
a temporal boundary refinement algorithm (Section 3.3).
At any time, this algorithm depends only on the past frame
to deduce an event boundary, thereby exhibiting the causal
property. The overall approach is detailed in Algorithm 1.
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Algorithm 1: FlowGEBD using Pixel Tracking
(Framewise mode)

Data: Video of resolution w × h as a sequence of L
frames,

−→
F = ⟨f1, f2, . . . , fL⟩

Result: Event Boundaries, B = {b1, b2, . . . , bM}
Btemp ← {}
P1 ← Pbase ← samplePixels(f1)

// O(1) for uniform random

for fi ∈
(−→
F − f1

)
do

Φi−1 ← sparseFlow(fi−1, fi,Pi−1)
// O (wh |Pbase|)

Pi ←

∣∣∣−→d u,v

∣∣∤=0⋃
−→
d u,v∈Φi−1

{
pu,v

}
// Non-zero flow, O(wh)

if |Pi|
|Pbase| < θ1 then

Btemp ← Btemp ∪ {i}
Pi ← Pbase ← samplePixels(fi)

end
end

// for-loop =⇒ O (Lwh |Pbase|)

B ← refine(Btemp) // Refer to Algorithm 3

return B

samplePixels(·): Uniform random or Shi-Tomasi corner detection
sparseFlow(·): Sparse optical flow using iterative Lucas-Kanade method

θ1: A constant threshold

Can we improve further? The framewise approach
monitors the key pixels in a frame. However, for a video
of a moderately large field of view, it is often the case that
an event boundary may be denoted by the change in actions
of certain subjects in the video, even if the background
remains static. Furthermore, the main subjects of the
frame are typically positioned along the grid lines and at
the intersections to make it more aesthetically pleasing
following the Rule of thirds [4]. For such cases, the
event boundary can be determined more accurately if we
decompose a frame into a grid of patches instead of having
the entire frame as a single unit. Patchwise processing
provides advantages like capturing subject change in small
areas and detecting action change from one patch to another.
Thus, in the next section, we propose an approach that
processes each frame as a composition of multiple patches.

3.1.2 Patchwise mode
A patch gf , derived from frame f , consists of a subset of the
frame pixels. More specifically, patch gf (u, v, wg, hg) con-
sists of all pixels, pi,j ∈ f , where i, j ∈ Z+, i ∈ [u, u+ wg)
and j ∈ [v, v + hg). We denote the set of all such patches in
frame f as Gf .

We define two categories of patches where patches of
the same category do not overlap each other. The first
among these are “base patches”, which distribute the pixels
equally and independently along the width and height of
the frame. We refer to the other category as “centroidal
patches”, as each of their edges joins the centroids of adja-
cent base patches. Centroidal patches help capture events
that span across the intersections of base patches. Fig. 3
(right) depicts the arrangement of patches, where the total
number of patches (each of width wg and height hg) is given
by:

Ng = nw × nh︸ ︷︷ ︸
Base patches

+(nw − 1)× (nh − 1)︸ ︷︷ ︸
Centroidal patches

(2)

Where nw and nh represent the cardinality of base patches
along the frame width and height, respectively.

Method. In this mode, we independently process the entire
frame sequence Ng times, once for each patch, considering
only the corresponding patches. During this, we skip the tem-
poral boundary refinement stage mentioned in Algorithm 1.
We then take a union of the Ng predicted boundary sets and
apply boundary refinement to derive B. It may be noted that
framewise mode is a specialized case of patchwise, where
nw = nh = 1 =⇒ Ng = 1.

3.2. FlowGEBD with Optical Flow Normalization

We explore another approach that leverages dense opti-
cal flow and determines event boundaries by observing the
normalized optical flow.

3.2.1 Framewise mode
As we have observed in FlowGEBD with pixel tracking
(section 3.1.2), the framewise mode is a specialized case of
patchwise. Hence, we discuss the Optical Flow Normaliza-
tion method in the more generalized patchwise mode, and the
same can be adapted for framewise by using nw = nh = 1.

3.2.2 Patchwise mode

Method. For every frame fi, we identify the set of Ng

patches, denoted by Gfi , for a fixed nw and nh. Then, for
every consecutive frame fi−1 and fi, we compute Ng dense
optical flows (one between each patch pair, gfi−1

and gfi).
For this, we use the Gunnar Farneback algorithm [7]. Then,
we use the maximum flow displacement corresponding to all
patch pixels as the “flow of the patch” or its “PatchFlow”.
After processing L frames and theirNg patches, we accumu-
late the PatchFlow for each patch across temporal dimension
and normalize the displacement values. We hypothesize that
considerable displacement of PatchFlow in the temporal di-
mension constitutes a change in action or event. For any
patch, if the normalized value for frame index i exceeds a
constant threshold θ2, we deem to have encountered an event
boundary and add the corresponding frame index i to our
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Algorithm 2: FlowGEBD using Optical Flow Nor-
malization (Patchwise mode)

Data: Video of resolution w × h as a sequence of L
frames,

−→
F = ⟨f1, f2, . . . , fL⟩; Parameters:

Patch width wg , and height hg

Result: Event Boundaries, B = {b1, b2, . . . , bM}
Gf1 ← patches(f1, wg, hg) // Gets Ng patches (Fig. 3)

for fi ∈
(−→
F − f1

)
do

Gfi ← patches(fi, wg, hg)
Φg

i−1 ← {} // Placeholder for all optical flows in frame fi

for
(
gfi−1

, gfi

)
∈

(
Gfi−1

,Gfi |
corresponding

patches

)
do

φ← denseFlow(gfi−1
, gfi) // O(wghg))

Φg
i−1 ← Φg

i−1 ∪ {max (φ)}
end

// inner-for-loop =⇒ O(Ngwghg))

end
// outer-for-loop =⇒ O(LNgwghg))

// We now have PatchFlows = {Φg
1 ,Φ

g
2 , . . . ,Φ

g
L−1}, . . .

// . . . where ith element = set Φg
i of patch optical flows for fi

Btemp ← {}
for

(
Φg

1,Φ
g
2, . . . ,Φ

g
L−1

)
∈ PatchFlows | corresponding

patches do
−→
Φ ←

(
Φg

1,Φ
g
2, . . . ,Φ

g
L−1

)
Φ̂←

−→
Φ

||
−→
Φ ||2

// L2-norm

Btemp ← Btemp ∪
{
argΦ̂i>θ2

i

(
Φ̂
)}

end
// for-loop =⇒ O(LNg))

B ← refine(Btemp) // Refer to Algorithm 3

return B

denseFlow(·): Dense optical flow using the Gunnar Farneback’s algorithm

θ2: A constant threshold

working set of event boundaries Btemp. Finally, we apply
temporal refinement on Btemp to compute the refined event
boundary set B. This approach for patchwise processing of
dense optical flow is detailed in Algorithm 2.

3.3. FlowGEBD with ensembling of Pixel Tracking
and Flow Normalization

Pixel tracking helps determine event boundaries based on
the sparse optical flow of a few key pixels. On the other hand,
flow normalization aggregates the dense optical flow of all
pixels and offers a lossless method to determine a set of event
boundaries using “PatchFlow”. To obtain an ensemble of
both approaches, we independently take the event boundaries
from both without performing the temporal refinement stage.
Instead, we take a union of the predicted sets from these two
approaches and perform temporal refinement over the union.
Temporal refinement. We analyze the elements of a set
of predicted boundary timestamps along the corresponding

Algorithm 3: Temporal Refinement of Boundaries
Data: Event Boundaries, B = {b1, b2, . . . , bM}
Result: Refined Event Boundaries, B̃ ⊆ B
B̃temp ← {};

−→
B ← sorted(B) // O(M logM)

−→
K ← ⟨⟩ // Placeholder for a cluster of boundary elements

for b
′

i ∈
−→
B do

if
(−→
K ̸= ⟨⟩

)
∧
(
∀k ∈

−→
K |

(∣∣∣b′i − k
∣∣∣ ≥ θ3

))
then
B̃temp ← B̃temp ∪

{
median

(−→
K
)}

−→
K ← ⟨⟩

end
−→
K ←

−→
K⌢

〈
b
′

i

〉
end
B̃temp ← B̃temp ∪

{
median

(−→
K
)}

// Flush
−→
K

return B̃temp as B̃
θ3: A constant threshold

temporal dimension to identify “rare boundaries” and
“popular boundaries”. Rare or isolated boundaries are those
where the event changes in a single patch and typically
with no neighboring timestamps, i.e., for a rare boundary br,
there exists no other boundary within the duration br ± θ3.
On the other hand, popular boundaries are dense clusters
where multiple boundaries have been determined within the
temporal vicinity.

We may interpret contiguous popular boundaries as
belonging to one cluster and each rare boundary as a
standalone single-element cluster. Then, we select one
representative element for each cluster by identifying its
median boundary element and consider only such elements
for the final set of refined event boundaries. The generic
Algorithm 3 identifies such clusters and determines an
optimal boundary in each of them.

4. Experiments
In this section, we conduct multiple experiments and eval-

uate both algorithms, followed by the ensembled method.

4.1. Dataset

Kinetics-GEBD. Our approach is evaluated primarily on
the challenging Kinetics-GEBD [30], a benchmark dataset
for locating the boundaries of generic events in the video.
It consists of 54,691 videos of 10 seconds each that span a
broad spectrum of video domains in the wild and is open-
vocabulary, taxonomy-free. The ratio of the train, validation,
and test sets in Kinetics-GEBD is equal, with each set includ-
ing roughly 18,000 videos chosen from Kinetics-400 [16].
FlowGEBD is an algorithmic unsupervised method, so we
do not require train data. We evaluate our methods on the val-
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Supervision Rel.Dis. threshold 0.05 0.1 0.15 0.2 0.25 0.30 0.35 0.4 0.45 0.5 Avg

Supervised

PC [30] (Baseline) 0.625 0.758 0.804 0.829 0.844 0.853 0.859 0.864 0.867 0.870 0.817
PC + Optical Flow [20] 0.646 0.776 0.818 0.842 0.856 0.864 0.868 0.874 0.877 0.879 0.830

Gothe et al. [10] 0.712 - - - - - - - - - -
SBoCo-Res50 [15] 0.732 - - - - - - - - - 0.866

DDM-Net [32] 0.764 0.843 0.866 0.880 0.887 0.892 0.895 0.898 0.900 0.902 0.873
Li et al. [20] 0.743 0.830 0.857 0.872 0.880 0.886 0.890 0.893 0.896 0.898 0.865

SC-Transformer [19] 0.777 0.849 0.873 0.886 0.895 0.900 0.904 0.907 0.909 0.911 0.881
SBoCo-TSN [15] 0.787 - - - - - - - - - 0.892

Unsupervised

PA - Random [30]† 0.336 0.435 0.484 0.512 0.529 0.541 0.548 0.554 0.558 0.561 0.506
PA [30]† 0.396 0.488 0.520 0.534 0.544 0.550 0.555 0.558 0.561 0.564 0.527

CoSeg [36]† 0.656 0.758 0.783 0.794 0.799 0.803 0.804 0.806 0.807 0.809 0.782
UBoCo-Res50 [15]† 0.703 0.839 0.862 0.885 0.889 0.893 0.894 0.898 0.900 0.902 0.866
UBoCo-TSN [15]† 0.702 0.846 0.862 0.879 0.888 0.889 0.895 0.897 0.904 0.905 0.866
SceneDetect [2]⋆ 0.275 0.300 0.312 0.319 0.324 0.327 0.330 0.332 0.334 0.335 0.318

Ours (PT 1)⋆ 0.702 0.819 0.844 0.855 0.860 0.863 0.866 0.867 0.869 0.870 0.841
Ours (FN 2)⋆ 0.691 0.826 0.860 0.877 0.885 0.889 0.892 0.894 0.896 0.897 0.861

Ours (Ensembled)⋆ 0.713 0.828 0.850 0.858 0.862 0.864 0.866 0.867 0.868 0.869 0.845

Table 1. F1 results on Kinetics-GEBD validation set with different Rel.Dis. thresholds. FlowGEBD achieves the best F1@0.05 scores for
unsupervised setting (31.7% absolute gain over unsupervised baseline, PA [30]). † : parametric (neural) Methods ⋆ : Non-parametric

Supervision Rel.Dis. threshold 0.05 0.1 0.15 0.2 0.25 0.30 0.35 0.4 0.45 0.5 Avg

Supervised
PC [30] 0.522 0.595 0.628 0.647 0.660 0.666 0.672 0.676 0.680 0.684 0.643

DDM-Net [32] 0.604 0.681 0.715 0.735 0.747 0.753 0.757 0.760 0.763 0.767 0.728
SC-Transformer [19] 0.618 0.694 0.728 0.749 0.761 0.767 0.771 0.774 0.777 0.780 0.742

Unsupervised

PA - Random [30]† 0.158 0.233 0.273 0.310 0.331 0.347 0.357 0.369 0.376 0.384 0.314
PA [30]† 0.360 0.459 0.507 0.543 0.567 0.579 0.592 0.601 0.609 0.615 0.543

SceneDetect [2]⋆ 0.035 0.045 0.047 0.051 0.053 0.054 0.055 0.056 0.057 0.058 0.051
Ours (PT 1)⋆ 0.355 0.489 0.562 0.619 0.655 0.677 0.693 0.703 0.714 0.721 0.619
Ours (FN 2)⋆ 0.346 0.487 0.562 0.619 0.658 0.678 0.695 0.706 0.715 0.722 0.618

Ours (Ensembled)⋆ 0.375 0.502 0.569 0.624 0.658 0.677 0.695 0.703 0.711 0.717 0.623

Table 2. F1 results on TAPOS validation set with different Rel.Dis. thresholds. The ensembled method achieves the best F1 score compared
to other unsupervised methods. † : parametric (neural) Methods ⋆ : Non-parametric Methods

idation set, as the annotations of the test sets are not public.

TAPOS. In addition to Kinetics-GEBD, we experiment on
the TAPOS dataset [28] containing Olympics sports videos
with 21 actions. The dataset authors manually defined how
to break each action into sub-actions during annotation.
Following [30], we re-purpose TAPOS for the GEBD task
by performing boundaries localization between sub-actions
in each action instance. TAPOS contains 1790 instances for
validation, and we evaluate on the same.

Implementation and Evaluation. We run all our exper-
iments on Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz
equipped machine. We sample the video at 4 FPS and resize
it to 160× 160 as preprocessing. As described in [30], we
use F1 at 0.05 Relative Distance (Rel.Dis.) as our primary
evaluation metric. The predicted boundary is deemed
accurate for a certain Rel.Dis. threshold if the difference
between the predicted and ground truth timestamps is
smaller than the threshold. We report F1 scores of different
thresholds to range from 0.05 to 0.5 with a gap of 0.05.

4.2. Main Results

Kinetics-GEBD. Table 1 illustrates the results of our meth-
ods on the Kinetics-GEBD validation set along with unsu-
pervised and supervised benchmarks. PT achieves a higher

F1@0.05 of 0.702 than FN, with a strong recall of 0.91 (av-
erage) and a 0.77 (average) precision. Intuitively, PT is able
to detect action change across patches along with subject
change as the cardinality of the patch increases. FN obtains
a high Avg. F1 value through a balanced precision and recall
of 0.81 and 0.90, respectively. The FlowGEBD (Ensembled)
outperforms all previous unsupervised methods with the
highest F1@0.05 of 0.713 using a refinement approach (Al-
gorithm 3) that combines PT and FN. Compared to unsuper-
vised baseline PA [30], FlowGEBD obtains a significant gain
of 31.7% in F1@0.05 and exceeds DNN-based unsupervised
methods [15,36], demonstrating the effectiveness of our pro-
posed algorithms. Additionally, compared to the supervised
baselines PC [30] and PC + Optical Flow [20], our method
achieves 8.8% and 6.7% absolute improvement, respectively.

TAPOS. We also conduct experiments on the TAPOS [28];
the results are summarized in Table 2. The dataset is not in-
herently well-suited for GEBD as it comprises a pre-defined
set of 21 action classes. Hence, we separate sub-action
instances from each action video and treat them as a
single video for GEBD. Shou et al. [30] have shown that
the GEBD model trained on TAPOS underperforms on
the Kinetics-GEBD dataset due to a change in boundary
semantics. However, our algorithm is robust enough to be
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Figure 4. Pixel Tracking: Visual representation of 3× 3 patchwise
pixel tracking along temporal dimension (θ1 = 0.4)

Figure 5. Flow Normalization: Visual representation of normalized
3× 3 patchwise max flow along temporal dimension (θ2 = 0.25)

applied directly to the TAPOS dataset. Compared to the
unsupervised benchmark PA [30], our method obtains Avg.
F1 score of 0.623, gaining 8% absolute improvement. We
found no alternative SOTA unsupervised methods for GEBD
on the TAPOS dataset to compare our results directly.

Tuning Thresholds θ1 and θ2 serve as thresholds that gov-
ern the behavior of the PT and FN algorithms, respectively.
Additionally, θ3 is a threshold regulating neighboring bound-
aries for clustering in the refinement process.

As per the hypothesis, in PT, a notable decrease in
pixel count during temporal tracking indicates pivotal event
changes, such as changes in subjects or environment. Our
empirical findings indicate that marking an event boundary
with a drop exceeding 60% (θ1 = 0.4) yields better perfor-
mance. In Fig. 4, it can be observed that the event boundaries
are perfectly aligned with the trough. Likewise, in FN, our
empirical observations indicate that marking a frame as an
event boundary is effective when it contributes to over 25%
(θ2 = 0.25) of the overall normalized motion, signifying
event changes in the video. Fig. 5 illustrates the alignment
of peaks with event boundaries, visually validating our ap-
proach. The third threshold θ3 indicates the distance between
two boundaries to consider them as belonging to the same
cluster during refinement. Specifically, it is the Euclidean
distance to split observations into clusters. We set θ3 = 0.50,
i.e., twice the unit timestamp (time per frame) considered in
our algorithm (4 FPS =⇒ 1 unit = 1/4 = 0.25).

Method Sampling Spatial Processing F1@0.05Random Corners Framewise Base Patch Centroidal
✓ ✓ 0.492

✓ ✓ 0.533
✓ ✓ 0.659

PT-1 ✓ ✓ 0.678
✓ ✓ ✓ 0.678

✓ ✓ ✓ 0.702
✓ 0.486

FN-2 NA NA ✓ 0.678
✓ ✓ 0.691

Ensembled ✓ ✓ ✓ 0.713

Table 3. Effect of Sampling and Spatial Processing on Pixel Track-
ing (PT) and Flow-Normalized (FN) Algorithms

Ng ⇐= (nw = nh)
F1@0.05

PT-1 FN-2 Ensembled
nw = 3 0.679 0.652 0.709
nw = 4 0.696 0.694 0.710
nw = 5 0.702 0.691 0.713

Table 4. F1 score of the proposed method with respect to patch size
on GEBD-Kinetics validation set

All the experiments reported in Tables 1 and 2 are con-
ducted in patchwise mode with nw = nh = 5, θ1 =
0.4, θ2 = 0.25, θ3 = 0.5. However, it is demonstrated in
Section 4.4 that FlowGEBD is robust and insensitive to these
thresholds. Qualitative results of FlowGEBD are presented
in supplementary.

4.3. Ablation Studies

Effect of Sampling. Table 3 illustrates the result of two
sampling techniques. In random sampling, we uniformly
sample the fixed fraction of pixels from each patch. The
corner detection [29] looks for a significant change in pixel
intensity in all directions. This sometimes results in the
sampling of fewer corner pixels. Thus, we observe that
random sampling of pixels gives better F1 scores for PT. It
may be noted that the sampling method does not apply to
the FN since it computes dense optical flow.

Effect of Spatial Granularity. As detailed in Section 3.1.1
and 3.1.2, we conclude from Table 3 that computing patch-
wise offers higher performance than processing the entire
frame as a single unit. Further, by introducing Centroidal
patches, we can capture event change at the intersection of
the base patches, leading to a noticeable increase in F1.

Effect of Patch Size. Besides the spatial granularity, patch
size is essential to predict the accurate event boundaries,
as illustrated in Fig. 3. We capture the effect of varying
nw in Table 4. A higher Ng (indicative of a smaller patch
size) results in more candidate boundary sets, reducing the
likelihood of missing uncommon boundaries. Moreover,
it helps effectively trace events in tiny regions. We have
determined the ideal value for our approach to be nw = nh

= 5. Processing beyond a specific patch size can introduce
noisy boundaries to the candidate pool, lowering the F1.
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Figure 6. Sensitivity analysis of thresholds θ1, θ2, θ3. ⋆ marks the
best F1@0.05 score.

4.4. Sensitivity Analysis of thresholds

We conduct an extensive ablation study of thresholds and
analyze the impact on the performance. We sample θ1, θ2
uniformly between 0.1 to 0.9, and for θ3, we vary it from
0.5 to 3.0 in steps of 0.5.

Fig. 6 shows the analysis of sensitivity of the thresh-
olds on Kinetics-GEBD and TAPOS datasets in patchwise
(nw = 5) mode. Our findings reveal that PT demonstrates
robust performance across a wide range of threshold values
(θ1 and θ3), consistently exhibiting the same trend for both
the Kinetics and TAPOS datasets. In FN, as we increase the
normalized flow threshold θ2, the number of detected bound-
aries will reduce gradually. The same effect is observed in
Fig. 6, where the gradual change in performance indicates
relative stability and generalization on both datasets.

The ensembled method shows the harmonious collabo-
ration of PT and FN, attaining optimal F1 scores across all
combinations (9 × 9 × 6). The mean standard deviations
of F1@0.05 for PT, FN, and Ensembled on Kinetics-GEBD
are 0.005, 0.02, and 0.0006, respectively, while on TAPOS,
they are 0.002, 0.01, and 0.01. These findings highlight the
robustness of FlowGEBD and its insensitivity to thresholds.

4.5. Time Complexity of FlowGEBD
We theoretically assess the time complexity of

FlowGEBD. From Algorithms 1, 2, 3, we ob-
serve that the time complexities (in patchwise
mode) of pixel tracking, flow normalization, and
temporal refinement are O (LNgwghg |Pbase|),
O(LNgwghg), and O(M logM) (≡ O(L logL)), re-
spectively. So, the overall time complexity is given by

Method Params Latency (ms) F1@0.05

On GPU

PC [30] 23.5 46.4 0.625
Gothe et al. [10] 6.79 1.2 0.712

Li et al. [20] ≥ 34.6 4.7 0.743
PA [30] 23.5 46.4 0.396

UBoCo-Res50 [15] ≥ 23.5 ≥ 46.4 0.703
UBoCo-TSN [15] ≥ 90 ≥ 90.2 0.702

On CPU

Gothe et al. [10] 6.79 84.35 0.712
SceneDetect [2] NA 34.91 0.275

Ours (PT 1) NA 2.26 0.702
Ours (FN 2) NA 6.42 0.691

Ours (Ensembled) NA 6.5 0.713

Table 5. Comparison of Latency with other methods and their
F1@0.05 on Kinetics-GEBD validation set.

O (LNgwghg |Pbase|+ LNgwghg + L logL). We can
further simplify this to O (LNgwghg |Pbase|). Since
in pixel tracking, we use a sparse set of key pixels
(i.e. |Pbase| ≪ wghg), |Pbase| is a fraction of w and h.
Additionally, Ngwghg ∝ wh. So, we infer that the latency
of FlowGEBD is directly proportional to wh and L. Please
consult the supplementary materials for the analysis of the
inference time on sample videos.

Comparison of latency. Table 5 presents the latency per
frame across different methods. Most of these methods
employ ResNet-50 as their backbone, resulting in an average
inference time of at least 46.4 ms per frame at a resolution
of 160×160 on a GPU [10]. In contrast, PT and FN exhibit
considerably lower inference time, consuming 2.26 ms
and 6.42 ms, respectively. The ensembled approach takes
6.5 ms on average without compromising the F1 score.
The reported inference time is measured on a Samsung
Galaxy S21 Ultra device with 12 GB RAM. Furthermore,
the estimation of optical flow can be accelerated on GPU
by utilizing NVIDIA Optical Flow SDK [25].

5. Conclusion and Discussion
We introduce FlowGEBD, a non-parametric, unsu-

pervised approach for generic event boundary detection.
FlowGEBD comprises two independent algorithms, (i)
Pixel Tracking and (ii) Flow Normalization, which can be
deployed framewise or patchwise. FlowGEBD achieves
the state-of-the-art results (Tables 1 and 2) on the Kinetics-
GEBD and TAPOS at a strict relative distance (F1@0.05).
This demonstrates that the motion information acquired
from an optical flow alone is sufficient and obviates the need
for complex neural models to achieve high performance.
We performed an extensive ablation study and threshold
sensitivity analysis to demonstrate the robustness of the
proposed method.

However, since FlowGEBD does not incorporate spatial
semantics (high-level DNN features), it is more suitable for
GEBD rather than specific action/event localization. The
same effect is observed in the evaluation of TAPOS. In future
work, we will explore the bi-directional processing of each
frame to improve the performance.
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Electronic Press, 2002. 3
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