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Figure 1. Overview of the proposed method. (a) A vanilla model performs classification by comparing the similarity sim(-,-) between
a feature vector extracted from a backbone and a class-wise weight. (b) The deep nearest centroids method [43] prepares several sub-
centroids for each class and assigns the single nearest sub-centroid to a feature vector, which ignores the relationship between the feature
vector and the other sub-centroids. (c) The proposed method employs an orthonormal matrix and assigns the matrix rows to a feature vector
in a linear combination, which fully utilizes the relationship between the feature vector and each matrix component.

Abstract

In this paper, we address the challenges of represent-
ing feature distributions which have multimodality within
a class in deep neural networks. Existing online clustering
methods employ sub-centroids to capture intra-class vari-
ations. However, conducting online clustering faces some
limitations, i.e., online clustering assigns only a single sub-
centroid to a feature vector extracted from a backbone and
ignores the relationship between the other sub-centroids
and the feature vector, and updating sub-centroids in an
online clustering manner incurs significant storage costs.
To address these limitations, we propose a novel method
utilizing orthonormal matrices instead of sub-centroids for
relaxing discrete assignments into continuous assignments.
We update the orthonormal matrices using a gradient-based
method, which eliminates the need for online clustering or
additional storage. Experimental results on the CIFAR and
ImageNet datasets exhibit that the proposed method outper-
forms current online clustering techniques in classification
accuracy, sub-category discovery, and transferability, pro-
viding an efficient solution to the challenges posed by com-
plex recognition targets.

1. Introduction

In deep neural networks (DNNs), image classification is
a fundamental task that is applied in image recognition [28],

object detection [37], and image segmentation [34]. Gen-
erally, a DNN classification model comprises a backbone
network, which extracts features from images, and a clas-
sifier, which infers each category from the extracted fea-
tures. As shown in Fig. 1(a), the classifier involves a single
weight vector for each class, and classes are identified by
comparing scores obtained from the inner product between
the weight vector and the features. Recently, data variation
and amount of data have increased significantly to improve
the performance of DNN. However, the increasing amount
of data causes the feature distribution to become complex
and multimodal, which makes it difficult to represent the
feature distribution of each class using only a single weight
vector [22].

The k-nearest neighbor (k-NN) classifier [13] can rep-
resent such multimodal distributions. The k-NN classi-
fier considers all training features as exemplars, and cap-
tures multimodal distributions using these exemplars in-
stead of a single weight vector. Wu et al. [44] propose
scalable neighborhood component analysis (SNCA), which
combines DNNs and neighborhood component analysis
(NCA) [20] and utilizes the k-NN classifier. They demon-
strate that the representations learned by the SNCA method
work effectively in several tasks e.g. sub-category discov-
ery. However, k-NN classifiers involve huge costs to store
all of the training features for both training and inference
phases. In addition, comparing with all training features in-
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curs significant computational costs.

In response to these challenges, Wang et al. [43] propose
the deep nearest centroids (DNC) method. Rather than stor-
ing all training features, DNC obtains several sub-centroids
for each class via online clustering, as shown in Fig. 1(b).
In the inference phase, DNC classifies by finding the near-
est sub-centroid from an input feature. However, the online
clustering method has several drawbacks. First, only one
sub-centroid is assigned to an input feature, even though the
input feature is similar to two or more sub-centroids, and
the other sub-centroids cannot affect the backbone updates.
Second, the update schedulers for backbone parameters and
sub-centroids with online clustering are different, making it
difficult to maintain balanced updates. Third, online clus-
tering incurs huge memory costs during the training phase.
The authors of DNC report that more than 26 GB memory
per GPU is necessary for training on ImageNet [38] with
only four sub-centroids for each class.

To address these drawbacks, we propose a method to rep-
resent multimodal distributions using orthonormal matrices.
Our method utilizes sub-centroids as weight matrices and
updates the weights using gradient-based approach, which
eliminates the need for online clustering or additional stor-
age. As shown in Fig. 1(c), the proposed method calculates
the similarity between an input feature vector and the linear
combination of the rows in the weight matrices. Therefore,
our method fully utilizes the relationship between the in-
put feature and each matrix component. By imposing or-
thonormal constraints on the class-wise weight matrices,
the proposed method can relax the discrete assignment of
the sub-centroids in a continuous manner [17]. In addition,
the orthonormal constraints enable us to capture more inter-
pretable features than other online clustering methods be-
cause uncorrelated features within a class are captured by
the orthonormal components of the weight matrices in an
unsupervised setting. These orthonormal constraints can be
satisfied using Riemannian gradient descent methods as in
online principal component analysis (PCA) [1].

Our contributions are summarized as follows:

* We propose a method that learns intra-class multi-
modal distributions using orthonormal matrices. The
method relaxes clustering assignments in online clus-
tering methods to continuous values and obtains inter-
pretable representations without online clustering.

* We show that the classification results are superior due
to finer embeddings. With ResNet-50, the proposed
method improves the top-1 accuracy on the ImageNet
dataset by 0.7 points when compared to DNC [43].

* The experimental results demonstrate that the pro-
posed method exhibits better transferability than con-
ventional methods. In coarse-to-fine experiments, the

proposed method exhibits strong transferability on the
CIFAR-100 and ImageNet datasets. Strong transfer-
ability is also exhibited in transfer learning experi-
ments on the CUB and CityScapes datasets.

2. Related work

Network interpretability. Distance-based methods can
enhance the network interpretability of DNNs. The k-
NN [13] method is one of the most common distance-based
classifiers. Wu et al. [44] employ the NCA concept [20] to
the DNN architecture, where they demonstrate that the k-
NN classifier with a ResNet backbone network is effective
in classification tasks and sub-category discovery. However,
k-NN classifiers incur huge memory costs during both the
training and inference phases because they use all available
training features as exemplars. The nearest centroids tech-
nique [7] is another well-known distance-based classifier
that stores class centers as exemplars. Guerriero ef al. [21]
combine the idea of nearest centroids with DNNs. However,
they only utilize a single center for each class as an exem-
plar, thereby assuming unimodality and failing to capture
intra-class multimodal variations. Wang et al. [43] prepare
several sub-centroids for each class using an online clus-
tering technique to represent the multimodal distributions
within classes. These sub-centroids can capture intra-class
multimodality. However, online clustering methods still in-
cur huge storage costs during training. In addition, online
clustering forces the assignment of an input feature vector to
only a single sub-centroid, thereby ignoring data architec-
ture. In contrast, the proposed method employs orthonor-
mal weight matrices rather than sub-centroids, assigns an
input feature to the continuous linear combination of the
weight matrix, and obtains finer intra-class representations
through the matrix components. Rather than using online
clustering techniques, in our method, the weight matrices
are updated using gradient-based methods, which do not in-
cur extremely huge memory costs.

Prototype learning methods have been proposed based
on the concept of distance-based methods. Li et al. [30] in-
troduce the prototype layer, which measures distances from
prototypes, and the model prediction is interpreted using the
prototypes. Angelov and Soares [3] extract typical features
as prototypes from networks pretrained on ImageNet, and
Chen et al. [8] propose the ProtoPNet, which also utilizes
features from pretrained backbone networks. ProtoPNet ex-
tracts prototypes from patches of feature maps and obtains
interpretable activation maps. These prototype learning
methods must insert prototype layers and fully-connected
layers, which incurs additional computational costs. In ad-
dition, ProtoPNet utilizes feature maps extracted from the
layers before the pooling layers, thereby incurring further
computational costs. In contrast, the proposed method does
not implement such additional layers, e.g., prototype layers,
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and does not use pretrained weights.

Low-rank matrix factorization is used to enhance net-
work interpretability. For example, non-negative matrix
factorization (NMF) [29] decomposes an input matrix into
two non-negative low-rank matrices. These decomposed
matrices capture typical patterns contained in the input ma-
trix. Fel et al. [18] leverage NMF to give post-hoc inter-
pretability to models pretrained on ImageNet. The proposed
method utilizes the components of orthonormal weight ma-
trices as exemplars to obtain interpretability as in low-rank
matrix factorization.

Orthogonality. Introducing orthogonality into DNN
weights can improve accuracy and robustness to stabilize
training. Xie et al. [45] confirm that weight orthogonal-
ity in linear and convolutional layers reduces degradation in
plain CNNs. Cisse ef al. [10] demonstrate that orthogonal
weights in linear and convolutional layers improve robust-
ness against adversarial attacks. Wang et al. [42] introduce
orthogonality into the weights of convolutional layers rep-
resented in the doubly block-Toeplitz form. These methods
impose an orthogonal constraint by adding the soft regular-
ization term %||[W W — I||% to the loss function, where
A > 0 is a hyperparameter. In contrast, the method pro-
posed by Li et al. [31] strictly satisfies orthogonality via
singular value decomposition. While the above methods
impose orthogonality constraints to the entire networks, our
method only applies orthogonality to the classifier. In the
proposed method, Riemannian optimization [2] on a Stiefel
manifold is employed to avoid the extra hyperparameter A
and strictly satisfy orthogonality.

Orthogonality is also applied in matrix decomposition
and reconstruction. In PCA, an input matrix is decomposed
into non-correlated components by utilizing orthonormal-
ity and obtaining interpretability. In addition, a discrete
clustering problem can be relaxed into a continuous opti-
mization problem by adopting orthogonal matrix decom-
position [16, 17]. Zhang et al. [47] leverage the orthogo-
nal matrix reconstruction concept to improve accuracy and
explainability via salient activation tracking. In the pro-
posed method, an objective function similar to PCA is im-
plemented to enhance model interpretability.

Orthogonality also facilitates the separation of class fea-
tures. This property is utilized in few-shot learning, where
a new class weight is appended orthogonally to existing
class weights in classification [24] and segmentation [32]
tasks. This separability of orthogonality helps the proposed
method capture finer representations.

3. Intra-class multimodal distributions with or-
thonormal matrix

In the following subsections, we introduce the general
classification problem settings, outline DNC [43], and de-
scribe its limitations. Finally, we describe the proposed

method in detail.

3.1. Problem formulation

Here, let X and Y = {1,2,...,C} be an image space
and a set of semantic classes, respectively. The goal of
classification problems is to fit a model h : X — ) us-
ing a given training dataset 7 = {(x;,¥;) € X x J)}fil to
predict a semantic class of a new image x € X. A com-
mon DNN model can be decomposed as h = g o fy, where
fo: X — R< is a feature extractor (or backbone),  is a
trainable parameter vector, and g : R? — ) is a classifier.
The widely used linear classifier can be written as

g(z) = argmax{.(z), (1)
ceY
lo(z) = w2 + b, )

where z € R? is a feature vector, w¢ € R% and b, € R
are a class-wise weight vector and a bias, respectively, and
¢ : R? — R is a logit function.

In Eq. (2), the inner product w® ' z calculates the simi-
larity between the weight vector w¢ and feature vector z.
Thus, letting sim : R? x RY - Rbea similarity function,
the logit function /. can be represented as

le(z) = sim(w®, z). 3)
Several functions can be used for sim(-, ) such as the cosine
similarity [36] and ¢5-norm [6].

3.2. Deep nearest centroids

A classification model implementing Eq. (3) is trained
such that all feature vectors belonging to the semantic class
c are attracted to only a single weight vector w¢. Thus, as
shown in Fig. 2(a), the learned features of each class tend to
be distributed unimodally. However, in practice, intra-class
feature distributions are diverse, and a single weight vec-
tor cannot represent intra-class variations. Wang et al. [43]
tackle this intra-class representation problem by utilizing
the nearest centroids [7] concept. They propose DNC,
which represents each class ¢ by K sub-centroids {w¢} £ |
and updates sub-centroids in an online clustering manner.
As shown in Fig. 2(b), DNC captures the multimodal distri-
bution of feature vectors via these sub-centroids.

Training DNC is accomplished by alternately updat-
ing the parameters 6 of the feature extractor and the sub-
centroids {w¢}X . Parameters ¢ are learned by minimiz-
ing the softmax cross-entropy loss using the following logit
function as

l(z) = max sim(w§,z), )

i€{1,2,....K}
where both w¢ and z are ¢3-normalized and sim(-, -) is co-
sine similarity. Here, let W¢ = [w§,w$,...,w%]' €
RE*4 for each class ¢ and a® € {0,1}% be a vector that
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Figure 2. t-SNE [40] visualizations of the extracted features of CIFAR-10 [27] (top row), and the top-5 nearest images from the sub-
centroid for DNC or the matrix component for our method (second row). The zoomed green scatter plots show the feature distribution of
“bird” class, and star plots represent the weight vectors for the vanilla model (a), the sub-centroids for DNC (b), and the matrix components

for the proposed method (c).

assigns a single sub-centroid to the feature vector z as

o = 1, ifi= a'rgmaxje{lﬁzw,K} sim(w$, z), 5)
0, otherwise.

Then, Eq. (4) can be rewritten as

0.(2) = sim (wcTaC, z) . 6)

In the update of sub-centroids, DNC adopts online clus-
tering using a momentum update technique. During each
training iteration, DNC conducts class-wise clustering on a
batch. Here, let z{ be a mean vector of the features assigned
to ¢-th cluster of class c in the current batch. Then, the up-
date of sub-centroid w is

C

wi < pwi + (1 — p)z, @)
where p € [0, 1] is a momentum coefficient. To assign a
feature vector z to an appropriate sub-centroid w, they em-
ploy Sinkhorn-Knopp iteration-based clustering [ | 5] which
solves the optimal transport problem with entropy regular-
ization. However, due to the application of online cluster-
ing, DNC assigns a feature vector z to only a single sub-
centroid wy, which implies that even if z is similar to two
sub-centroids w{ and wf, if sim(w{,z) is slightly larger
than sim(w¢, z), the feature extractor is trained to make z
similar to w{. Unfortunately, in such a case, the property
that z resembles w7 is ignored.

In addition, online clustering makes it difficult to main-
tain an effective balance between updating backbone pa-
rameters and sub-centroids. DNC updates the backbone pa-
rameters using SGD with a learning rate scheduled by a step
policy. On the other hand, sub-centroids are updated with
a constant step size in Eq. (7). As a result, the updates of

parameters and sub-centroids become unbalanced.

Furthermore, online clustering requires external memory
to store past features. For example, consider training on Im-
ageNet with 1K classes using a batch size of 256. Here, the
batch size is obviously smaller than the number of classes.
Therefore, DNC must store several previous batches in ex-
ternal memory to conduct online clustering. However, this
prevents the larger number of sub-centroids, and the authors
of DNC set K = 4 due to memory limitations [43].

3.3. Proposed method
3.3.1 Relaxing the assignment vector

Equation (6) implies that the matrix W€ can potentially
capture intra-class variations, and considering W¢ as a
weight matrix allows us to avoid the aforementioned prob-
lems associated with online clustering. This motivates us
to simply replace the sub-centroids {w¢} % | with a weight
matrix W¢ € R"*? with n < d. By adapting a weight ma-
trix, we update W€ using gradient descent methods rather
than online clustering techniques. To apply gradient-based
methods, we modify the logit function in Eq. (6) by relaxing
the discrete assignment vector a® € {0, 1}* with a continu-
ous vector a¢ € ;. This relaxation allows all feature vec-
tors to affect the updates of weight matrices for all classes
through the cross-entropy loss.

Suppose the similarity function is £2-norm with a scaling
parameter x > 0

sim(u,v) = —kllu — v||3. (8)

Then, Eq. (6) can be rewritten as

L(z;K) = —K Hz —We'a® ’ 9)

) .
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Here, two issues must be considered when performing gra-
dient descent with softmax cross-entropy minimization with
this logit. First, a weight matrix W€ can be non-full-rank,
and the intra-class variation of class ¢ may not be repre-
sented with the non-full-rank matrix. For example, assume
n = 2. Let W{ and WS be the first and second rows of
W€, respectively. If W€ is not full rank, then there exists
a € R satisfying W§ = aW5. By letting a® = (a$,a$) T,
the equation W¢ ' a® = (a§ + a§5a) W holds. This implies
that all feature vectors belonging to c are attracted to W,
thereby resulting in a unimodal distribution. The second is-
sue is determining how to assign the vectors. As an extreme
case, assume that a° = [1,0,...,0]T holds for all feature
vectors. Then, W¢'a® = ‘W{ holds, which means that us-
ing We acin Eq. (6) is equivalent to using W{ in Eq. (3),
thereby failing to represent multimodal distribution.

3.3.2 Orthonormal constraint

In the following, we demonstrate that introducing orthonor-
mality to the weight matrices resolves the above shortcom-
ings. Here, let W€ be an orthonormal matrix, i.e., W¢
satisfies the constraint WeWe' = I, where I; is n-
dimensional identity matrix, which implies that W€ is al-
ways full rank. In addition, by utilizing the orthonormality,
we can determine the non-negative assignment vector a® =

2
ReLU (W¢z) to minimize the ¢3-norm Hz —Wwelac ,

Using this assignment vector, Eq. (9) can be rewritten as
2
le(z; k) = —IiHZ—WCT ReLU (Wcz)H . (10)
2

Here, we apply /s-normalization to the feature vectors as
DNC does, and we omit constant terms. Then, the logit
function can be expressed as
le(z;K) = HHRGLU(WCZ)H;. (11)
Note that a® = ReLU (W*°z) satisfies 0 < a§ < 1 with ¢o-
normalized features, which can be considered as continual
relaxation of the assignment for DNC expressed in Eq. (5).
In summary, we can describe the softmax cross-entropy

minimization with ¢.(z; k) as
1 exp (£y, (fo(xi); £))
_ log ,
e Og<Zf=1exp<ék(fe<xi>m)>>

(xi,y:)ET
subject to WW' =1, ¢=1,2,...,C.

minimize
6,W!, . . WC

(12)
This problem can be considered as an orthonormal con-
strained optimization problem. To solve an orthonormal
constrained optimization problem, the constraint can be re-
laxed using Lagrange multiplier A > 0, and adding the

regularization term A HWCWCT —I,,|| described in [10].

This method is efficient in terms of computational cost if the
number of constraints is large. However, we must tune the
penalty parameter A properly to balance the losses. In our

case, the number of orthonormal constraints is sufficiently
small to adopt Riemannian optimization. We can consider
orthonormal constrained optimization as an unconstrained
optimization problem on a Stiefel manifold as

St(d,n) = {W e R | WW' =1,}. (13)

A Stiefel manifold is a type of Riemannian manifold. Thus,
we can apply Riemannian optimization, e.g., Riemannian
SGD [5] and Riemannian Adam [4], to the optimization
problem expressed in Eq. (12). In the Riemannian optimiza-
tion process, a map (referred to as a retraction) is utilized to
update variables. In the proposed method, we use a QR re-
traction [2] as a retraction on a Stiefel manifold. Note that
the weight decay for W€ is set to zero because ||[W* ||% =n
holds due to the orthonormal constraint.

3.4. Difference between DNC and proposed method

In DNC, sub-centroids represent a mean vector of the
features. Thus, each feature vector tends to distribute
around the sub-centroids as shown in Fig. 2(b). In contrast,
the proposed method learns to represent the feature vector z
via a linear combination Y ;- afW¥. The assignment vec-
tor a¢ satisfies 0 < af < 1 and ||a®||y < 1. Therefore, the
weight matrices {W$, W§, ..., W¢ } represent the edge of
the feature distribution, as shown in Fig. 2(c). This en-
ables our method to capture finer representations such as
“a bird on a blue sea or a blue sky” and “a bird perching on
a branch,” which cannot be obtained using DNC.

4. Experiment

In this section, we discuss experiments conducted to
evaluate the performance and effectiveness of the proposed
method. We report the mean accuracy and the standard de-
viation error bars of three experiments conducted with dif-
ferent initialization seeds.

4.1. Classification

We evaluate the classification performance of the
proposed method on the CIFAR-10/100 [27] and Ima-
geNet [38] datasets. We compare the proposed method
with the vanilla model, DeepNCM [21], SNCA [44], and
DNC [43]. ResNet [23] and Swin [33] are used for compar-
ison between CNN and transformer-based architectures.

Learning details. We use MMClassification [11] and
follow the default settings in terms of the batch size, num-
ber of epochs, and optimizers. For CIFAR-10/100, we train
ResNet for 200 epochs with a batch size of 128 (32 batches
per GPU) and a resolution of 32 x 32. For ImageNet, we set
the resolution to 224 x 224, and train ResNet for 100 epochs
with a batch size of 256 (32 batches per GPU) and Swin
for 300 epochs with a batch size of 1,024 (64 batches per
GPU). To train the ResNet model, we use the Riemannian
SGD optimizer with an initial learning rate of 0.1, momen-
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tum of 0.9, and weight decay of 0.0001. A step scheduler
is adopted, where the learning rate decays by 0.1 in {100,
150} epochs for CIFAR-10, 0.2 in {60, 120, 160} epochs
for CIFAR-100, and 0.1 in {30, 60, 90} epochs for Ima-
geNet. To facilitate stable training, the learning rate for the
orthonormal weight matrices of the classifiers in the pro-
posed method is multiplied by 0.1. To train Swin, we use
the Riemannian AdamW optimizer [35] to minimize the la-
bel smoothing loss [39] and set the initial learning rate to
0.001 and the weight decay to 0.05. The learning rate is
scheduled using a cosine annealing policy. Standard data
augmentations are applied, including flipping and cropping
during both the ResNet and Swin training phases. The Ran-
dAugment [14], Random Erasing [49], MixUp [48], and
CutMix [46] augmentations are also applied in Swin train-
ing. Riemannian optimization is implemented based on
geoopt [26]. The hyperparameters of the proposed method
are setton = 10 and k = 50 x d/2048, where d = 2048 for
ResNet, d = 768 for Swin-S, and d = 1024 for Swin-B. To
reproduce DNC results, we set the number of sub-centroids
K = 4. In addition, we use K = 10 for fair comparison.

Main results. Tables 1 to 3 show GPU memory usage
in the training phase and the top-1/5 accuracy results on
CIFAR-10/100 and ImageNet, respectively. In Tab. 3, N/A
indicates that we cannot measure GPU memory usage on
NVIDIA A100 40GB due to the memory limitation. Ex-
periments using DNC with X' = 10 on ImageNet cannot
also be conducted due to the memory limitation. We con-
firm that the proposed method does not require huge ad-
ditional storage which DNC has need of. On the CIFAR-
10 dataset, the top-1 accuracy of the proposed method is
slightly less than that of the vanilla method. However, as
shown in Fig. 2, the proposed method captures more inter-
pretable feature representations, e.g., “a bird perching on a
branch,” which cannot be acquired by the vanilla method.
On the CIFAR-100 dataset, the proposed method outper-
forms the other baselines by 0.45 points in terms of the
top-1 accuracy and 0.83 points in terms of the top-5 accu-
racy. On the ImageNet dataset, the proposed method out-
performs the baselines by 0.47 points in terms of the top-1
accuracy with ResNet. SNCA is trained on ImageNet for
130 epochs. However, we find that the proposed method
obtains higher score with only 100 epochs training. With
Swin, the proposed method outperforms the vanilla method
by 0.07 points (top-1 accuracy). However, the accuracy of
the proposed method is less than that of DNC. The bottom
two lines in Tab. 3 show the Swin-S experimental results
using the cross-entropy loss instead of the label smoothing
loss. Using the cross-entropy loss on Swin-S, the proposed
method exceeds the vanilla model by 0.32 points in terms of
the top-1 accuracy, which is much higher than 0.07 points
improvement with the label smoothing loss. These results
on Swin-S imply that the proposed method is incompatible

Table 1. Top-1 and top-5 accuracy (%) on CIFAR-10 [27] vali-
dation set and training GPU memory usage (GB per GPU). The
accuracy results of DeepNCM are reported in the literature [43].

Method Backbone ‘ memory top-1 top-5
Vanilla ResNet-50 1.13 95.52+0.08 99.87
DeepNCM [21]  ResNet-50 - 93.67 -
DNCg—4 [43]  ResNet-50 1.55 95.17+0.11  99.74
DNCg=10 [43]  ResNet-50 1.56 95.19+0.10 99.73
Proposed ResNet-50 1.14 95.39+0.10 99.87
Vanilla ResNet-101 1.82 9546 +0.16 99.87
DNCg—4 [43] ResNet-101 2.24 95.34+0.08 99.81
DNCg=10 [43] ResNet-101 225 95.41+£0.04 99.74
Proposed ResNet-101 1.82 9542 +0.06 99.88

Table 2. Top-1 and top-5 accuracy (%) on CIFAR-100 [27] val-
idation set and training GPU memory usage (GB per GPU). The
accuracy results of DeepNCM are reported in the literature [43].

Method Backbone ‘ memory top-1 top-5
Vanilla ResNet-50 1.14 80.07 +0.17 9499
DeepNCM [21]  ResNet-50 - 72.25 -
DNCg—4 [43]  ResNet-50 1.60 78.88+0.43  92.92
DNCg=10[43] ResNet-50 1.72 79.31+0.14  93.48
Proposed ResNet-50 1.17 80.53 £0.30 95.82
Vanilla ResNet-101 1.82 80.31+0.10 94.94
DNCg—4 [43] ResNet-101 2.29 79.71 £0.07 93.31
DNCg=10 [43] ResNet-101 2.41 79.28+£0.29 93.04
Proposed ResNet-101 1.85 80.76 +0.20  95.83

Table 3. Top-1 and top-5 accuracy (%) on ImageNet [38] vali-
dation set and training GPU memory usage (GB per GPU). The
accuracy results for the vanilla [43], DNC [43] and SNCA [44]
methods are reported in the corresponding literature.

Method Backbone ‘ memory top-1 top-5
Vanilla ResNet-50 2.99 76.20+0.10 93.01
SNCA [44] ResNet-50 - 76.67 92.84
DNCg—4 [43] ResNet-50 2458  76.49+0.09 93.08
Proposed ResNet-50 3.32 77.19+0.15 93.55
Vanilla ResNet-101 4.50 77.52+0.11 93.06
DNCg—4 [43]  ResNet-101 26.09 77.80+0.10 93.85
Proposed ResNet-101 4.83 78.27 £0.06 94.17
Vanilla Swin-S 11.17  83.02+0.14 96.29
DNCg—4 [43] Swin-S N/A 83.26+0.13  96.40
Proposed Swin-S 11.30  83.09+0.06 96.37
Vanilla Swin-B 1525  83.36+0.12 96.44
DNCg—4 [43] Swin-B N/A 83.68+0.12  97.02
Proposed Swin-B 1542  83.43+0.01 96.54
Vanilla w/ CE Swin-S 11.17  82.57+0.07 96.11
Proposed w/ CE Swin-S 11.30  82.89+0.02 96.29

with the label smoothing loss. As shown in Tabs. 1 to 3, the
proposed method especially improves the top-5 accuracy.
This means that the proposed method embeds similar inputs
close together in the feature space. and captures inter-class
relationship. In contrast, the label smoothing loss treats all
classes other than the ground truth class equally by assign-
ing a constant value to these classes, which ignores inter-
class relationship. These properties contradict each other
and incur lower accuracy than DNC.
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Table 4. Top-1 accuracy (%) with coarse-grained and fine-grained
labels on CIFAR-100 [27] validation set using models trained on
CIFAR-20. The SNCA results are reported in the literature [44].

Method Backbone ‘ 20 classes 100 classes
Vanilla ResNet-50 | 87.04 +0.21 53.04 £0.26
SNCA [44] ResNet-50 81.42 62.32

DNCg—4 [43] ResNet-50 | 86.60+0.12 68.70 +0.48
Proposed ResNet-50 | 87.43+0.16 70.94 +0.07
Vanilla ResNet-101 | 87.05+0.25 48.96 +0.62
DNCg—4 [43] ResNet-101 | 86.63 041 67.48 +0.59
Proposed ResNet-101 | 87.57+0.14 71.17 +0.11

Table 5. Top-1 accuracy (%) with coarse-grained and fine-grained
labels on ImageNet [38] validation set using models trained on
ImageNet-127. The results for the vanilla [43], DNC [43] and
SNCA [44] methods are reported in the corresponding literature.

Method Backbone ‘ 127 classes 1000 classes
Vanilla ResNet-50 84.29 43.23
SNCA [44] ResNet-50 81.62 52.75
DNCg—4 [43]  ResNet-50 84.39 52.21

Proposed ResNet-50 | 85.81+0.12 56.08 +0.11
Vanilla ResNet-101 85.88 4531
DNCg—4 [43] ResNet-101 85.91 54.60

Proposed ResNet-101 | 86.44 £0.07 56.94 +0.24

Table 6. Top-1 and top-5 accuracy (%) on CUB [41] test set. The
results for the vanilla and DNC methods are reported in the litera-
ture [43].

Method Backbone ‘ top-1 top-5
Vanilla ~ ResNet-50 84.48 96.31
DNC [43] ResNet-50 85.21 96.70
Proposed ResNet-50 | 85.44+0.25 96.91

Table 7. Segmentation mloU score (%) on CityScapes [ 2] valida-
tion set. The results for the vanilla and DNC methods are reported
in the literature [43].

Pretrain method ~ Backbone ‘ mloU

Vanilla ResNet-101 | 78.1 £0.12
DNC [43] ResNet-101 | 78.7+0.13
Proposed ResNet-101 | 79.0 +0.09

4.2. Coarse-to-fine experiment

As the classes become coarser, the intra-class distribu-
tions become increasingly complex. Thus, the feature distri-
butions are multimodal. Coarse-to-fine experiments, which
train the model using coarse-grained labels and evaluate
with fine-grained labels, can be conducted to measure the
performance on the multimodality.

We follow the experimental setup described in the lit-
erature [25] using CIFAR-100 and ImageNet. CIFAR-100
has 100 fine-grained categories and 20 coarse-grained cat-
egories (CIFAR-20). With the ImageNet dataset, as de-
scribed in the literature [25], we can acquire 127 coarse-
grained labels (ImageNet-127) from 1,000 fine-grained la-
bels via top-down clustering on WordNet tree [ 19]. We train
the ResNet under the conditions described in Sec. 4.1 us-

Table 8. Ablation experiment on CIFAR-100/20 [27] validation
set for the number of rows of orthonormal weight matrices (n).

CIFAR-100 CIFAR-20
n top-1 top-5 | 20 classes 100 classes

4 17992+0.13 95.56 | 87.20+0.12 70.12+0.10
7 | 80.31+0.14 95.56 | 87.31+0.26 70.74 £0.32

10 | 80.53+030 95.82 | 87.43+0.16 70.94 +0.07
13 | 80.08+0.22 95.55 | 87.27+0.13 71.13+0.32

Table 9. Ablation experiment on CIFAR-100/20 [27] validation
set for scaling parameter ().

CIFAR-100 CIFAR-20
K top-1 top-5 | 20 classes 100 classes
10 | 79.30+0.24 93.74 | 86.56+0.26 55.33+0.29
50 | 80.53+0.30 95.82 | 87.43+£0.16 70.94 +0.07
100 | 78.29+£0.23 94.93 | 87.08+0.16 69.33 +0.30

ing coarse-grained labels. To evaluate performance with the
fine-grained labels, we use the top-1 nearest neighbor accu-
racy with the cosine similarity using the features extracted
by the backbone network.

Main results. Tables 4 and 5 show the accuracy results
obtained with the coarse- and fine-grained labels on CIFAR-
20 and ImageNet-127, respectively. As can be seen, on
CIFAR-20, the proposed method outperforms the compared
methods by 2.24 points in accuracy with the fine-grained
labels, and it exceeded 2.34 points in terms of fine-grained
accuracy on ImageNet-127. Figure 3 shows t-SNE visu-
alization results on CIFAR-20 for the “large carnivores”
and “medium-sized mammals” classes, and Fig. 4 shows
the nearest neighbor examples of the CIFAR-20 training
images from the query test images. By comparing results
of the vanilla method in Fig. 3(a) with those of DNC in
Fig. 3(b), we see that DNC separates some classes, e.g.,
“leopard,” “fox,” and “skunk” from the other classes. How-
ever, the boundaries among the similar fine-grained classes,
e.g., “lion” and “tiger”, are not clear with DNC. In contrast,
as shown in Fig. 3(c), the proposed method obtains a larger
margin among the fine-grained categories without ground-
truth, fine-grained labels. This margin helps the proposed
method discriminate between “lion” and “tiger,” as shown
in the first and second rows in Fig. 4.

4.3. Transferability

We evaluate the transfer learning performance of the
proposed method by training pretrained ImageNet mod-
els on Caltech-UCSD Birds-200-2011 (CUB) [41] and
CityScapes [12]. We follow the experimental setup de-
scribed in the DNC literature [43]. For CUB, we train
the ResNet-50 model for 100 epochs with a resolution of
448 x 448 and a batch size of 64. We use the Riemannian
SGD optimizer with an initial learning rate of 0.01, momen-
tum of 0.9, and weight decay of 0.0005. The learning rate is
scheduled using a cosine annealing policy. For CityScapes,
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large carnivores

e bear

o leopard

e lion
tiger

o wolf

medium-sized mammals
o fox

e porcupine

® possum

[ ]

[ ]

racoon
skunk

(a) Vanilla (b) DNC

(c) Proposed

Figure 3. t-SNE [40] visualizations of features extracted from CIFAR-20 [27] images of “large carnivores” and “medium-sized mammals”
classes (first row). The second row extracts two sub-categories, i.e., “lion” and “tiger,” from the scatters plotted in the first row for better
visualization. The proposed method (c) constructed more compact clusters than the vanilla model (a) and DNC (b).

query top retrievals from DNC

top retrievals from the proposed model
il .j--: ‘.

Figure 4. Nearest neighbor images from the models trained on CIFAR-20 [27] and evaluated on the fine-grained labels. Correct and

.

incorrect retrievals are framed with green and orange grids, respectively. The query images are from “lion”, “tiger”, and “wolf” categories.

we train DeepLaby; [9] with ResNet-101 for 160K itera-
tions with a resolution of 769 x 769 and a batch size of
8. We use the Riemannian SGD optimizer with an initial
learning rate of 0.01, momentum of 0.9, and weight decay
of 0.0005. The learning rate is scheduled using a polyno-
mial annealing policy.

Main results. Tables 6 and 7 show the experimental re-
sults on CUB and CityScapes, respectively. As can be seen,
the proposed method outperforms both the vanilla method
and DNC, by 0.23 points (top-1 accuracy) and 0.21 points
(top-5 accuracy) on CUB, and by 0.3 points (mloU) on
CityScapes, which demonstrates that the proposed method
can realize higher transferability on both classification and
semantic segmentation tasks.

4.4. Ablation study

We conduct classification experiments on CIFAR-100
and coarse-to-fine experiments on CIFAR-20 with ResNet-
50 as ablation studies.

Orthonormal weight matrices’ dimension. Table 8
shows the effect of the number of rows of the orthonormal
weight matrices (n). We find that increasing n from 4 to 10
yielded accuracy improvements, but the accuracy is reduced
with n = 13. Although increasing n promotes representa-
tion ability for each class, setting a large n value causes a

conflict among the class subspaces spanned by the weight
matrices due to the finite embedding dimension d.

Scaling parameter. Table 9 studies the impact of the
scaling parameter k. As shown in Eq. (11), s controls the
similarity between the input feature and the linear combi-
nation of the rows of the weight matrix. The accuracy ob-
tained with x = 50 is more than 1.0 points higher than that
with £ = 10 and x = 100. These results imply that « has a
substantial influence on the accuracy of the model.

5. Conclusion

This paper proposed a classification method that consid-
ers the intra-class multimodal properties of data. The pro-
posed method utilized orthonormal matrices to relax cluster
assignments in the existing methods to continuous values.
This technique enabled us to train models using gradient-
based methods without the need for online clustering which
often leads to significant storage costs. Additionally, the
utilization of orthonormal matrices enabled us to capture
more refined representations through orthonormal compo-
nents. The proposed method was evaluated in an extensive
set of experiments, and results confirmed that the proposed
method improves both model accuracy and interpretability.

Acknowledgement: We would like to thank Denis Gu-
dovskiy for carefully proofreading the manuscript.
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