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Abstract

Monitoring Earth activity using data collected from mul-
tiple satellite imaging platforms in a unified way is a signif-
icant challenge, especially with large variability in image
resolution, spectral bands, and revisit rates. Further, the
availability of sensor data varies across time as new plat-
forms are launched. In this work, we introduce an adapt-
able framework and network architecture capable of pre-
dicting on subsets of the available platforms, bands, or
temporal ranges it was trained on. Our system, called
WATCH, is highly general and can be applied to a vari-
ety of geospatial tasks. In this work, we analyze the perfor-
mance of WATCH using the recent IARPA SMART public
dataset and metrics. We focus primarily on the problem
of broad area search for heavy construction sites. Experi-
ments validate the robustness of WATCH during inference
to limited sensor availability, as well the the ability to al-
ter inference-time spatial or temporal sampling. WATCH is
open source and available for use on this or other remote
sensing problems. Code and model weights are available
at: https://gitlab.kitware.com/computer-
vision/geowatch

1. Introduction

Satellite imagery from a variety of commercial and gov-
ernment sources has become increasingly available, imag-
ing the Earth’s land surface at multiple resolutions, spectral
bands, and various revisit rates with data collection span-
ning many years. The availability of such data opens up
new opportunities in Earth monitoring, where algorithms
can be trained to search through this enormous volume of
data to detect specific man-made or natural activities and
characterize the progression of those activities over time.
Examples include monitoring deforestation, measuring de-
struction from natural disasters or military conflicts, and
detecting construction or agricultural land use changes.
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Figure 1. Illustration of the IARPA SMART construction site
BAS problem and associated data. IARPA SMART [13] repre-
sents a challenging task as input images are sampled irregularly
across time and from a variety of possible sensors (top), and the
targeted construction events are sparse in both space and temporal
duration (bottom). Example construction sites vary significantly in
appearance both across sensors and as time progresses (middle).

Much of the current research in similar remote sensing
tasks is focused on training networks to operate on data from
a particular satellite platform, such as Landsat 8, Sentinel-2,
WorldView, or Planet Dove. Individual satellite platforms
have unique characteristics in terms of temporal collection,
spatial coverage, and spectral sensitivity. For example, Land-
sat 8&9 provide regular 16-day revisits but the highest reso-
lution color bands are 30m resolution. Sentinel-2 provides
several 10m resolution bands and more frequent 10-day re-
visits, but only provides coverage from 2016 onward. Mean-
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while, WorldView 2&3 can provide sub-meter resolution,
but with irregular and far less frequent revisits.

The advantage of working with a single platform (or
family of related platforms) is that the data is fairly homoge-
neous. Each image in a time sequence has a similar ground
sampling distance (GSD), spectral bands, and calibration,
which is ideal for temporal analysis. However, using only
imagery collected from a single platform limits temporal
coverage (Fig. 1). As an alternative, the inclusion of multiple
sources of data can provide complementary coverage for
regions of interest.

In this work, we build a system to address the challenges
posed in the IARPA SMART dataset and metrics [13]. This
dataset accompanies the IARPA Space-Based Machine Au-
tomated Recognition Technique (SMART) program, which
seeks to automatically detect, characterize, and monitor an-
thropogenic activity at a global scale using time-series im-
agery from multiple sensors. The SMART dataset includes
a dozen city-sized regions distributed around the globe that
contain heavy construction sites spanning from 2014–2021,
represented as temporal sequences of geo-spatial polygons.
In SMART terms, identifying the locations of these heavy
construction sites is referred to as broad area search (BAS),
while identifying the phase labels across time is called activ-
ity characterization (AC). Fig. 1 bottom shows an example
of a small region with BAS annotations at one point in time.

Our system to address the SMART challenge is
called WATCH (Wide-Area Terrestrial Change Hypercube).
WATCH contains a general framework and network archi-
tecture to solve both the BAS and AC problems using a
variety of imagery sources and derived features from those
sources. We limit the scope of this paper to the BAS task, to
freely available imagery sources (Landsat 8 and Sentinel-2),
and to a couple of derived features (Sec. 3.3.1). Landsat 8
and Sentinel-2 have sufficient variability in spatial resolu-
tion (30m and 10m, respectively) and temporal coverage
(See Fig. 1, top) to demonstrate the value of our approach.
WATCH uses a vision transformer with tokenization and
positional encoding separately across space, time, spectra,
and platform which allows our network to be trained and
evaluated on time series data from a mixture of platforms.
We formulate BAS as a binary classification task where our
method predicts per-image, per-pixel heatmaps representing
the likelihood of a construction site being present.

The WATCH framework, described in Sec. 3, is designed
to be robust at evaluation time to the availability of the sen-
sors upon which it was trained. This was implemented with
real-world situations in mind, including processing historical
data where only a subset of the trained sensors had yet to
be deployed, when sensor readings are sporadically unavail-
able due to inclement weather or technical malfunction, and
limited data availability due to cost or licensing. Our experi-
mental analysis in Sec. 4 demonstrates the value of training

a model to combine image sources as well the impact of
limiting the input imagery sources during inference.

2. Related Work
The increasing spatial and temporal availability of satel-

lite imagery presents a significant opportunity for large-scale
Earth monitoring. A fundamental task in this area is the
identification of landscape changes, either anthropogenic or
natural, directly from remotely sensed imagery captured at
different times (often referred to as change detection). A
large body of work has explored methods for solving this
task using time-series analysis [33–35] and more recently,
deep learning-based approaches have become standard prac-
tice [18, 23].

The canonical problem formulation for change detection
is the comparison of two points in time, often on the or-
der of years apart, using images sourced from the same
sensor [5, 11, 12, 19]. This existing work has typically been
limited to open data sources (e.g., Landsat) with well-defined
calibration and pre-processing steps to ensure consistency.
As Woodcock et al. [28] mention, supporting multi-sensor in-
puts “requires algorithms to account for differences between
sensors that can complicate the analysis.”

Discrepancies in visual characteristics across multiple
sensors have traditionally been addressed by harmonizing
the data sources before processing [3, 8, 14, 21]. The result
is a merged product that is radiometrically, spectrally, and
spatially consistent across sensors. The downside is that
only common spectral bands can be aligned and the imagery
is first downsampled to a common resolution. Other ap-
proaches ignore fusion and instead develop modality-specific
sub-modules [15,22]. To support the recent shift towards con-
tinuous Earth monitoring, novel approaches for multi-sensor
fusion are required [27].

Recently in traditional vision tasks, transformers net-
works [25] have arisen as a powerful way for combining
information across modalities. In remote sensing, transform-
ers have proven to be an effective way to learn feature
representations from multi-spectral and temporal satellite
data [9]. However, for the problem of monitoring and de-
tecting change in remote sensing data, these approaches are
generally concerned with pairs of images separated by some
number of years, and propose using an intermediate network
trained to blend information extracted from pairs of input
frames [4, 6, 20, 32]. Taking inspiration from video trans-
former networks [24], we develop a framework capable of
fusing information across space, time, spectra, and platform.

3. WATCH Overview
In this section, we present an overview of our proposed

WATCH system, which is purpose-built to make multi-task
predictions from geo-temporal input imagery sourced from
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Figure 2. Architectural overview. To construct an input batch, we sample a spatial region from multiple input images, which may be from
different sensors or contain different bands, resampled to a common resolution. Inputs are grouped by sensor / modality and passed through
a shallow tokenizing network that normalizes the feature dimension and adds positional embeddings representing space, time, sensor, and
mode. Tokens are processed by a sequence of multi-axial transformer encoders (right), then pooled across modalities to construct space/time
features, after which a final BAS prediction is made with an MLP head. The multi-axial transformer encoder applies multiple steps of
multi-head self-attention (MHSA) where tokens are first grouped such that attention is only applied to tokens that vary on a specific axis.

multiple sensor platforms. First, we detail our approach
for ingesting and tokenizing heterogeneous input imagery
(Sec. 3.1). Next, we provide an overview of the transformer
encoder that we use as the backbone of our model, including
the axis-separated attention scheme used and task-specific
heads of our model (Sec. 3.2). Finally, we cover relevant im-
plementation details, including multi-task losses, and more
(Sec. 3.3). For a visual overview of our proposed architecture,
please refer to Fig. 2.

3.1. Ingesting Heterogeneous Input Imagery

Our proposed system is designed to be flexible with re-
spect to the types, arrangement, and distribution of inputs
it makes predictions on. In particular, WATCH was built
to handle geo-referenced multi-spectral imagery sourced
from multiple satellite imaging platforms where each has
a unique combination of spectra, resolutions, revisit rates,
etc. In addition to multi-spectral imagery sources, our sys-
tem is designed to ingest other geo-spatial features, includ-
ing those estimated by other machine learning models, e.g.
self-supervised learning features, land cover categories [29],
material characteristics [1], etc.

We first convert input images into sequences of tokens,
with each token representing a windowed view of the in-
put image, along with encoded metadata about that token.
We employ a standard approach to tokenizing where reg-
ularly spaced patches, w ∈ RH×W×C , are extracted from
each image I , flattened, and projected to the target token
dimension, t ∈ RT , via a shallow MLP, f(w; Θ) 7→ RF ,
to produce the final token sequence representing the input
image {ti = f(wi,Θ),∀wi ∈ I}.

Modality-Specific Tokenization Our model is designed to
take inputs from a variety of sensors, specific treatments of

which we refer to as an image modality. Each input modality
differs in terms of which and how many spectra (bands) are
contained in each image, in addition to other differences
including sensor type, resolution, viewing angle, revisit rate,
and more. Additionally, other geo-spatial features are treated
as separate modalities. Due to the fundamental differences
between these modes, we train a separate tokenizing model
for each, with a distinct set of weights Θm, which translates
the visual or semantic content of each input to the shared
token space t ∈ RT . We also resample input images to have
a shared GSD and produce the same number of tokens per
modality; lower resolution inputs are upsampled.

Spatio-temporal Positional Encoding Each input token is
enriched with positional encodings representing xy-spatial
position, the temporal index, the temporal offset relative
to the first timestep, the sensor type, and the input band
combination. The spatial and temporal indexes use sinu-
soidal encodings [25], whereas the others are learned us-
ing 3 layer multi-layer perceptrons (MLP), each with a dif-
ferent input shape. The time delta from the first timestep
in seconds is given directly as input to its MLP. For the
sensor and channels, we hash representative strings and
convert those bytes to tensors, which are the inputs to
the encoding MLP. Each token is the concatenation of the
reprojected image patch and these 6 embedding vectors:
t = concat(f(wi,Θ), exy, etime, eindex, esensor, ebands).

3.2. Transformer Encoder Backbone

The backbone of our approach is a vision transformer
which takes a sequence of multi-modal geo-spatial tokens as
inputs and makes predictions for one or more tasks at each
input spatio-temporal location. First, the input tokens are
processed by our transformer model to predict a feature rep-
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resentation corresponding with each input token. To improve
model efficiency, tokens are attended to spatially, temporally,
and then across modalities. Next, we marginalize modalities
away through a max pooling step to predict a token at each
point in space-time. Finally, these tokens are passed to a
number of task-specific heads to make our final predictions.

Multi-axial Attention Scheme Input sequences to this
model can be particularly long, especially when processing
large numbers of time steps. Following work on transformer
video segmentation [2], we apply attention on a per-axis ba-
sis within each layer of our transformer backbone. Each input
sequence has four axes to consider: height, width, time, and
modality. As shown on the right of Fig. 2, we group height
and width together, and apply attention spatially, temporally,
then across modalities. This reduces the computational over-
head of attention from O(HWTM) to O(HW + T +M),
a significant savings.

Task-specific Output Heads We do not use a decoder in
our transformer. Instead we build a spatio-temporal feature
vector by max pooling the encoded tokens over modalities.
Each task head is an MLP that uses this feature as its input.

3.3. Implementation Details

We pretrain our model in a self-supervised manner, de-
scribed below. We finetune this pretrained model using the
IARPA SMART dataset, during which we optimize the focal
loss [17] for binary segmentation. WATCH is a 2M param-
eter model implemented in PyTorch and was trained on a
single NVIDIA Quadro RTX 6000 GPU for 80k iterations.
The model was fine-tuned with a batch size of 6 using the
AdamW optimizer and a OneCycle learning rate schedule
with a 4k step learning rate warmup from 3e−6 to 3e−4,
annealing down to 5e−9.

ad hoc Curriculum Learning As this project evolved and
additional sources of imagery, labels, and imagery-derived
features became available we found it useful to iteratively
finetune from the previous best version of WATCH. At dif-
ferent times we varied the number of input channels for each
sensor (S2, L8), typically RGB, RGB+NIR, or full spectrum,
a choice we ensured was always consistent across sensors.
Making this change necessitated resetting the weights of
the tokenizing heads while keeping the main transformer
weights from the previous run, and we hypothesize that do-
ing so may have acted as a form of regularization.

3.3.1 Additional Feature Inputs

WATCH is designed to take input from multiple sensor plat-
forms and modalities, including specialized features derived
from input imagery. Here we present two such derived fea-
tures: landcover/land-use categories, and a self-supervised
(SSL) feature, both computed on Sentinel-2 imagery.

Table 1. IARPA SMART - Observations per sensor over time.
Sentinel-2A and -2B came online in late 2016 and 2017 respectively,
and thus there are no/few S2 observations before those dates.

2014 2015 2016 2017 2018 2019 2020 2021

L8 262 236 261 385 462 444 414 298
S2 0 0 21 813 1549 1555 1545 626

TOT 262 236 282 1198 2011 1999 1959 924

Semantic Landcover Features We extract semantic fea-
tures from a given image in the form of a per-pixel land cover
labeling. For our segmentation network, we use a variant
of UNet with a ResNet-18 backbone as in [29]. For the ex-
periments, we train our network using Sentinel-2 composite
images. Specifically, we created a global dataset comprising
monthly cloud-free composite images over approximately
300 metropolitan areas. As the source of supervision, we
align images with land cover annotations from ESA World-
Cover [31].

Self-Supervised Learning Features We use a multi-task
self-supervised learning (SSL) approach to learn to extract
useful features for change detection. We use three tasks:
augmentation invariance, temporal invariance, and a novel
pixel-wise temporal ordering task. We use an attention-based
U-Net architecture as the backbone to recognize features that
indicate the progression of time in pairs of satellite images.
Image pairs are given to the network in random order and
predictions are made on a pixel-level basis. The use of pixel-
level predictions allows the network to focus on fine-grained
detail such as building construction instead of providing an
overall estimate based on aggregated features. Along with
the pixel level order prediction, we use also use two other
tasks, 1) contrastive training with augmented images and 2)
contrastive training with spatially non-aligned images [7,16].
Overall, we introduce a multi-task learning framework with a
novel pretext task that learns spatio-temporally rich features
for change detection. For the experiments, the SSL networks
are trained using Sentinel-2 imagery. The SSL networks are
frozen during the downstream task training.

3.3.2 Time Sampling Scheme

Given a single frame and spatial location we sample addi-
tional frames to loosely match a requested distance between
frames. Because we do not control the revisit rate or number
of images per-year per-sensor (Tab. 1), we first construct
an idealized sampling distribution which is a mixture of
gaussians centered over the requested spacing. At train time
this is chosen randomly according to this distribution. At
test time we greedily choose the observation with maximum
probability. This process is illustrated in Fig. 3. For the ex-
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Table 2. Per-region metric breakdown on SMART. We present metrics for each of the labeled regions in SMART, for the three WATCH
models we produced: one of which was trained following our ad hoc strategy (Sec. 3.3), one which was trained from scratch using all
available L8/S2 imagery and derived features, and one trained from scratch, on only L8/S2 imagery. We also present the mean over all
regions (OVR) for each model/metric. The best OVR results are printed in bold, second-best are underlined. All scores are expressed as
percentages.

Region AE BH BR CH KR LT NZ PE US OVR
1 2 4 5 1 2 1 4 5 6 7

ad
ho

c

F1 62.6 71.0 39.2 66.7 23.1 31.2 52.4 52.2 45.6 66.7 42.3 0.0 51.4 58.7 42.1 20.0 7.6 43.1
FFPA 5.9 11.5 5.5 0.5 5.4 1.6 1.4 1.6 0.6 1.7 2.4 0.4 1.0 0.7 1.4 0.6 1.1 2.5

AP 50.3 28.8 78.6 56.7 82.1 48.7 44.8 28.6 28.4 50.3 38.2 3.3 61.2 53.1 74.0 11.9 19.6 44.6
AUC 98.3 96.4 97.9 99.7 99.1 99.2 97.9 96.6 91.8 98.4 97.9 97.8 98.8 98.7 99.4 99.0 99.7 98.0

sc
ra

tc
h

F1 52.4 48.0 31.0 50.0 15.2 26.7 50.0 58.8 41.4 46.6 35.1 0.0 49.4 45.6 38.1 11.3 12.3 36.0
FFPA 5.9 6.1 4.3 0.6 5.4 1.8 0.9 0.3 0.6 1.5 4.2 0.0 1.2 1.7 3.7 2.7 2.0 2.5

AP 13.5 41.7 73.8 39.3 66.1 20.9 35.5 27.9 14.8 37.1 50.5 12.1 44.6 18.5 57.1 1.9 7.3 33.1
AUC 89.4 96.0 97.5 99.6 98.0 98.4 97.1 96.3 90.4 97.3 97.9 98.4 96.8 96.8 99.0 98.1 98.2 96.8

sc
r.

S2
/L

8 F1 5.2 49.3 39.3 75.0 14.3 18.7 44.2 50.0 50.0 43.5 23.1 0.0 29.0 19.3 38.7 6.6 12.3 30.5
FFPA 0.6 8.7 3.4 0.2 4.6 4.1 1.2 2.0 2.4 1.5 2.0 0.2 1.0 1.9 2.1 4.2 2.3 2.5

AP 4.7 20.4 47.0 22.2 19.4 7.2 31.4 11.6 24.3 26.3 14.0 1.1 10.6 6.2 40.6 0.6 1.6 17.0
AUC 74.3 90.5 92.3 98.7 89.1 96.4 95.7 93.3 90.1 95.6 95.0 93.6 92.7 90.5 98.6 92.9 96.9 92.7

Figure 3. Time sampling strategy. Given a central frame we
sample additional frames according to a chosen idealized spacing
(shown in green). At train time we sample available observations
according to a distribution centered at each ideal offset. At test
time, we choose the observation that maximizes probability for
each offset.

periments in this paper we choose a uniform time span 11
frames distributed ±3 years.

4. Experiments

We evaluate the predictive ability of our proposed
WATCH model. Overall, we find that WATCH is flexible
and performs well despite variations in the input it is pro-
vided. Our experimentation is focused on the recently re-
leased IARPA SMART heavy construction dataset (Sec. 4.1).
When making predictions on a restricted set of sensors, per-
formance degrades gracefully (Sec. 4.2). At prediction time,
increasing the number of time steps provided to the model

increases performance up to a point (Sec. 4.3). Next, we
evaluate WATCH for its applicability and adaptability to the
Onera Satellite Change Detection dataset (Sec. 4.4). Finally,
we present some of our findings on the impact that vari-
ous design decisions have on the models final performance
(Sec. 4.5).

4.1. IARPA SMART Dataset

We train and evaluate our models using the IARPA
SMART dataset [13], which seeks to automatically detect,
characterize, and monitor anthropogenic activity at a global
scale using time-series imagery from multiple sensors. The
SMART dataset includes a dozen city-sized regions dis-
tributed around the globe that contain heavy construction
sites, with each region containing up to 200 identified sites
spanning from 2014–2022. Annotations identify both the
spatial and temporal bounds of each site and are represented
as temporal sequences of geo-spatial polygons. We formulate
BAS as a binary classification task and our method outputs
per-image, per-pixel heatmaps representing the likelihood
of a construction site. Individual heatmaps are aggregated
across time to generate site predictions.

As input to our method, we use publicly available Land-
sat 8 and Sentinel-2 imagery. While Landsat 8 covers the
full temporal extent of the SMART dataset, it is compar-
atively low resolution, i.e. the smallest sites are around
8000m2 or 9x9 pixels. To increase both the temporal fre-
quency and available detail for the 2016–2022 period we
include Sentinel-2 imagery, which has a higher revisit rate
than Landsat 8 and approx. 9x resolution. For a full break-
down, see Tab. 1.
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Figure 4. Sample WATCH inputs and outputs. Examples of our ad hoc WATCH models site predictions are shown as black contours for
three IARPA SMART regions, as well as three time-averaged Sentinel-2 images used as input. Green filled regions are annotated as true
construction, red are annotated explicit negatives, pink are ambiguous regions ignored in scoring. Predictions best viewed zoomed in.

Table 3. Prediction with restricted sensors. We report test-set polygon- and pixel-based metrics for our ad hoc-trained SMART site
detection (BAS) model evaluated with varying sensor availability. We also compare two baseline models, one trained from scratch using all
available data (S2, L8, and extra features), the other also from scratch but trained on S2/L8 only. Due to the SMART dataset including years
that precede the Sentinel-2 launches, we compare modality subsets with and without Landsat 8 separately. Similarly, since the SSL and
Landcover features are based on Sentinel-2 imagery, we only consider them when the source is available. Best results in each column (with
and without Landsat 8) are printed in bold, second-best are underlined. All scores are expressed as percentages.

ad hoc scratch scratch, S2/L8 only
L8 S2 SSL LC F1 FFPA AP AUC F1 FFPA AP AUC F1 FFPA AP AUC

47.25 2.07 46.97 96.83 44.50 1.88 41.07 95.99
(invalid)48.15 1.25 49.07 97.03 31.02 1.57 18.09 89.24

46.02 1.84 41.15 95.58 41.18 3.04 32.19 94.90
43.22 1.00 35.94 94.57 37.16 1.76 21.26 92.07 38.19 2.02 22.83 93.09
37.59 1.12 31.56 94.10 35.80 1.78 21.13 91.62 34.73 2.57 20.58 91.06

34.63 2.64 38.16 95.29 40.01 1.10 38.10 94.86
(invalid)41.28 1.95 40.30 95.33 18.37 1.23 5.40 76.12

37.92 2.53 31.33 94.17 36.80 1.46 26.66 93.02
33.96 1.50 25.32 91.44 34.78 0.86 12.73 85.78 33.38 0.79 14.63 88.26

A common method for removing nuisance information,
i.e. cloud, shadows, and specularities, in optical remote sens-
ing imagery is to merge imagery within a temporal window
using mean or median operations [30]. Given a sequence of
images for a region X = x0 . . . xN and a temporal window
duration t, images within the same temporal window are
combined to form an composite image xtk

agg = φ(xj), j ⊂ t.
The sequence of composite images are then passed to the
model during inference. For our experiments, we use a tem-
poral window of t = 1y.

Polygon Estimation & Metrics The SMART evaluation
framework [13] requires predictions in the form of a series
of geo-spatial polygons in order to associate detected sites
across images in a time series. To convert the output of our
approach (per-image heatmaps) to polygons representing the
spatial and temporal extents of a construction site we use a
very simple process. We average predictions over the entire
temporal range, threshold averaged heatmaps, trace contours
to form polygons, and then connect spatially overlapping
polygons across time.
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For BAS evaluations we consider two classes of metrics:
pixel-wise metrics and polygon metrics. For the pixel-wise
metrics, we use two standard segmentation metrics applied
to the aggregated heatmaps: average precision (AP), area
under the receiver operating characteristic curve (AUC). We
compute two additional metrics using the IARPA SMART
evaluation framework: F1 Score, and Fractional False Posi-
tive Area (FFPA). FFPA corresponds to the portion of each
search region covered by polygons which are false positives.
For additional details on how these metrics are computed,
please refer to [13].

We present our main findings in Tab. 2, where for each
region in IARPA SMART we evaluate three different models
for each of the metrics described above. We also present
example outputs of the ad hoc model over three sample
regions in Fig. 4. The three models we focus on are the ad
hoc trained model, a from scratch model trained on all four
input modalities, and a from scratch model trained only on
Sentinel-2 and Landsat 8 imagery. What we found is that
overall the ad hoc model performs best or tied for best on all
four metrics, indicating the importance of additional training
cycles and the curriculum learning aspect. Between the two
from scratch models, the addition of features derived from
Sentinel-2 imagery (LC and SSL) demonstrate a significant
improvement in all metrics, especially F1.

4.2. Predicting with Sensor Restrictions

WATCH is designed to be flexible in terms of processing
heterogeneous data during both training and evaluation. To
analyze the ability of WATCH to make predictions given
limited data availability, we simulate settings where entire
sensors and/or upstream feature sources are unavailable dur-
ing evaluation. This scenario could arise for many reasons,
including imagery from a specific sensor being unavailable
at a given location/time, or technical malfunctions.

In Tab. 3 we analyze site detection performance as vari-
ous input sources are withheld, and we conduct this analysis
across all three of the models from Tab. 2. The full-data
setting, shown in the top row, is trained using Sentinel-2
(S2), Landsat 8 (L8), invariant features from self-supervised
learning (SSL), and semantic landcover features (LC). The
subsequent rows show how this model can be adapted at
inference to support missing data modalities. Generally, per-
formance degrades gracefully as modalities are withheld. For
example, when SSL features are unavailable to the scratch
model, F1 performances drops slightly from 44.50 to 41.18.
Due to the nature of training the ad hoc model, we find it
performs best without landcover features; we hypothesize
that this is due the significantly larger number of training
cycles that the model had with SSL features.

We also find that the inclusion of additional features dur-
ing training makes the scratch model more robust to missing
inputs than the scratch with L8/S2 only model. When con-

Figure 5. SMART metrics with variable number of time steps.
We report polygon- and pixel-based metrics for our ad hoc WATCH
model evaluated with a varying number of time steps. Times are
sampled such that spacing between each step is approximately even
given a fixed window of 6 years. Our model is trained with 11 time
steps, indicated by the vertical dashed line in each plot.

sidering the imagery only settings (from L8/S2 to L8-only
and S2-only), scratch sees a −1.36 and −2.38 change in
F1 respectively, while the S2/L8 only model sees −3.46 and
−4.81. These results highlight a real-world benefit of our
approach, training on a variety of input modalities, and ro-
bustness to those modalities being missing at inference time.

4.3. Varying Time Steps

We report polygon- and pixel-based site detection met-
rics for the ad hoc model evaluated with varying numbers
of provided time steps. For each setting, times are sampled
such that spacing between each step is approximately even
given a fixed window of ±3 years. In Fig. 5 we find that
model performance is generally stable between 5 and 15
timesteps. Interestingly, despite the model being trained us-
ing 11 timesteps per example, FFPA gradually improves as
the number of timesteps approaches 5 without negatively
affecting F1 or pixel metrics.

4.4. Onera Satellite Change Detection Dataset

While not trained with adaptability in mind, WATCH is a
flexible system trained for a version of the remote sensing
change detection task. In this section, we evaluate WATCH’s
ability to detect change in other settings, both naively with-
out and with finetuning. A commonly used benchmark in
this space is the Onera Satellite Change Detection (OSCD)
dataset [11], which features pairs of Sentinel-2 images sam-
pled several years apart over 24 major cities from across
the world. Accompanying these imagery pairs are change
masks indicating change from timestep 1 to 2, including con-
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Table 4. Binary change detection results on OSCD. We compare
WATCH with and without finetuning against existing work on this
dataset. All scores are computed per-pixel and expressed as %.

3-chan. 13
Method Acc./F1 Acc./F1

Siam. [10, 11] 76.76 / 33.85 85.37 / 37.69
EF [10, 11] 83.63 / 34.15 88.15 / 42.48
FC-EF [10] 94.23 / 48.89 96.05 / 56.91
FC-Siam-conc [10] 94.07 / 45.20 93.68 / 51.36
FC-Siam-diff [10] 94.86 / 48.86 95.68 / 57.92
DINO-MC RN-50 [26] — / 52.46 —

WATCH (ours) 95.01 / 8.25 —
WATCH (ours), f.tuned 95.14 / 43.17 95.47 / 46.70

struction/demolition of buildings and roads, and major earth
moving projects. The results of both of our OSCD experi-
ments are presented in Tab. 4. A key difference in metrics is
that OSCD is scored pixel-wise, i.e. each pixel contributes
equally to the final scores. In contrast, SMART is scored
such that each site contributes equally regardless of size.

Given that WATCH is trained to detect a subset of the
changes covered by OSCD, we first apply WATCH naively
with no finetuning. WATCH is a multi-task model, featur-
ing a “saliency” head indicating the presence of a relevant
construction phase in any given timestep. To predict change
labels, we average the saliency prediction and select a thresh-
old which maximizes F1 on the training split. We find that
WATCH without finetuning performs reasonably well, with
an accuracy of 95.01 and F1 of 8.25, which can be attributed
to high precision but lower recall as WATCH was trained to
identify only a subset of OSCD’s change categories.

Next, we finetune WATCH for OSCD. We train WATCH
for 10k steps, updating the ad hoc model following a 10k
step OneCycle learning rate schedule with a 3k step learn-
ing rate warmup from 2e−6 to 5e−5, annealing down to
5e−9. Here we find that with a small amount of finetuning,
WATCH’s scores on OSCD increase to 95.14 Acc and 43.17
F1, showing that it can adapt and perform on par with all but
the most recent OSCD approaches.

4.5. Ablation

Due to the quantity of tokens required to represent the
full multi-modal spatio-temporal sequence of images, from
the outset we sought more efficient transformer models and
settled on a method inspired by video segmentation [2]. In
Tab. 5, we show the results of a simple ablation study fo-
cused on the impact of using a baseline transformer model
vs. our proposed “multi-axial” attention model, as well as
the inclusion (or not) of additional input features. In order
to make the largest of these models fit on a single GPU, we
reduce the number of time steps to 7 and the batch size to 1,

Table 5. Comparing baseline and multi-axial attention models
on IARPA SMART. Training with multi-axial attention signifi-
cantly reduces the overall memory footprint of our model while also
boosting performance on the F1 metric. “multi-axial*” indicates
our proposed multi-axial attention approach presented in Tab. 3,
specifically the top performing “scratch“ and “scratch (L8/S2 only)”
settings.

Model Feats Mem. F1 FFPA AP AUC

baseline 24GB 17.36 0.67 22.54 92.62
baseline 8GB 19.66 1.26 18.10 90.99

multi-axial 8GB 39.44 1.25 48.56 96.63
multi-axial 4GB 38.09 1.42 39.59 96.10

multi-axial* 24GB 44.50 1.88 41.07 95.99
multi-axial* 16GB 38.19 2.02 22.83 93.09

all other settings held the same and trained from scratch. We
found that in general the baseline performed much worse and
at a higher memory expense than the multi-axial attention
model we use in the WATCH system. The reduced memory
footprint of the multi-axial attention model enables process-
ing a larger temporal sequence which provides a boost to the
F1 polygon scores as well, from 39.44 F1 to 44.50.

Resources When running our experiments we track the du-
ration of each step. For heatmap prediction we use codecar-
bon (github.com/mlco2/codecarbon) to estimate
the carbon footprint. Over the course of WATCH’s develop-
ment, there were more than 1200 unique heatmap prediction
steps which took 7.25 days and 11.3 kg of CO2. The poly-
gon prediction and evaluation step had their duration but not
their carbon footprint measured. There were 14,221 polygon
prediction steps, which took 7.66 days. The corresponding
evaluation step took 30.5 days.

5. Discussion and Conclusion

We introduced the WATCH system, which includes a
flexible neural network architecture for broad-area change
detection. Through extensive experiments on a large-scale
evaluation dataset, we demonstrated that it is capable of ex-
ploiting images captured by different satellites, with different
numbers of channels, spatial resolutions, and revisit times.
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