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Abstract

Despite recent attention to depth for various tasks, it is
still an unexplored modality for weakly-supervised object
detection (WSOD). We propose an amplifier method for en-
hancing the performance of WSOD by integrating depth in-
formation. Our approach can be applied to different WSOD
methods based on multiple-instance learning, without ne-
cessitating additional annotations or inducing large com-
putational cost. Our proposed method employs monocular
depth estimation to obtain hallucinated depth information,
which is then incorporated into a Siamese WSOD network
using contrastive loss and fusion. By analyzing the rela-
tionship between language context and depth, we calculate
depth priors to identify the bounding box proposals that may
contain an object of interest. These depth priors are then
utilized to update the list of pseudo ground-truth boxes, or
adjust the confidence of per-box predictions. We evaluate
our proposed method on three datasets (COCO, PASCAL
VOC, and Conceptual Captions) by implementing it on top
of two state-of-the-art WSOD methods, and we demonstrate
a substantial enhancement in performance.

1. Introduction

Weakly-supervised object detection (WSOD) is a chal-
lenging task since it is unclear which instances have the
label that was provided at the image level. Traditional
methods only use appearance information in RGB images.
However, appearance information is insufficient to localize
objects in complex, cluttered environments. On the other
hand, humans are capable of finding useful information in
complex environments because they rely on object function,
not just appearance. For example, they might reason about
which objects are within reach, which can be captured with
depth from stereo vision [2]. The depth modality provides
additional cues about the spatial relationships and geometri-

Depth-Language Pairs Depth ranges of objects for accompanying words

Alanlteedinglawildbicdloyliicrd "bird" with "feed" word = [0.06, 0.32]

"bird" with "ocean" word = [0.35, 0.83]

A bird hangs from a bird feed outside.

.
A bird on top of arock in the ocean

Depth range of "bird" for given caption: [0.14, 0.38]

Identifying relevant proposals utilizing depth priors

Figure 1. Object from the same category may be at different
depth depending on the context/setting. We use captions to cap-
ture context-conditioned depth ranges for each object class and
co-occurring word: a bird may be closer when co-occurring with
the word “feed” than the word “ocean”. We use these ranges to
spot relevant proposals that may contain target objects, and prune
irrelevant ones, in weakly supervised object detection training.

cal structure of objects in a scene and is invariant to appear-
ance variations (e.g. in texture), making it complementary
to the RGB modality. However, weakly-supervised object
detection methods do not use depth information.

We equip WSOD methods with the ability to reason
about functional information (depth). Importantly, our
method does so without requiring additional annotations or
suffering significant computational costs. We propose an
amplifier method that can enhance the performance of dif-
ferent weakly supervised object detection methods based
on multiple-instance learning. Since traditional WSOD
datasets do not contain ground-truth depth information, the
proposed method utilizes hallucinated (predicted) depth in-
formation obtained through a monocular depth estimation
technique. During training, the method incorporates depth
information to improve representation learning and to prune
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or down-weight predictions at the box level, which leads to
improved object detection performance during inference.

First, depth can directly be used as a feature to aid repre-
sentation learning, or to produce predictions which can be
fused with those computed from RGB. While simple, this
technique has not been used for WSOD, and we show that
it is very effective: it boosts the performance of appearance-
only methods by up to 2.6 mAP@0.5 (11% relative gain).

Further, depth can provide strong priors about which of
the bounding box proposals in the noisy WSOD setting con-
tain an object of interest. We examine the rough depth at
which objects of particular categories occur, by comput-
ing the depth range of an object using the predictions of
a WSOD network. To make this range more precise, we
examine the relationship between language context in cap-
tions and depth, by keeping track of depth range statistics
conditioned on co-mentioned objects. The use of captions
allows us to cope with the variable depth at which an object
may occur depending on the context, as shown in Fig. 1. We
then use this range to prune the pseudo ground-truth bound-
ing boxes used to iteratively update weakly-supervised de-
tection methods, or to down-weight predictions at the box
level. This approach boosts WSOD performance further for
a total up to 14% mAP@0.5 gain.

Our method is simple and can boost multiple WSOD
methods that rely on iterative improvement. We test it us-
ing two state-of-art WSOD baselines, MIST [30] and SoS-
WSOD [33], on COCO and PASCAL VOC. Inspired by
recent work that trains object detection methods with lan-
guage supervision [ 1,36,41], we further test our method
in a setting where labels at the image level are not ground-
truth but estimated. In this setting, our method boosts the
basic WSOD performance even more, by 18% when labels
for training are extracted from COCO, and 63% when they
are extracted from Conceptual Captions.

To summarize, our contributions are: (1) We examine for
the first time the use of depth in weakly-supervised object
detection. (2) In addition to depth fusion, we propose a
technique specific to WSOD, which estimates depth priors
with the help of language, and uses them to refine pseudo
boxes and box predictions. (3) We show large performance
gains in a large variety of settings, with the biggest boost
from depth refinement when supervision is least expensive.

2. Related Work

Weakly-supervised object detection (WSOD) is the
task of learning to detect the location and type of objects
given only image-level labels during training. The multi-
instance learning (MIL) framework is commonly utilized
in WSOD methods such as WSDDN [1]. OICR [35] im-
proved upon this by proposing pseudo-ground-truth mining
and an online instance refinement, which was further re-
fined by proposal clustering [34]. C-MIL [37] and MIST

[30] introduced modifications to the MIL loss and pseudo-
ground-truth mining, respectively. SoS-WSOD [33] pro-
posed a method that produces pseudo boxes for FSOD and
splits noisy data for semi-supervised object detection. Ad-
ditionally, there have been efforts to bypass the need for
image-level labels by utilizing noisy labels extracted from
caption or subtitle data [4, 1 1,36,38,41]. Additionally, [12]
leverages audio to improve WSOD performance and reduce
noise from text-based label extraction. In contrast to these
works, our method leverages depth information as an addi-
tional modality, leading to improved performance in WSOD
and a reduction of the noise in labels extracted from text.
RGB-D detection. The integration of RGB and depth
information to derive complementary features has been pre-
viously studied for fully-supervised indoor analysis [19,22,
,42,43] and object detection [8, 9, 15-17,20,21]. The
strategies for merging the two modalities can be classified
into three groups, depending on the point in the processing
pipeline where the fusion occurs: early fusion [6,27], mid-
dle fusion [3,9,10,44], and late fusion [14,26]. Early fusion
techniques involve combining the RGB and depth images
into a single four-channel matrix at the earliest stage of the
process. Middle fusion provides a balance between early
and late fusion by utilizing CNNss for both feature extraction
and subsequent merging. In late fusion, individual saliency
prediction maps are produced from the RGB and depth
channels to be combined through post-processing opera-
tions. In contrast to the majority of aforementioned meth-
ods, which use separate networks to extract features from
RGB and depth images, several studies [9, 10, 24, 32] em-
ploy Siamese networks to learn hierarchical features from
both RGB and depth inputs by utilizing shared parameters.
However, we are the first to leverage depth data in weakly-
supervised object detection. Our approach is not specific to
a particular method, as it can be applied to different MIL-
based WSOD methods to improve their performance with-
out incurring any extra annotation expenses and with mini-
mal computational overhead during training. Although the
depth modality is not used during the inference stage, incor-
porating it during training enhances the performance of the
inference.
Monocular depth estimation involves predicting the
depth map of a scene from a single RGB image [25, 28,29,
]. We utilize the method in [25] to estimate depth on the
training set due to its strong performance. This estimated
(“hallucinated”) depth information is utilized to improve the
performance of weakly supervised object detection.

3. Approach

We propose an amplifier approach that incorporates a
depth modality to improve the effectiveness of WSOD
methods. Our method can be used with different MIL-
based WSOD methods to boost their performance by in-
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Figure 2. This figure illustrates the design of our proposed amplifier technique that takes advantage of depth information to enhance the
performance of other weakly-supervised object detection methods. During inference, we only use the RGB branch (shown in orange).

curring little extra cost during training. It does not use the
depth modality during inference to avoid any slow-downs
and reliance on additional data (depth estimation or cap-
tions). The proposed approach comprises three main steps
(Sec. 3.1, 3.2, 3.3, respectively). First, a Siamese network
with a shared backbone is employed to improve represen-
tation learning through contrastive learning between RGB
and depth features (referred to as SIAMESE-ONLY in the
experiments). Second, we combine detection and classifica-
tion scores obtained from both the RGB and depth modal-
ities, which can be categorized as late fusion (FUSION).
Third, we use captions and bounding box predictions of tra-
ditional WSOD to calculate depth priors. These depth pri-
ors are then used to improve the OICR-style [35] module
in two WSOD methods (named DEPTH-OICR) and cre-
ate attention with combined score probabilities (DEPTH-
ATTENTION). Note that STAMESE-ONLY is always applied,
while FUSION, DEPTH-OICR and DEPTH-ATTENTION
build on top of it, and can be used alone or combined.

3.1. The Siamese WSOD Network

WSOD. Following Bilen et al. [1], let I € R**%*3 de-
note an RGB image, and y. € {0,1} (where c € {1,...,C}
and C' is the total number of object categories) be its corre-
sponding ground-truth class labels. Let v;, i € {1,..., R}
(where R is the number of proposals), denote the visual
proposals in image I. Rol pooling is applied and a fixed-
length feature vector ¢(v;) extracted for each visual re-
gion. The proposal features ¢(v;) are fed into two parallel
fully-connected layers to compute the visual detection score
vfet € R! and classification score v’y € R':

vie =weT(v) 0, vil = wTé(v;)

ZC

+b5 (1)

where w and b are weights and bias, respectively.

Estimating the depth images. To extract depth infor-
mation from RGB images, we employ the monocular depth
estimation technique by Mahdi et al. [25]. This enables us
to use existing RGB-only object detection datasets without
the need for additional annotations. Although the extracted
depth images are initially grayscale, we use a color map to
convert them to RGB images with three channels.

Siamese design. Our approach utilizes a Siamese net-
work with contrastive learning to incorporate depth infor-
mation in the weakly-supervised object detection network
during training. This design allows us to use a backbone
pre-trained with RGB images to extract features from both
RGB and depth images, without adding extra complexity
to the model’s parameters. We enhance the representation
learning of the backbone by defining contrastive loss be-
tween RGB and depth features similar to [24]. Utilizing a
Siamese network provides the advantage of using only RGB
images during inference similar to other WSOD methods.
This ensures that our contribution does not introduce any
additional overhead on the inference time.

With the help of a pre-trained backbone model, the fea-
ture map of RGB image ¢ (I) is extracted. Let D €
RP*wX3 denote a depth image associated with the RGB im-
age I and let /(D) be the feature map of the depth image
D extracted by the Siamese backbone. The RGB feature
map v (I) and depth feature map (D) are fed into adaptive
pooling and fully connected layers to obtain d-dimensional
projected feature vectors ¢p,;(I) and p,.0;(D). The
only extra parameters we add to the traditional MIL-based
WSOD network come from the fully connected layer for
projection with 8 percent overhead (13M parameters for the
projection layer, vs 154M total). If no late fusion is per-
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formed in the experiments, we train as described in Sec. 3.2,
but excluding the d; . variables in Eq. 5.

Contrastive learning. We L.2-normalize the RGB and
depth feature vectors ¢p,,;(I) and 1,,,; (D) vectors, and
compute their cosine similarity:

S(I,D) = <1/)p7‘0j (I, Yproj (D))/p (2

where p, is a learnable temperature parameter. We use noise
contrastive estimation (NCE) [13] to define the contrastive
learning by considering RGB image and depth image pairs
(I, D) € B where B is an RGB-depth pair batch. The first
component of the NCE loss contrasts an RGB image with
negative depth images to measure how closely the RGB im-
age matches with its paired depth among others in the batch:

_ 1 exp(S(I,D))
oo = =[5 2um1es 9 (ST D)) + 3 gy o (S(L DY)
3)
The second component of the NCE loss, L], p, is analo-
gously defined to contrast a depth image with negative RGB
image samples, and the two components are averaged:

Lyce = (Lpsr+Limp)/2 4
3.2. Late Fusion of the Modalities

The detection and classification scores computed from
RGB and depth modalities are imbued with disparate and
complementary details that jointly enrich our understanding
of the target objects. Therefore, we combine these scores to
amplify the performance of object detection.

As the depth images are derived from the RGB images,
the spatial arrangement of the objects is equivalent in both
modalities. Hence, we utilize the same visual region pro-
posals for both RGB and depth modalities. Following the
application of the Rol pooling layer and the Siamese box
feature extractor to the depth feature map (D), we obtain
the feature vector ¢(d;) for each depth region. Thereafter,
we employ the approach presented in Eq. 1 to derive the
depth detection score dffct € R! and the depth classification
score df}g’ € R!. Subsequently, we fuse (sum) the scores
from the RGB and depth modalities:
det _ Udet + ddet cls _ Ucls + d;lg (5)

i,c i,c i,c i,c i,C

where git and flj are fusion detection and classification
scores, respectively.

Following the WSDDN [1] architecture, these classifica-
tion and detection scores are converted to probabilities such
that pffj is the probability that class c is in present proposal
fi» and pﬁ‘? is the probability that f; is important for pre-

dicting image-level label ..

vt cxp(fl) as _ exp(fiy)

e — SR v Pie = o aa
> e exp(fih) > exp(fE5)

We element-wise multiply the classification and detec-

tion scores to obtain the combined score pgom?:

Pt = plpfle (7

Finally, image-level predictions p,. are computed as fol-

lows, where greater values of p. € [0,1] mean a higher
likelihood that c is present in the image.

R
pe=0 (Z pffi!"”) ®)
i=1

Assuming the label y. = 1 if and only if class c is present, the
classification loss used for training the model is defined as
follows. Since no region-level labels are provided, we must
derive region-level scores indirectly, by optimizing this loss.

c
E’mil = - Z [yc IOgﬁc + (1 - yc) IOg(l - ﬁc)] (9)
c=1
3.3. Depth Priors

We utilize the baseline WSOD methods, which we aim
to improve, to generate bounding box object predictions in
the training set. Further, we leverage both the generated
bounding box predictions and associated captions to extract
knowledge about the relative depths of objects. We note
that our proposed methodology adheres to the WSOD set-
ting, deriving benefits from the predicted bounding boxes,
as opposed to ground truth bounding box annotations to cal-
culate depth priors. We subsequently exploit these depth
priors to guide the identification of the relevant visual re-
gions that may contain the target objects. Further, we show
that even though we estimate the depth priors from COCO,
they generalize to Conceptual Captions (Table 2).

We use the notation pd; € [0,1],7 € 1,..., R, where R
is the number of pre-computed region proposals for depth
image D, to represent the average depth value in the i-th
region proposal. Each region proposal contains pixels with
values ranging from O to 1, which correspond to the smallest
and largest depth values, respectively.

We employ bounding box predictions B to approximate
the depth value of objects using the caption that describes
the image in which the objects are present. We also use
co-occurring captions to capture the context in which an ob-
ject occurs, and condition depth priors on this context which
varies across images. Let C' be the set of object categories,
W be the set of distinct words in the vocabulary that in-
cludes every word in the captions, and B be the set of pre-
dicted bounding boxes. Let d. ,, € {[0,1], @} denote the
depth value for object ¢ € C', word w € W and box b € B,
which is calculated by averaging the depth values in the pix-
els of b similar to the calculation of pd;. As an example,
dpird,ocean,b TEpresents the depth value of the “bird” object
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pdy = 0.23

B pd2 = 0.05
Caption: A man feeding a wild bird by hand.
Estimated depth prior: dryiq = [0.15,0.48]

[ Sl

Caption: A bird flying above a person surfing in the ocean.
Estimated depth prior: dry,;,q = [0.35,0.68]

Figure 3. The figure displays a row of images that are accompa-
nied by their respective depth and caption data, as well as proposal
depth value of different regions and estimated depth prior range.

box b of a depth image that has a caption that includes the
“ocean” word. In the absence of “ocean” in the caption or
when annotation b does not correspond to the “bird” object,
the depth value dpird,ocean,b 1S set to null &. Further, d. ,, rep-
resents a set of depth values calculated by averaging d. ., 5
over predicted boxes b € B, excluding & values. The depth
range r.., = |mean — std,mean + std) for class ¢ and
word w is obtained by utilizing the mean and standard de-
viation (std) of this set of depth values in d. ,,. Once these
depth ranges r ,, are computed, they can be applied to esti-
mate an allowable depth range for a class c in a new image,
without any boxes on that image.

For any new depth image D, the range of estimated depth
priors for an object c is dr:

Zses TC,S
|5

where S denotes the set of words in the caption correspond-
ing to D. Thus the depth at which we expect to find ob-
jects in a particular image varies depending on the context
provided by words in the corresponding caption. We only
require captions at training time.

We utilize the estimated depth prior range dr.. to identify
potentially important regions in pd for each class. We define
a depth mask indicator variable m; . € 0,1 for each region
7 € R and class ¢ € C, which indicates the likelihood of
a particular region in an image containing an object of a
certain class. The computation of this variable is as follows:

dr. = (10)

1, ifpd; € dr,
M c = ) (11)
’ 0, otherwise

If the proposal depth value pd; falls within the estimated
depth prior range dr, for class c, it is considered as a rele-
vant region for that class, and the corresponding mask vari-
able m; . is set to 1; otherwise, it is set to 0. Subsequently,
we utilize the mask variable m; . in combination with our
end-to-end network to improve its performance.

As an example, Fig. 3 presents two images featuring a
“bird” object, with different depths. The estimated depth
prior ranges dry;q are calculated using Eq. 10 for each im-
age based on the words in the caption. The caption of the
first image includes “feeding” and “hand” which suggest the
“bird” is likely to have a smaller depth, while the caption of
the second image includes “flying” and “ocean” that sug-
gest the “bird” is likely to have a bigger depth. The regions
on the images having a proposal depth value of pd; are in
the estimated depth prior range dryiq; We observe that they
truly include the “bird” object. The range allows us to rule
out regions with values pds, which do not contain “bird”.

Alternative method for estimating depth priors. As an
alternative, we use only bounding box predictions (without
captions) to obtain depth priors. Let d..;, € [0, 1] denote the
depth value for object ¢ € C' and box b € B. Further, let d,.
represent a set of depth values for each c. The depth range
re = [mean — std,mean + std] is obtained by utilizing
the mean and standard deviation (std) of this set of depth
values in d.. Then we set dr. = r. as we do not use caption
information (compared to Eq. 10); dr. is used in Eq. 11.

3.3.1 Depth Priors: Updated OICR

Algorithm 1 OICR Mining with Depth Priors
Input: Proposals R, Depth Mask Indicator Variable m
Output: Pseudo boxes R

: R=0o

2: forallc=1:Cdo

3 foralli=1:[R|do

4: R.=R.,UR;ifm;.=1
5. return R

Online Instance Classifier Refinement (OICR) [35] is
a weakly supervised object detection algorithm that itera-
tively refines object proposals. Recent studies [30, 33, 34]
have highlighted the importance of more effective proposal
mining strategies for achieving better recall and precision
of objects in WSOD detectors. We propose an algorithm
that incorporates the depth priors during the proposal min-
ing provided in Alg. 1. As our proposed method aims to en-
hance MIL-based WSOD methods, we utilize our algorithm
in conjunction with recent OICR-style/self-training/mining
strategies, subject to the depth prior condition specified in
the fourth line of Alg. 1. After using the depth prior con-
dition, OICR-style mining selects fewer but more relevant
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proposals so our contribution increases mining precision.'

3.3.2 Depth Priors: Attention

The depth mask variable m; . indicates the potentially im-
portant proposal regions for each class. We use this variable
to employ an attention mechanism with combined score
probabilities p¢°™® provided in Eq. 7 as follows:

1,C
piomt = peom 0.5, if my. = 0 (12)

This mechanism reduces the probability of a region for class
c by half if the region is determined as less likely to be im-
portant by m; .. These scores are then used in Eq. 8.

4. Experiments

We test our method on top of two weakly-supervised de-
tection techniques, and verify the contributions of the con-
stituents of our approach:

¢ Siamese WSOD Network (SIAMESE-ONLY, Sec. 3.1);

e Late Fusion of the Modalities (FUSION, Sec. 3.2)
which combines classification/detection from RGB
and depth, and builds on top of the Siamese WSOD
Network (Sec. 3.1);

e Depth Priors are utilized to enhance the OICR-
style module (DEPTH-OICR, Sec. 3.3.1) and con-
struct attention (DEPTH-ATTENTION, Sec. 3.3.2) with
visual-only score probabilities, both building upon the
Siamese WSOD Network (Sec. 3.1);

* Finally, we use all components of our method (WSOD-
AMPLIFIER, SEC. 3.1, 3.2, 3.3.1,3.3.2).

* DEPTH-OICR-ALT and DEPTH-ATTENTION-ALT es-
timate depth priors without captions.

¢ WsSOD-AMPLIFIER-INF fuses RGB and depth at infer-
ence time, unlike our proposed method.

4.1. Experimental Setup

PASCAL Visual Object Classes 2007 (VOC-07) [5]
contains 20 classes. For training, we use 2501 images from
the train set and 2510 images from the validation set. We
evaluate using 4952 images from the test set.

Common Objects in Context (COCOQ) [23] consists of
80 classes. We utilize approximately 118k images from the
train set and use the labels provided at the image level. Ad-
ditionally, to test how well our method works when labels
are obtained from noisy language supervision (in captions),
we train our models using labels obtained through an ex-
act match (EM) method following [36], also referred to as
substring matching in [7]. Due to the unavailability of any
labels for around 15k images extracted from captions, we

In early experiments, we verified our method’s gains persist if the
baseline drops the lowest-scoring pseudo boxes without using depth.

excluded them from the training set and use 103k images.
We evaluate using 5k images from the validation set.

Conceptual Captions (CC) [31] is a large-scale image
captioning dataset containing over 3 million images anno-
tated with only captions. We use around 30k images and
their corresponding captions and the labels are extracted for
the 80 COCO dataset classes using an exact match method
from the captions. During the evaluation, we used 5k im-
ages from the COCO validation set.

Domain shift datasets. In the supplementary, we also
evaluate our method in a domain shift setting [18], using
three datasets. Clipartlk has the same 20 classes as VOC
with 1,000 images, while Watercolor2k and Comic2k share
6 classes with VOC and have 2,000 images each.

Evaluation protocols. We utilize mean Average Preci-
sion (mAP) considering various IoU thresholds as the com-
mon evaluation metric for COCO and VOC datasets. Addi-
tionally, we report mAP for objects of different sizes during
COCO evaluation and we report the results of Correct Lo-
calization (CorLoc) for VOC evaluation.

Implementation details. We employ the official Py-
Torch implementations of SoS-WSOD [33] and MIST [30]
methods to apply our amplifier technique. SoS-WSOD uses
four images per GPU as two augmented images and their
flipped versions with a total of 4 GPUs, whereas MIST uses
only one image per GPU with a total of 8 GPUs. However,
we use one image per GPU for SoS-WSOD due to VRAM
limitation in our GPUs, as we also utilized depth images
for each corresponding RGB image. Therefore, the base-
line results of SoS-WSOD reported in Table 1 are slightly
lower than those reported in the original paper. Moreover,
we solely use the first stage of SoS-WSOD since it includes
the MIL-based WSOD module which is convenient to im-
plement our method on top of. The other settings are kept
the same as the official implementations with the VGG16
backbone. The inference is done on the training set by us-
ing baseline MIST and SoS-WSOD methods to obtain box
predictions having confidence scores higher than 0.5. These
box predictions are then used to calculate depth priors. Fur-
thermore, we utilize the same depth range 7. ,, from the
COCO annotations for the WSOD-AMPLIFIER method on
the Conceptual Captions dataset.

4.2. Comparing our amplifier to state of the art

We evaluate our proposed methods, FUSION and WSOD-
AMPLIFIER, using two state-of-the-art WSOD approaches,
SoS-WSOD [33] and MIST [30], and the COCO and VOC-
07 datasets. The performance of our proposed methods are
compared with the baseline methods in Table 1. When
our WSOD-AMPLIFIER method is applied to MIST, it im-
proves the baseline performance by 17% in mA Psg.g5 (rel-
ative gain, 13.8/11.8-1) and 14% in mAPsy. Similarly,
when our WSOD-AMPLIFIER method is applied to SoS-
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Avg. Precision, IoU Avg. Precision, Area

Methods on COCO 0.5:095 05 075 S M L

MIST [30] 11.8 243 10.7 3.6 132 189
+ FUSION 13.5 269 124 4.0 147 21.6
+ WSOD-AMPLIFIER 13.8 278 125 4.6 148 22.6
+ WSOD-AMPLIFIER-INF 13.1 27.5 119 43 143 222
S0S-WSOD [33] 10.2 215 86 2.5 106 17.7
+ FUSION 10.3 216 89 2.3 10.8 184
+ WSOD-AMPLIFIER 10.5 21.8 9.1 2.5 11.1  18.7

Avg. Precision, IoU CorLoc

Methods on VOC-07 0.5:095 05 075 0.5:095 05 0.75

SoS-WSOD [33] 24.8 522 204 38.7 71.7 369
+ FUSION 26.0 531 223 39.6 721 385

Table 1. This table compares the performance enhancement of our
methods, to their baseline results SoS-WSOD [33] and MIST [30],
on COCO and VOC-07. The best performer per column is in bold.

Avg. Precision, IoU Avg. Precision, Area

Methods on COCO 0.5:095 05 075 S M L

MIST [30] w/ GT 9.7 21.1 80 3.0 104 15.1
MIST [30] w/ EM 8.5 179 73 30 94 14.9
+ SIAMESE-ONLY 8.8 187 73 29 96 154
+ DEPTH-OICR 9.0 194 73 31 9.6 15.9
+ DEPTH-ATTENTION 9.1 190 79 30 95 16.2
+ FUSION 9.9 204 85 3.0 10.1 17.1
+ WSOD-AMPLIFIER 10.2 210 85 33 103 17.5
+ DEPTH-OICR-ALT 89 190 73 30 9.6 15.6
+ DEPTH-ATTENTION-ALT 9.0 188 7.7 3 9.5 16.0

Avg. Precision, IoU Avg. Precision, Area

Methods on CC 0.5:095 05 075 S M L
MIST [30] w/ EM 1.7 3.8 14 03 1.7 34
+ FUSION 2.0 4.1 1.7 03 19 4.0
+ DEPTH-OICR 2.4 56 20 03 22 5.1
+ WSOD-AMPLIFIER 2.6 63 21 04 28 5.7

Table 2. This table introduces the effect of each component of our
method implemented on MIST [30] with exact match (EM) labels
on COCO (top) and Conceptual Captions (CC) (bottom). The best
performer per column is in bold. On top, all proposed methods
that outperform the SIAMESE-ONLY are underlined.

WSOD, it improves the baseline performance by 2% in
mAP50:95, 1.5% in mAP50, and 6% in mAP75. As the
VOC-07 dataset does not have captions, we are only able to
apply the STAMESE-ONLY and FUSION methods on SoS-
WSOD but not the DEPTH-OICR and DEPTH-ATTENTION.
On this dataset, our improvements outperformed the base-
line SoS-WSOD by 5% in mAP50:95, 2% in mAP50, and
9% in mAP;;. WSOD-AMPLIFIER-INF performs worse
than WSOD-AMPLIFIER. We argue depth is useful as a soft
guide to balance region information during MIL training,
but less so when directly used in the strict detection setting.

4.3. Ablation studies and visualization

Experiments with labels from captions. Several at-
tempts [7, 36, 38] have been made to eliminate the require-
ment for image-level labels by leveraging noisy label in-
formation obtained from captions or subtitles. Although
it is cost-effective to use text information for label extrac-
tion, it results in a decrease in the performance of weakly
supervised object detection. [36] propose a text classifier
approach to extract labels more effectively than the simple
exact match (EM) and reduce the noise between text and
ground truth (GT) labels. In contrast to previous studies, our
research employs the depth modality to reduce the noise in
labels extracted from captions. Our approach improves the
model’s detection capability and employs captions during
the calculation of depth priors. We conducted experiments
with MIST [30] using both GT and EM labels and observed
that, as expected, training with GT labels leads to signifi-
cantly better performance than training with EM labels in
Table 2 due to the noise in labels extracted from captions.
However, our proposed WSOD-AMPLIFIER method applied
on MIST with EM labels surpasses the baseline and MIST
with GT labels. These findings demonstrate that our method
effectively reduces noise and enables the model trained with
EM labels to achieve better performance than those trained
with GT labels. It is worth noting that the text classifier
approach proposed by [36] also performs better than EM-
labeled training data, but falls short of the performance
achieved by GT-labeled data.

Results on noisy datasets. We also extract labels from
captions on the Conceptual Captions dataset, which lacks
labels at the image level. We observe that our WSOD-
AMPLIFIER boosts results by an impressive 63% relative
gain using m A P5o. Conceptual Captions is a noisier dataset
than COCO, since captions were not collected through
crowdsourcing, but were crawled as alt-text for web search
results. Thus, it is noteworthy that the benefit of our ap-
proach becomes more pronounced as the cost of supervision
decreases, and the noise in the supervision increases.

Analysing the components of our approach. To un-
derstand the impact of each component of our approach on
the overall performance, we conducted experiments with
MIST [30] using EM labels as a baseline and applied each
component of our method on top of the baseline in Table
2. Our STAMESE-ONLY method, which incorporates the
depth modality in the Siamese network using contrastive
learning, improves feature extraction and results in a 4%
increase in mAPso.95 and mAPsy. Our DEPTH-OICR
method, which utilizes depth priors in the OICR module
to improve the mining strategy, increases mA Psg.95 and
mAPsg over SIAMESE-ONLY by 6 — 8% on COCO and
42 — 47% on Conceptual Captions (CC). Our DEPTH-
ATTENTION method, which incorporates depth priors to
use potentially important regions in an attention mechanism
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Figure 4. Qualitative comparison of MIST [30] (top) and our proposed WSsOD-AMPLIFIER method (bottom), on COCO val. The ground-
truth objects are vase, zebra, bicycle and car, sink and toilet, couch in this order. Confidence scores and names of objects shown.

with combined score probabilities, increases A Psg.95 and
mAPzs by 6 — 7%. Our FUSION method, which com-
bines RGB and depth image scores, improves by 14 — 16%
on COCO and 7 — 21% on CC. Comparing FUSION and
DEPTH-OICR, the bigger gain using mAPs, is achieved
by FusioN on COCO, and DEPTH-OICR on CC. Thus, the
benefit of our WSOD-specific method component increases
as the noise in the dataset increases, which is appealing
due to its real-world applicability. Finally, our WSOD-
AMPLIFIER method, which includes all components of our
approach, achieves the highest performance increase over
MIST w/ EM baseline, with improvements in all m AP met-
rics by 16 — 20% on COCO and 53 — 65% on CC.

Alternative depth priors. At the bottom of Table
2 (COCO), we see that DEPTH-OICR-ALT and DEPTH-
ATTENTION-ALT, derived from the alternative approach,
yield superior results compared to STAMESE-ONLY. How-
ever, the DEPTH-OICR and DEPTH-ATTENTION methods,
derived from our full (caption-based) approach, outper-
form both DEPTH-OICR-ALT and DEPTH-ATTENTION-
ALT. Note that the depth range r. remains consistent across
all images in this alternative method. Conversely, in the pro-
posed approach, the depth range dr. is computed individu-
ally for each image by taking into account the correspond-
ing caption, as visualized in Fig. 3. As a result, the pro-
posed approach demonstrates enhanced capacity in model-
ing depth priors through the utilization of captions.

Generalization of depth priors. Even though on CC we
use the depth priors calculated from COCO, our proposed
method exhibits a more substantial enhancement in CC
performance compared to COCO, achieving an improve-
ment of 63% mAPsy over the MIST baseline (50% im-
provement from DEPTH-OICR alone). Thus, our DEPTH-
OICR demonstrates generalization, as it has a higher impact
than FUSION on CC (without recomputing priors), in con-
trast to COCO. Given the recent interest in learning from

vision-language data, our approach has the potential to be
highly impactful. Further, we compared the priors esti-
mated from different datasets, and found them to be sim-
ilar. In particular, 82.3% of PASCAL objects fit within
the [mean — stdev, mean + stdev] range computed from
COCO, and 84.4% when the range is computed on PAS-
CAL itself; the cross-domain gap in the range is small.

Qualitative analysis. We visualize the object detection
performance of our proposed WSOD- AMPLIFIER compared
to MIST [30] in Fig. 4. The confidence scores are calcu-
lated using visual detection v?* and classification scores
v, We show boxes with scores higher than 0.5. In the first
image, the baseline struggles to accurately identify multi-
ple instances of the same “vase” objects, instead grouping
them together in a single box. Our method overcomes this
challenge, precisely detecting each individual “vase”. In
the second image, the baseline faces the problem of part
domination due to some discriminative parts of a “zebra”.
Our method overcomes this issue by utilizing depth modal-
ity during training, which emphasizes the geometric varia-
tions of objects, while comparatively ignoring the complex
background. In other images, unlike our method, the base-
line misses objects entirely, or produces large and impre-
cise bounding boxes. Moreover, the boxes detected by our
method tend to have higher prediction scores.

Conclusion. We show depth boosts weakly-supervised
object detection methods, tested on SoS-WSOD and MIST,
without extra annotation or costly computation. Our
Siamese WSOD network efficiently incorporates RGB and
depth with contrastive learning and fusion. Using the rela-
tion of language and depth, depth priors estimate the bound-
ing box proposals that may contain an object of interest.

Acknowledgement: This work was supported by a Na-
tional Science Foundation Award No. 2046853, and a Uni-
versity of Pittsburgh Momentum Funds award.

746



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

Hakan Bilen and Andrea Vedaldi. Weakly supervised
deep detection networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2846-2854, 2016. 2, 3,4

P Cammack and JM Harris. Depth perception in disparity-
defined objects: finding the balance between averaging and
segregation. Philosophical Transactions of the Royal Society
B: Biological Sciences, 371(1697):20150258, 2016. 1

Hao Chen and Youfu Li. Progressively complementarity-
aware fusion network for rgb-d salient object detection. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 3051-3060,
2018. 2

Kai Chen, Hang Song, Chen Change Loy, and Dahua Lin.
Discover and learn new objects from documentaries. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. 2

Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International Journal of Computer
Vision, 88:303-308, 2009. 6

Deng-Ping Fan, Zheng Lin, Zhao Zhang, Menglong Zhu, and
Ming-Ming Cheng. Rethinking rgb-d salient object detec-
tion: Models, data sets, and large-scale benchmarks. IEEE
Transactions on Neural Networks and Learning Systems,
32(5):2075-2089, 2020. 2

Alex Fang, Gabriel Ilharco, Mitchell Wortsman, Yuhao Wan,
Vaishaal Shankar, Achal Dave, and Ludwig Schmidt. Data
determines distributional robustness in contrastive language
image pre-training (clip). In International Conference on
Machine Learning (ICML), pages 6216-6234. PMLR, 2022.
6,7

Guang Feng, Jinyu Meng, Lihe Zhang, and Huchuan Lu.
Encoder deep interleaved network with multi-scale aggrega-
tion for rgb-d salient object detection. Pattern Recognition,
128:108666, 2022. 2

Keren Fu, Deng-Ping Fan, Ge-Peng Ji, and Qijun Zhao. JI-
dcf: Joint learning and densely-cooperative fusion frame-
work for rgb-d salient object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3052-3062, 2020. 2

Keren Fu, Deng-Ping Fan, Ge-Peng Ji, Qijun Zhao, Jianbing
Shen, and Ce Zhu. Siamese network for rgb-d salient object
detection and beyond. [EEE Transactions on Pattern Anal-
ysis and Machine Intelligence (TPAMI), 44(9):5541-5559,
2021. 2

Mingfei Gao, Chen Xing, Juan Carlos Niebles, Junnan Li,
Ran Xu, Wenhao Liu, and Caiming Xiong. Open vocabu-
lary object detection with pseudo bounding-box labels. In
European Conference on Computer Vision (ECCV), 2022. 2
Cagri Gungor and Adriana Kovashka. Complementary cues
from audio help combat noise in weakly-supervised object
detection. In Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV), pages
2185-2194, 2023. 2

(13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

747

Michael Gutmann and Aapo Hyvérinen. Noise-contrastive
estimation: A new estimation principle for unnormalized
statistical models. In Proceedings of the thirteenth inter-
national conference on artificial intelligence and statistics,
pages 297-304. JMLR Workshop and Conference Proceed-
ings, 2010. 4

Junwei Han, Hao Chen, Nian Liu, Chenggang Yan, and Xue-
long Li. Cnns-based rgb-d saliency detection via cross-view
transfer and multiview fusion. IEEE Transactions on Cyber-
netics, 48(11):3171-3183, 2017. 2

Judy Hoffman, Saurabh Gupta, and Trevor Darrell. Learn-
ing with side information through modality hallucination. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 826—834, 2016.
2

Haiwen Huang, Andreas Geiger, and Dan Zhang. Good:
Exploring geometric cues for detecting objects in an open
world. In International Conference on Learning Representa-
tions (ICLR), 2023. 2

Tanveer Hussain, Abbas Anwar, Saeed Anwar, Lars Peters-
son, and Sung Wook Baik. Pyramidal attention for saliency
detection. In 2022 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), pages
2877-2887. IEEE, 2022. 2

Naoto Inoue, Ryosuke Furuta, Toshihiko Yamasaki, and Kiy-
oharu Aizawa. Cross-domain weakly-supervised object de-
tection through progressive domain adaptation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5001-5009, 2018. 6
Jianbo Jiao, Yunchao Wei, Zequn Jie, Honghui Shi, Ryn-
son WH Lau, and Thomas S Huang. Geometry-aware distil-
lation for indoor semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2869-2878, 2019. 2

Minhyeok Lee, Chaewon Park, Suhwan Cho, and Sangyoun
Lee. Spsn: Superpixel prototype sampling network for rgb-d
salient object detection. In Computer Vision-ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23—
27, 2022, Proceedings, Part XXIX, pages 630—647. Springer,
2022. 2

Jingjing Li, Wei Ji, Qi Bi, Cheng Yan, Miao Zhang, Yongri
Piao, Huchuan Lu, et al. Joint semantic mining for weakly
supervised rgb-d salient object detection. Advances in Neu-
ral Information Processing Systems, 34:11945-11959, 2021.
2

Yabei Li, Zhang Zhang, Yanhua Cheng, Liang Wang, and
Tieniu Tan. Mapnet: Multi-modal attentive pooling network
for rgb-d indoor scene classification. Pattern Recognition,
90:436-449, 2019. 2

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dolldr, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision—-ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740-755. Springer, 2014. 6

Johannes Meyer, Andreas Eitel, Thomas Brox, and Wolfram
Burgard. Improving unimodal object recognition with multi-
modal contrastive learning. In 2020 IEEE/RSJ International



[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

Conference on Intelligent Robots and Systems (IROS), pages
5656-5663. IEEE, 2020. 2, 3

S Mahdi H Miangoleh, Sebastian Dille, Long Mai, Syl-
vain Paris, and Yagiz Aksoy. Boosting monocular depth
estimation models to high-resolution via content-adaptive
multi-resolution merging. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 9685-9694, 2021. 2, 3

Yongri Piao, Wei Ji, Jingjing Li, Miao Zhang, and Huchuan
Lu. Depth-induced multi-scale recurrent attention network
for saliency detection. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
7254-7263, 2019. 2

Lianggiong Qu, Shengfeng He, Jiawei Zhang, Jiandong
Tian, Yandong Tang, and Qingxiong Yang. Rgbd salient ob-
ject detection via deep fusion. IEEE Transactions on Image
Processing, 26(5):2274-2285, 2017. 2

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 12179-12188, 2021. 2

René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI), 44(3):1623-1637, 2020. 2
Zhongzheng Ren, Zhiding Yu, Xiaodong Yang, Ming-
Yu Liu, Yong Jae Lee, Alexander G Schwing, and Jan
Kautz.  Instance-aware, context-focused, and memory-
efficient weakly supervised object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020. 2,5,6,7, 8

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual captions: A cleaned, hypernymed, im-
age alt-text dataset for automatic image captioning. In Pro-
ceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
2556-2565, 2018. 6

Hwanjun Song, Eunyoung Kim, Varun Jampan, Deqing Sun,
Jae-Gil Lee, and Ming-Hsuan Yang. Exploiting scene depth
for object detection with multimodal transformers. In 32nd
British Machine Vision Conference (BMVC), pages 1-14.
British Machine Vision Association (BMVA), 2021. 2

Lin Sui, Chen-Lin Zhang, and Jianxin Wu. Salvage of super-
vision in weakly supervised object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 14227-14236, 2022. 2, 5,
6,7

Peng Tang, Xinggang Wang, Song Bai, Wei Shen, Xiang Bai,
Wenyu Liu, and Alan Yuille. Pcl: Proposal cluster learn-
ing for weakly supervised object detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI),
42(1):176-191, 2018. 2, 5

Peng Tang, Xinggang Wang, Xiang Bai, and Wenyu Liu.
Multiple instance detection network with online instance
classifier refinement. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR),2017. 2,3,5

(36]

(37]

(38]

(39]

(40]

[41]

(42]

[43]

[44]

748

Mesut Erhan Unal, Keren Ye, Mingda Zhang, Christopher
Thomas, Adriana Kovashka, Wei Li, Danfeng Qin, and Jesse
Berent. Learning to overcome noise in weak caption super-
vision for object detection. [EEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 2022. 2, 6,7
Fang Wan, Chang Liu, Wei Ke, Xiangyang Ji, Jianbin Jiao,
and Qixiang Ye. C-mil: Continuation multiple instance
learning for weakly supervised object detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019. 2

Keren Ye, Mingda Zhang, Adriana Kovashka, Wei Li, Dan-
feng Qin, and Jesse Berent. Cap2det: Learning to amplify
weak caption supervision for object detection. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (CVPR), pages 9686-9695, 2019. 2,7

Wei Yin, Jianming Zhang, Oliver Wang, Simon Niklaus,
Long Mai, Simon Chen, and Chunhua Shen. Learning to
recover 3d scene shape from a single image. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 204-213, 2021. 2
Xiaowen Ying and Mooi Choo Chuah. Uctnet: Uncertainty-
aware cross-modal transformer network for indoor rgb-d se-
mantic segmentation. In Computer Vision-ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23-27, 2022,
Proceedings, Part XXX, pages 20-37. Springer, 2022. 2
Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-
Fu Chang. Open-vocabulary object detection using cap-
tions. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 14393—
14402, 2021. 2

Zhijie Zhang, Yan Liu, Junjie Chen, Li Niu, and Liqging
Zhang. Depth privileged object detection in indoor scenes
via deformation hallucination. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages
3456-3464, 2021. 2

Feng Zhou, Yu-Kun Lai, Paul L Rosin, Fengquan Zhang, and
Yong Hu. Scale-aware network with modality-awareness
for rgb-d indoor semantic segmentation. Neurocomputing,
492:464-473,2022. 2

Chunbiao Zhu, Xing Cai, Kan Huang, Thomas H Li, and Ge
Li. Pdnet: Prior-model guided depth-enhanced network for
salient object detection. In 2019 IEEE International Con-
ference on Multimedia and Expo (ICME), pages 199-204.
IEEE, 2019. 2



