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Abstract

The goal of automatic report generation is to gener-
ate a clinically accurate and coherent phrase from a sin-
gle given X-ray image, which could alleviate the workload
of traditional radiology reporting. However, in a real-
world scenario, radiologists frequently face the challenge
of producing extensive reports derived from numerous med-
ical images, thereby medical report generation from multi-
image perspective is needed. In this paper, we propose the
Complex Organ Mask Guided (termed as COMG) report
generation model, which incorporates masks from multiple
organs (e.g., bones, lungs, heart, and mediastinum), to pro-
vide more detailed information and guide the model’s atten-
tion to these crucial body regions. Specifically, we leverage
prior knowledge of the disease corresponding to each organ
in the fusion process to enhance the disease identification
phase during the report generation process. Additionally,
cosine similarity loss is introduced as target function to en-
sure the convergence of cross-modal consistency and facil-
itate model optimization. Experimental results on two pub-
lic datasets show that COMG achieves a 11.4% and 9.7%
improvement in terms of BLEU@4 scores over the SOTA
model KiUT on IU-Xray and MIMIC, respectively. The
code is publicly available at https://github.com/
GaryGuTC/COMG_model.

1. Introduction
Radiology image analysis plays a pivotal role in disease

detection [40]. In clinical practice, it is time-consuming,
costly, and error-prone for radiologists to review numerous
radiology images and generate the corresponding reports
for further analysis. To mitigate this challenge, there has
been a growing interest in exploring automated radiology
report generation (RRG) techniques [26, 31, 38]. Recently,
deep learning methods have been widely explored to gener-
ate a textual analysis for given images (e.g., image caption-
ing) [1, 7, 44]. However, RRG differs from the standard im-
age caption task and is more complex and challenging [39].
Radiology images focus on some specific regions related
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Figure 1. Top: the above section display the relationship between
the mask images and the captions, that includes findings related to
bone (green), lung (yellow), and mediastinum (red). Bottom: the
below section illustrates the basic structure of the COMG model.
Best viewed by zooming in.

to the disease, which account for only a small fraction of
the entire image [21]. The main difference between radio-
graphs is the specific area associated with the disease. Such
challenges also remain in the text descriptions for RRG, i.e.,
the differences are mainly from the analysis of the diseases,
while the descriptions for the normal tissues are similar.

Several RRG techniques have been proposed to solve the
challenges from various perspectives and achieve appealing
performance. Specifically, [5,6,30,39] have been developed
by improving the encoder-decoder structure and enhancing
the feature fusion across different modalities. By incorpo-
rating prior knowledge from auxiliary resources, such as the
region detection prediction, and retrieval of textual informa-
tion, [21, 35, 36] are proposed to further enhance the report
generation via the comprehensive knowledge. Despite their
outstanding performance, none of these methods consider
the pixel-level information for the specific tissues. As in-
dicated in [32], the pixel-level segmentation masks for the
tissues are also critical for further analysis in radiology im-
ages, which reflects the semantic correlations of the tissue,
as indicated in Fig. 1. For example, the masks can indi-
cate the size and shape of the tissue, as well as their spa-
tial distributions, which are related to the recognition and

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7995



understanding of diseases [10]. Since such critical infor-
mation has not been considered for RRG, existing methods
are suboptimal by missing such pixel-level semantic tissue
correlations for radiology images.

In this work, we propose a Complex Organ Mask
Guided (COMG) framework for radiology report genera-
tion which considers the dense pixel-level information of
X-ray images. Specifically, pre-trained segmentation mod-
els (e.g., CXAS [32]) are employed to extract segmentation
masks for key tissues correlated to the disease diagnosis in
the generated reports (e.g., heart, bones, etc.), as indicated
in Fig. 1. The mask information provides the model with
local-level semantic information on the organs/tissues dur-
ing report generation, including the morphological struc-
tures of specific tissues, and the spatial relationships among
different tissues. Then, the feature prototypes are extracted
according to the masks for different organs. In addition,
we further incorporate the disease keywords associated with
each specific tissue as text-level guidance, whose feature
embeddings are fused with the feature prototypes to further
enhance the understanding of the correlations between each
specific tissue and the corresponding disease during the re-
port generation learning. Finally, cross-modal consistency
mechanisms are developed to facilitate feature extraction at
the vision and language levels by inducing their similarities.

Our contributions can be summarized as follows: 1) We
propose to improve the report generation by enhancing the
understanding of the semantic correlations of the tissues in
the radiology images via mask information; 2) We introduce
the disease keywords associated with each tissue as the text-
level prior knowledge to further enhance the tissue feature
learning; 3) To facilitate the feature extractions for the im-
age and text, two cross-modal consistency mechanisms are
developed; 4) Our proposed COMG method is indicated to
be effective by achieving outstanding performance on two
public medical report generation benchmarks.

2. Related Works

2.1. Image Caption

Image caption tasks aim to generate text descriptions
based on the input images. Early works [3, 19, 26, 28] are
developed based on the Long Short-Term Memory (LSTM)
model [13] and the Convolutional Neural Network (CNN)
model [27]. Recently, the transformer models based on the
attention module [37] have been widely employed due to
their outstanding ability to process the vision and language
features [7, 11, 28, 41]. Despite the appealing performance
of these methods in general image caption benchmarks,
their applicability is limited for radiology report generation,
which is challenging due to the data bias between the nor-
mal and disease tissues at the image and text levels [41].

2.2. Radiology Report Generation

In recent years, several deep learning-based methods
have been proposed for radiology report generation, which
can be mainly categorized into two types: 1) improving the
model structure [2,5,6,30,43], and 2) incorporating external
modality information [21, 35, 36].

CDGPT2 [2] proposes to fuse visual and semantic fea-
tures by concatenating them into a multi-modal decoder.
AlignTransformer [45] proposed to use the multi-grained
transformer (MGT) to improve multi-modal features fusion.
In addition, R2Gen [6] and R2GenCMN [5] models are
developed to enhance the model structure for filtering and
fusing image and caption information separately using the
LSTM [13] and CMN modules. R2GenCMM-RL [30] fur-
ther improves the R2GenCMN via reinforcement learning.
XproNet [39] model proposed to initialize the models via
prototype matrix initialization, and a multi-label contrastive
loss function to guide the optimization process.

Additionally, some works have started to explore lever-
aging external information to facilitate the report generation
process. The RepsNet model [36] utilizes external informa-
tion from a pre-trained VQA model on the VQA-radiology
dataset [18]. It proposes to integrate the features for the an-
swer information from the VQA model with image features
for accurate report generation. The RGRG model [35] is
developed to first utilize the bounding boxes to detect ab-
normal regions in the image. Then, some suitable detected
areas are chosen for report generation, instead of using the
entire image. The DCL model [21] integrates information
from a pre-constructed knowledge graph that contains cor-
relations between caption words. Such information is fur-
ther processed by a dynamic graph encoder and then com-
bined with the image features using a blip-like structure [20]
to generate accurate reports via the comprehensive under-
standing of the disease words. In this work, we propose to
incorporate a new type of external knowledge, which is the
segmentation masks for the key issues related to the disease
mentioned in the text analysis. To the best knowledge, we
are making an early attempt to improve the RRG tasks via
the pixel-level semantic knowledge for the tissues in the ra-
diology images.

3. COMG

The overview of our proposed Complex Organ Mask
Guided (COMG) method is shown in Fig. 2. Our method
is established on the R2GenCMN model [5], which is con-
structed by an encoder-decoder structure using the trans-
former model [37] and multi-modal feature fusion mecha-
nism. Our main contributions include the Mask-guided Or-
gan Prototype Feature Extraction mechanism (Sec. 3.1), the
Cross-modal Correlation Studies between the Tissues and
the Diseases (Sec. 3.2), and the Multi-modal Feature Fusion
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Figure 2. The overall architecture of our proposed COMG model. The DImF represents the fusion mechanisms between the embeddings
for the prior-disease captions and the mask-guided prototype features, with details shown in Fig. 3, and CmC is the cross-modal consistency.
Finally, the encoder-decoder structure generates the report. More detailed information is provided in Sec. 3.

and Consistency Mechanisms (Sec. 3.3).

3.1. Mask-guided Organ Prototype Feature Extrac-
tion

Due to most diseases existing on the body organs, the
pixel-level mask information provided will help the model
to particularly recognize these key areas [34]. To this end,
we use the pre-trained CXAS model [32], which was trained
on the PAX-RAY++ segmentation dataset [33]. By inferring
the model on each X-ray image, it generates segmentation
masks for various organs, including the heart, ribs, lung,
and mediastinum (more specific information about masks
is shown in the Supplementary Material). However, it’s
noteworthy that the COMG model is evaluated on two pub-
lic benchmarks (IU-Xray, MIMIC-CXR), and the diseases
mentioned in the reports are mainly related to four organs:
bone, lung, heart, and mediastinum. Therefore, only partial
masks belonging to these categories for each image will be
employed. Since some organs are only related to limited
types of disease, extracting the pixel-level masks for each
organ and employing them for further analysis separately
can induce the model to learn the correct correlations be-

tween the organs and disease, while ignoring negative pair-
ing relationships.

After obtaining the masks for the key organs, we propose
to extract the prototype features for each organ. The overall
process is indicated in Fig. 2 and:

Pog = Rref (FLow ⊙Mog), (1)

where og ∈ {Bone, Lung,Heart,Mediastinum}.
Specifically, the input images first pass through a ResNet
101 feature extractor for the intermediate features FLow,
and the final features FHigh. Next, the resized FLow is
multiplied pointwise by the masks pre-extracted from each
organ category (Mog). These multiplied features further
pass through a ResNet18 (Rref ) for refinement to obtain
the prototype features for the four key tissues. Based on the
segmentation masks, these features contain semantic infor-
mation for different key organs related to report generation
(i.e., organ shapes and spatial relationships).
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dition,

⊕
means concatenation and Compress is the feature di-

mension compression. More specific information is provided in
Sec. 3.2.

3.2. Cross-modal Correlation Studies between the
Tissues and the Diseases

To accurately distinguish between diseases and normal
cases, we combine the prototype features of each organ with
the features from the keywords for the related diseases. The
process is illustrated in Fig. 3. Referring to the disease
symptom graph [14] (more details in the Supplementary
Material), we can obtain the corresponding prior disease
captions related to each organ. Note that these captions are
based on the predefined knowledge graph and do not related
to the report annotations of the images. Fig. 2 and Fig. 3,
the correlation token for each organ (Tokog) is calculated
via:

Tokog = CA
(
SA(Pog), log, log

)
. (2)

Specifically, the prototype features for each organ (Pog in
Eq. 1) first pass through a self-attention SA layer. Next,
the prior captions for each disease pass through transformer
encoders for disease keyword embeddings. Within each or-
gan type, the processed prototype features and the prior-
disease caption embeddings log are fused via cross-attention
mechanisms CA(Q,K, V ) to obtain the cross-modal cor-
relation tokens Tokog for the organ and its corresponding
diseases. Specifically, the processed class-wise prototype
features SA(Pog) are employed as the query, while the cor-
responding prior-disease caption embeddings log as the key
and values. In addition, four (one for each tissue class)
learnable parameters are developed to re-weight the impor-
tance of each cross-modal correlation token Tokog . The to-

kens Tokog from four organs are fused together according
to these learnable parameters for a global correlation token
Tokglb.

3.3. Multi-modal Feature Fusion and Consistency

Multi-modal Feature Fusion. To facilitate the report
generation learning via the comprehensive information
aforementioned, we propose to fuse the global-level fea-
tures directly extracted from the input images with the
multi-modal features from the DImF module. As indi-
cated in Fig. 2, the output of the DImF module Tokglb
is firstly reshaped and concated with each Organ Prototype
Feature Pog . These concated features are employed as the
key and value for the multi-head cross-attention layer, while
the global-level image features Fhigh are the query. Such
fused features contain knowledge from multiple perspec-
tives, including the dense mask for key tissues, the text de-
scriptions for the diseases, and the global-level features for
the whole images. By passing them jointly with the em-
beddings for the extracted disease keywords from the report
to transformer-based decoders, the quality of the generated
report can be further improved.

Cross-modal Consistency. To further facilitate the fea-
ture extraction process under multiple modalities, we pro-
pose cross-modal consistency mechanisms (CmC module
in Fig. 2). First, we propose to maximize the similarity be-
tween the embeddings of the input captions lIC and the
mask-guided organ prototype feature Pog (obtained from
Sec. 3.1). According to the analysis of existing RRG meth-
ods [6, 35], the analysis in the reports is correlated to the
specific regions and tissues in the radiology images. To this
end, under the ideal feature extraction scenario, the organ
prototype features should be dependent on the report de-
scriptions. In addition, we also induce the similarity learn-
ing between the feature embeddings for the extracted dis-
ease for each image (lEC), and the cross-modal correlation
tokens (Tokog from Sec. 3.2). For the cross-modal correla-
tion tokens containing the text-level information regarding
the diseases based on prior knowledge and the image-level
information based on masks, their similarity with the dis-
ease keywords extracted from the ground truth should be
maximized. It is because, under the optimal situation, the
features for the multimodal tokens and the text keywords are
both about the high-level characteristics of the diseases. For
each similarity learning process, the two features are firstly
resized into the same scale, then the cosine similarity loss
(Lsim) [17] is utilized to enlarge their similarities. Specifi-
cally, the Lsim is defined as Lsim(a, b) = 1− aT b

||a|| ||b|| .

3.4. Training and Inference Details

The COMG model is optimized in two stages. The over-
all loss function LT1 for the first stage is three folds, defined
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Datase Methods YEAR BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGEL

IU-Xray

R2Gen [6] 2020 0.470 0.304 0.219 0.165 0.187 0.371
SEBTSAT+KG [47] 2020 0.441 0.291 0.203 0.147 - 0.304

PPKED [25] 2021 0.483 0.315 0.224 0.168 0.190 0.376
CMCL [24] 2022 0.473 0.305 0.217 0.162 0.186 0.378

JPG [46] 2022 0.479 0.319 0.222 0.174 0.193 0.377
CMM+RL [30] 2022 0.475 0.309 0.222 0.170 0.191 0.375

KiUT [14] 2023 0.525 0.360 0.251 0.185 0.242 0.409
METransformer [41] 2023 0.483 0.322 0.228 0.172 0.192 0.380

DCL [21] 2023 - - - 0.163 0.193 0.383
R2GenCMN∗† [5] 2022 0.470 0.304 0.222 0.170 0.191 0.358

COMG Ours 0.482 0.316 0.233 0.184 0.198 0.382
COMG + RL(Ours) Ours 0.536 0.378 0.275 0.206 0.218 0.383

MIMIC-CXR

M2Transformer [8] 2020 0.332 0.210 0.142 0.101 0.134 0.264
R2Gen [6] 2020 0.353 0.218 0.145 0.103 0.142 0.277

PPKED [25] 2021 0.360 0.224 0.149 0.106 0.149 0.284
CMCL [24] 2022 0.344 0.217 0.140 0.097 0.133 0.281

CMM+RL [30] 2022 0.353 0.218 0.148 0.106 0.142 0.278
UAR [22] 2023 0.363 0.229 0.158 0.107 0.157 0.289
KiUT [14] 2023 0.393 0.243 0.159 0.113 0.160 0.285
DCL [21] 2023 - - - 0.109 0.150 0.284

R2GenCMN∗† [5] 2022 0.348 0.206 0.135 0.094 0.136 0.266
COMG Ours 0.346 0.216 0.145 0.104 0.137 0.279

COMG + RL(Ours) Ours 0.363 0.235 0.167 0.124 0.128 0.290

Table 1. The results of the COMG model and other tested models in IU-Xray (upper part) and MIMIC-CXR (lower part) datasets. ∗

indicates that we tested the results ourselves, which may differ from the results reported in the original papers of other models. † denotes
the baseline model. The results for other models were obtained from their original papers. The best result is presented in bold, and the
second-best result is underlined.

as:
LT1 = LCE + βLSimIM + θLSimDT , (3)

where CE is the cross-entropy loss for report genera-
tion study following [6], SimIM means the similarity-
maximization loss between the embeddings of the input
captions and the mask-guided organ prototype feature, and
the SimDT is the cosine similarity loss between the cross-
modal correlation tokens and extracted disease keywords
features. We add tradeoff parameters to these loss functions
to balance the overall optimization process, with β and θ set
as 0.1. We have also presented the experimental analysis re-
garding different selections in the following sections.

After optimized via LT for the first stage, we propose
another stage of optimization for better performance by in-
corporating reinforcement learning (RL). Specifically, we
included an additional BLEU score as a reward for RL to
improve sentence coherence, combined with LCE for report
generation.

During inference, the cross-modal correlation tokens are
first extracted from each image. Note that it is accessible
since these tokens can be acquired by incorporating the im-
age features with the masks from the pre-train segmentation
models and the prior-disease captions from the pre-defined
knowledge graph, which do not require ground-truth anno-

tations. Then, the tokens are integrated with the image-level
features via the multi-head attention. Finally, the decoder
receives such fused features as input for report predictions.

4. Experiments
In this section, we first introduce the details of the exper-

imental settings, including datasets, baseline models, and
evaluation metrics. We then conduct the proposed COMG
model on two datasets and evaluated it alongside some
state-of-the-art approaches. In addition, ablation studies
and the hyperparameters analysis of the COMG model are
further presented.

4.1. Experiment Settings

4.1.1 Datasets

Two widely studied RRG benchmarks are employed to
test the COMG model: IU-Xray [9] from Indiana Univer-
sity and MIMIC-CXR [15] from the Beth Israel Deaconess
Medical Center. The MIMIC-CXR dataset is the largest
publicly available radiography dataset, with 473,057 chest
X-ray images and 206,563 associated reports. The IU-Xray
is a relatively smaller dataset, which contains 7,470 chest X-
ray images and 3,955 corresponding reports. Both datasets
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are divided into training, testing, and validation sets in a ra-
tio of 7:2:1. More details of the datasets can be referred to
the Supplementary Material. For both datasets, we followed
Chen et al. [5] to pre-process captions and images. Before
entering the model, each original radiology image was re-
sized to 3 * 224 * 224 and normalized. In comparison, the
mask images were resized to 1 * 224 * 224 to fit the mid-
process fusion with mid-image features. To increase the
model’s robustness, images and masks were also enhanced
with random cropping and random horizontal flipping. The
captions were cleaned up, including removing punctuation
and converting some words that appear less than three times
to the token < unk >.

4.1.2 Baseline and Evaluation Metrics

Baseline. We compare the COMG model with nine exist-
ing radiology report generation models that have state-of-
the-art (SOTA) results in the IU-Xray dataset. These models
include R2Gen [6], PPKED [25], CMCL [24], KIUT [14],
and METransformer [41]. We also compare the COMG
model with the R2GenCMN [5] baseline model (marked †
in Table 1).

In addition to the IU-Xray dataset, we compare the
COMG model with nine SOTA models on a different
dataset MIMIC-CXR, including M2Transformer [8], UAR
[22], DCL [21], and the baseline model “R2GenCMN”. The
results of other comparison methods are cited from their
respective papers, while the results of R2GenCMN are re-
implemented by us as the baseline model (marked as ∗ in
Table 1).

Evaluation Metrics. We evaluate the quality of our re-
port generation using natural language generation (NLG)
metrics, i.e. BLEU [1-4] [29], METEOR [4] and ROUGE-L
[23]. These metrics measure the similarity between the gen-
erated caption and the ground truth in terms of word-level
n-grams. In addition, we follow the approach of [5, 6, 30]
and use clinical efficacy (CE) metrics to evaluate the re-
ports generated on the MIMIC-CXR dataset with their cor-
responding target captions. The CE metrics assess the pres-
ence of a set of significant clinical observations that can cap-
ture the diagnostic accuracy of the generated reports.

4.1.3 Implementation Details

We choose the ResNet101 pre-trained on ImageNet as the
image extractor model and the CXAS [32] pre-trained on
the radiology segmentation dataset PAX-RAY++ [33] as
the mask extractor model. Our model is trained on a sin-
gle NVIDIA GeForce RTX 3090 GPU with a 24GB mem-
ory. For optimization, following [5], we use the Adam op-
timizer [16]. The initial learning rates for the ResNet101

Method CE Metric
Precision Recall F1

R2Gen [6] 0.333 0.273 0.276
CMM+RL [30] 0.342 0.294 0.292
METransformer [41] 0.364 0.309 0.311
KiUT [14] 0.371 0.318 0.321
R2GenCMN∗† [5] 0.334 0.275 0.278
COMG(Ours) 0.424 0.291 0.345

Table 2. Comparison of clinical efficacy metrics for the MIMIC-
CXR dataset. These metrics measure the accuracy of clinical ab-
normality descriptions. The best result is presented in bold, and
the second-best result is underlined.

feature extractor and other components are set to 1e-4 and
5e-4, separately. During the inference stage, we incorporate
the beam search [12] into the COMG model, with a step set-
ting of 3. More experiment information has been provided
in the Supplementary Material.

4.2. Experiment Results and Analysis

4.2.1 Radiology Report Generation

Two evaluation metrics are used for comparison: conven-
tional natural language generation (NLG) metrics and clin-
ical efficacy (CE) metrics. These are common metrics used
to evaluate the report generation task. The results are shown
in Table 1 and Table 2, respectively.

Descriptive Accuracy. We report the descriptive accu-
racy in Table 1. As can be seen from the results on IU-
Xray, the COMG model outperforms the baseline model
“R2GenCMN” in all aspects, including BLEU [1,2,3,4],
Meteor, and Rouge-L by adding all the contributions men-
tioned in Sec. 1. By adding reinforcement learning as a
second step in training for the COMG model, our model
excels in BLEU [1,2,3,4] and achieves the second best re-
sults in METEOR and ROUGE-L. In radiology report gen-
eration, BLEU@4 is an important guideline [5], and the
COMG model achieves a significant improvement in this
metric compared to “KiUT” (i.e., 0.185 → 0.206).

In the MIMIC-CXR dataset, the “RGRG” and “ME-
Transformer” are excluded. The “RGRG” used a very large
model with a 24-layer decoder, making it difficult for oth-
ers to reproduce its results. The “METransformer” did not
make its code public, which makes it impossible to re-
run the experiment on the MIMIC-CXR dataset. Further-
more, the dataset split used in our evaluation was different
from these two models. Compared to the baseline model
“R2GenCMN”, our model has significant improvements in
all six evaluation metrics. By adding RL to the COMG
model, our model achieves substantial performance gains
in BLEU [3,4] and ROUGE-L, and achieves the second-
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# Method IU-Xray MIMIC-CXR
B@1 B@2 B@3 B@4 MET. RGL. AVG. B@1 B@2 B@3 B@4 MET. RGL. AVG.

1 Baseline 0.462 0.299 0.221 0.172 0.193 0.37 - 0.330 0.201 0.134 0.094 0.134 0.269 -

2 + Mk 0.504 0.323 0.227 0.170 0.192 0.388 ↓ 1.1% 0.338 0.206 0.138 0.098 0.130 0.270 ↑ 4.3%

3 + Mk + SimIM 0.469 0.303 0.223 0.175 0.187 0.367 ↑ 1.7% 0.343 0.211 0.141 0.100 0.134 0.275 ↑ 6.4%

4 + Mk + DT 0.484 0.320 0.234 0.182 0.204 0.379 ↑ 5.8% 0.347 0.213 0.142 0.102 0.136 0.275 ↑ 8.5%+ SimDT

5 + Mk + SimIM 0.482 0.316 0.233 0.184 0.198 0.382 ↑ 7.0% 0.347 0.216 0.145 0.104 0.137 0.279 ↑ 10.6%+ DT + SimDT

6 + Mk + SimIM 0.536 0.378 0.275 0.206 0.218 0.383 ↑ 20.0% 0.363 0.235 0.167 0.124 0.128 0.290 ↑ 31.9%+ DT + SimDT + RL

Table 3. The ablation study of the COMG model on the IU-Xray and MIMIC-CXR datasets. AVG indicates the improvement in the
BLEU@4 value compared to the baseline model, while RL stands for reinforcement learning. MET. and RGL. represent Meteor and
Rouge-L, respectively.

best result in BLEU [1,2] compared to other existing mod-
els, e.g., the BLEU@4 score increased by 9.7% compared
to the second-best result from “KiUT”. However, the result
of METEOR has dropped slightly when RL is added, be-
cause the reward in RL is based on BLEU metrics while
ignoring the METEOR score. We have also tried to em-
ploy other metrics as rewards for RL, and we noticed their
performance is inferior to the RL with BLEU.

Clinical Correctness. Table 2 reports the quantitative re-
sults of our proposed model and 4 SOTAs, i.e., R2Gen [6],
MEtransformer [41], KiUT [14], and the baseline model
R2GenCMN [5], on the MIMIC-CXR dataset. As can be
seen, our COMG model performs better in precision and F1
score than all SOTAs, e.g., precision increased by 14.3%
and F1 increased by 7.5%. Compared to “R2GenCMN”,
COMG achieves a significant improvement on all metrics.

4.2.2 Ablation Study

In this section, we conduct an ablation study to investigate
the effect of each designed module in our approach. Ta-
ble 3 shows the experimental results on two datasets: IU-
Xray and MIMIC-CXR. Specifically, MK represents the
introduction of the mask-guided organ prototype features
for model training (Sec. 3.1). SimIM represents including
the similarity loss LSimIM , while SimDT represents adding
the similarity loss LSimDT . DT represents adding the cross-
modal correlation token (Sec. 3.2), and RL represents the
addition of reinforcement learning. We evaluated the model
using three kinds of metrics: BLEU [1,2,3,4], METEOR,
and ROUGE-L. The AVG. column shows the average in-
crease of each model compared to the baseline model, based
on the BLEU@4 metric, which is the most important eval-
uation metric in radiology report generation tasks.

By comparing #1 and #2 in Table 3, it indicates that in-
corporating the mask-guided organ prototype features has
made the greatest contribution to the improvement of the

model’s performance, which indicates the importance of the
pixel-level information for report generation. Additionally,
we have also validated the effectiveness of the two cross-
modal consistency mechanisms. The performance gain for
#3 over #2 shows the benefits of enlarging the cross-modal
similarity between the organ prototype features and the re-
port descriptions. By jointly employing the cross-modal
correlation tokens with its similarity learning with the dis-
ease keywords from ground truth, the baseline has been im-
proved by a large margin (#4). Next, the improvement of
the first-stage model #5 over the baseline #1 has further in-
dicated the model’s effectiveness by jointly integrating all
proposed modules. Finally, #6 shows the result of combin-
ing all contributions and adding reinforcement learning. It
significantly improves performance in most metrics, while
only losing fewer marks of Rouge-L in IU-Xray and Meteor
in MIMIC-CXR due to the rewards being set on the BLEU
metrics.

4.2.3 Qualitative Analysis

To further investigate the effectiveness of our method, we
perform qualitative analysis on the MIMIC-CXR dataset
(shown in Fig. 4). In the example, we have highlighted
the keywords related to organs and diseases in distinct col-
ors for clear differentiation. It shows that if the model de-
tects certain parts of the disease incorrectly, its prediction
will fail to generate the corresponding descriptions success-
fully. More specifically, baseline can only detect lung and
pneumothorax, while our COMG can detect more details
about mediastinal and hilar contours, which makes our re-
port more vivid and accurate. More examples can be found
in the Supplementary Material.

4.2.4 Hyper-parameter Analysis

Table 4 shows the results of different combinations of loss
function coefficients β, and θ. We changed the coefficients
of β and θ from 0.1 to 10 to evaluate the influence of each
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lateral view somewhat limited due to overlying motion 
artifact . the lungs are low in volume . there is no focal 
airspace consolidation to suggest pneumonia . a <unk> 
calcified granuloma just below the medial aspect of the right 
hemidiaphragm is unchanged from prior study . no pleural 
effusions or pulmonary edema . there is no pneumothorax . 
the inferior sternotomy wire is fractured but unchanged . 
surgical clips and vascular markers in the thorax are related 
to prior cabg surgery .

ap upright and lateral views of the chest provided . midline 
sternotomy wires and mediastinal clips are again noted .
lung volumes are low limiting assessment . allowing for this 
there is no convincing evidence for pneumonia or edema . 
no large effusion or pneumothorax is seen . 
cardiomediastinal silhouette appears grossly stable . bony 
structures are intact .

GROUND TRUTH

BASE - R2Gen

MIMIC CXR Image

+MASK+CS_IM+DT+CS_IT: frontal and lateral views of the chest were 
obtained . low lung volumes result in bronchovascular crowding . there is no focal 
consolidation pleural effusion or pneumothorax . heart size is normal . mediastinal 
silhouette and hilar contours are normal allowing for low lung volumes . there is no 
free air under the diaphragm .

+MASK+DT+CS_DT: ap upright and lateral views of the chest provided . lung 
volumes are low . there is no focal consolidation effusion or pneumothorax . the 
cardiomediastinal silhouette is normal . imaged osseous structures are intact . no free 
air below the right hemidiaphragm is seen ..

+MASK+CS_IM: frontal and lateral views of the chest were obtained . low lung 
volumes result in bronchovascular crowding . there is no focal consolidation pleural 
effusion or pneumothorax . heart size is normal . mediastinal silhouette and hilar 
contours are normal allowing for lung volumes . a left chest wall port-a-cath ends in the 
mid svc . surgical clips project over the right upper quadrant .

+ MASK: ap upright and lateral views of the chest provided . lung volumes are low . 
there is no focal consolidation effusion or pneumothorax . the cardiomediastinal 
silhouette is normal . imaged osseous structures are intact . no free air below the right 
hemidiaphragm is seen . lung volumes are low . heart size is normal . the mediastinal 
and hilar contours are normal . the pulmonary vasculature is normal . lungs are clear . 
no pleural effusion or pneumothorax is seen . there are no acute osseous abnormalities .

Ablation Study

+MASK+CS_IM+DT+CS_IT+RL: pa and lateral views of the chest . the 
lungs are clear . there is no focal consolidation pleural effusion or pneumothorax . the 
heart size is normal . the mediastinal and hilar contours are normal . no pleural effusion 
or pneumothorax is seen . there is no pleural effusion or pneumothorax . no pleural 
effusion or pneumothorax ..

Figure 4. An example of the report generated by different models in the ablation study. The left side of the image displays the input image
from the MIMIC-CXR dataset, the corresponding ground truth, and the report generated by the baseline model. In the image, we have
marked the keywords of organs and diseases in different colors other than black. More specific information is shown in Sec. 4.2.3.

Loss Coefficient
β 0.1 0.1 1 1 10 1 10
θ 0.1 1 0.1 1 1 10 10

B@1 0.482 0.444 0.433 0.470 0.468 0.435 0.418
B@2 0.316 0.282 0.273 0.306 0.300 0.178 0.274
B@3 0.233 0.200 0.190 0.213 0.215 0.198 0.197
B@4 0.184 0.148 0.142 0.158 0.162 0.150 0.148
MET. 0.198 0.174 0.177 0.197 0.190 0.178 0.174
RGL. 0.382 0.341 0.342 0.366 0.365 0.360 0.360

Table 4. The influence of each coefficient on each loss component
in the loss function. This experiment was conducted using the IU-
Xray dataset.

loss function coefficient. Table 4 lists the results of our
COMG under this range. We find that 0.1, and 0.1 are the
best choices for β, and θ, respectively.

5. Conclusion

In this paper, we propose a novel COMG method for
generating precise radiology reports. It employs complex
organ masks to provide pixel-wise semantic information
for accurate report generation. Additionally, it incorpo-
rates disease keywords linked to each tissue, utilizing them
as text-level prior knowledge to further refine tissue fea-
ture learning. To streamline the feature extraction process
for both images and text, we have developed two cross-
modal consistency mechanisms to enhance feature learn-
ing accuracy. Our method has been tested on two popular
benchmarks, and the results show its effectiveness in gen-
erating accurate and meaningful reports. In future works,
we plan to enhance the COMG’s ability to recognize ab-
normal tissues/regions by incorporating external resources
(e.g., Chest ImaGenome dataset [42]). This can further im-
prove the reports’ quality on disease recognition and under-
standing.
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