
Reducing the Side-Effects of Oscillations in Training of Quantized
YOLO Networks

Kartik Gupta Akshay Asthana
Seeing Machines, Australia

{kartik.gupta,akshay.asthana}@seeingmachines.com

Abstract

Quantized networks use less computational and mem-
ory resources and are suitable for deployment on edge de-
vices. While quantization-aware training (QAT) is a well-
studied approach to quantize the networks at low precision,
most research focuses on over-parameterized networks for
classification with limited studies on popular and edge de-
vice friendly single-shot object detection and semantic seg-
mentation methods like YOLO. Moreover, majority of QAT
methods rely on Straight Through Estimator (STE) approx-
imation which suffers from an oscillation phenomenon re-
sulting in sub-optimal network quantization. In this pa-
per, we show that it is difficult to achieve extremely low
precision (4-bit and lower) for efficient YOLO models even
with SOTA QAT methods due to oscillation issue and ex-
isting methods to overcome this problem are not effective
on these models. To mitigate the effect of oscillation, we
first propose Exponentially Moving Average (EMA) based
update to the QAT model. Further, we propose a simple
QAT correction method, namely QC, that takes only a single
epoch of training after standard Quantization-Aware Train-
ing (QAT) procedure to correct the error induced by os-
cillating weights and activations resulting in a more accu-
rate quantized model. With extensive evaluation on COCO
dataset using various YOLO5 and YOLO7 variants, we show
that our correction method improves quantized YOLO net-
works consistently on both object detection and segmenta-
tion tasks at low-precision (4-bit and 3-bit).

1. Introduction

Deep neural networks have achieved remarkable suc-
cess in various applications, including image classification,
object detection, and semantic segmentation. However,
deploying these models on edge devices such as mobile
phones, smart cameras, and drones poses a significant chal-
lenge due to their limited computational and memory re-
sources. These devices typically have limited battery life,

storage capacity, and processing power, making it chal-
lenging to execute complex neural networks. To overcome
these challenges, researchers have developed techniques for
optimizing neural networks to reduce their computational
and memory requirements while maintaining their accuracy.
One such line of research is QAT, which reduces the num-
ber of bits used to represent the network parameters, and
activations resulting in smaller model sizes and faster infer-
ence times. Existing QAT [9,16,21,23] methods have made
remarkable progress in quantizing neural networks at ultra-
low precision with the effectiveness of Straight Through
Estimator (STE) approximation still being a point of study.
Previous works [10, 32] have proposed smooth approxima-
tion of rounding function to avoid the use STE approxima-
tion but STE is still considered to be the de-facto method
for approximating gradient of quantization function dur-
ing propagation due to its simplicity. Furthermore, recent
works [7, 25] have shown oscillation issue affects quantiza-
tion performance of efficient network architecture at low-
precision due to STE approximation in QAT.

Apart from that, the majority of QAT literature fo-
cuses on image classification, and quantization performance
achieved on such classification tasks does not necessarily
translate onto downstream tasks such as object detection,
and semantic segmentation. In this paper, we focus on the
more challenging task of quantizing the single-shot efficient
detection networks such as YOLO5 [30] and YOLO7 [31]
at low-precision (3-bits and 4-bits). Furthermore, we show
that the oscillation issue is even more prevalent on these
networks and the gap between full-precision and quantized
performance is far from what is usually observed in QAT lit-
erature. We also show that apart from latent weights, learn-
able scale factors for both weights and activations are also
affected by the oscillation issue in YOLO models and la-
tent weights around quantization boundaries are sometimes
closer to optimality than quantization levels. This indicates
that per-tensor quantization worsens the issue of oscillation.

To deal with the issues of oscillations in YOLO, we
propose Exponential Moving Average (EMA) in QAT, that
smoothens out the effect of oscillations and Quantization

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2452

Correction (QC), that corrects the error induced due to os-
cillation after each quantized layer as a post-hoc step after
performing QAT. By mitigating side-effects of oscillations,
these two methods in combination achieve state-of-the-art
quantization results at 3-bit and 4-bit on YOLO5 and YOLO7
for both object detection and semantic segmentation on ex-
tremely challenging COCO dataset.

Below we summarize the contributions of this paper:

• We show that quantization on most recent efficient YOLO
models such as YOLO5 and YOLO7 is extremely challeng-
ing even with state-of-the-art QAT methods due to oscil-
lation issue.

• Our analysis finds that the oscillation phenomenon does
not only affect latent weights but also affects the training
of learnable scale factors for both weights and activations.

• We propose two simple methods namely EMA and QC,
that can be used in combination with any QAT technique
to reduce the side-effects of oscillations during QAT on
efficient networks.

• With extensive experiments on COCO dataset for both ob-
ject detection and semantic segmentation tasks, we show
that our methods in combination consistently improve
quantized YOLO5 and YOLO7 variants and establish a
state-of-the-art at ultra-low precision (4-bits and 3-bits).

2. Related Work
Quantization-Aware Training. In recent years, model
quantization has been a topic of great interest in the deep
learning community due to neural networks continuously
scaling exponentially in terms of compute. Neural network
quantization approaches can be broadly categorized into:
Post-training Quantization (PTQ) and Quantization-Aware
Training (QAT). Though PTQ [2, 22, 23, 26] is faster and
does not rely on whole training data, it yields significant
performance degradation at low-bit precision. QAT is the
focus of our work, and it has been well-studied in litera-
ture [6, 9, 10, 14, 21, 33].

The STE is a de-facto method for backpropagating
through the non-differentiable rounding function in QAT.
The effectiveness of STE has been the point of argument
in recent literature. Ajanthan et al. [1] proposed a mir-
ror descent formulation for neural network quantization
and established the connection between STE approximation
and mirror descent framework for constrained optimization.
Lee et al. [14] showed that the STE leads to bias in gradi-
ents and proposed gradient scaling by the distance of latent
weights from quantization boundaries. Gong et al. [10] at-
tempt to mitigate the issues caused by STE for low-bit quan-
tization by using differentiable hyperbolic tangent functions
to simulate the rounding function in the backward pass.

Similar to that, Yang et al. [32] approximate the rounding
function using smooth sigmoid functions to address the gra-
dient bias in STE.

Recent works [7,25] have identified oscillation as a side-
effect of STE approximation during QAT. Defossez et al. [7]
proposed additive Gaussian noise to mimic the quantization
noise and replace it as quantization operation during QAT
to prevent weight oscillations and biased gradients result-
ing from STE. Nagel et al. [25] also showed that weight
oscillation seriously impacts QAT performance, specifically
on efficient networks comprising depth-wise convolutions
due to STE approximation of rounding function. They
propose to constrain the latent weights to avoid oscilla-
tion by either regularizing them to their quantized states
or by freezing them. Recently, Liu et al. [20] studied the
issue of oscillations on vision transformers and proposed
fixed scale factors for weight quantization and query-key
re-parameterization to mitigate the negative influence of os-
cillation. However, their proposed approach is specifically
targeted at solving oscillation phenomenon on transformers
architecture.

Quantization of Object Detectors. The majority of ex-
isting neural network quantization literature focuses on the
image classification task rather than real-world downstream
tasks such as object detection or semantic segmentation.
Some recent works do explore the quantization of object
detectors to improve the efficiency of these models. Jacob
et al. [15] proposed a quantization scheme using integer-
only arithmetic and performing object detection on COCO
dataset but the approach is only effective for 8-bit quanti-
zation. Li et al. [17] observed training instability during
the quantized fine-tuning of RetinaNet and propose mutli-
ple solutions specific to RetinaNet architecture. These so-
lutions are not applicable on more efficient object detectors
like YOLO. Ding et al. [8] proposed ADMM based weight
quantization framework for YOLO3 but do not address the
issue of oscillations and activation quantization. Due to
the discrete nature of quantization functions, gradient esti-
mates are known to be noisy, which affects Stochastic Gra-
dient Descent (SGD) updates. To overcome that, Zhuang et
al. [34] proposed to utilize a full precision auxiliary module
to enable stable training of quantized object detectors. Fur-
thermore, Zhuang et al. [5] proposed multi-level Batch Nor-
malization (BN) to accurately calculate batch statistics for
each pyramid level in RetinaNet [18] and FCOS [29]. The
proposed approach is specific to pyramid-level architecture
in RetinaNet and FCOS that share BN layers at different
levels of the pyramid, but not applicable on more recent ef-
ficient SOTA YOLO models. In this paper, we identify the
gap in the recent literature on quantized object detection and
introduce state-of-the-art quantized object detectors using
YOLO5 [30] and YOLO7 [31] variants.

2453

0 50 100 150 200 250 300
Training steps

0.70

0.72

0.74

0.76

0.78

(a)

0 50 100 150 200 250 300
Training steps

0.70

0.72

0.74

0.76

0.78

0.80

(b)

0 50 100 150 200 250 300
Training steps

0.750

0.775

0.800

0.825

0.850

0.875
Latent Weight
Quant Threshold
Quant. Weight
Optimal Weight

(c)
Figure 1. A toy 3D regression problem to demonstrate the oscillation issue in weight and activation quantization. (a),(b) and (c) Trajectory
of different weights during the optimization. Here, it can be seen that oscillation not only affects the latent weights but also the learnable
scale factors. Here, ”quantization threshold” refers to the quantization boundary in the latent space.

0 50 100 150 200 250 300
Training Steps

0.47

0.48

0.49

0.50 Activation Quantization Threshold

Figure 2. Trajectory of activation quantization threshold during
training for same toy example as in Fig. 1. Even the scale factors
for activation quantization oscillate during the optimization.

3. Preliminaries
Here we provide a brief background on the quantization-

aware training (QAT) and introduce the issue of oscillations
in QAT using a small toy example.

3.1. Quantization-aware Training (QAT)

Quantization-aware training can be achieved by simu-
lating the quantized computational operations during the
training of the neural networks. The forward pass of the
neural network is encapsulated with a quantization function
q(·) that converts full-precision weights and activations into
quantized weights and activations. It takes input vector w
and returns quantized output ŵ given by:

ŵ = q(w; s, u, v) = s · clip
(⌊w

s

⌉
, u, v

)
, (1)

where ⌊·⌉ is the round-to-nearest operator, clip (·, b, c)
is a clipping function with lower and upper bounds b and
c, respectively, s is a quantization scale factor. Here, u
and v denote the minimum and maximum range after the
quantization. The scale factor s can be learned [4, 9] dur-
ing quantization-aware training through backpropagation
by approximating the gradient of the rounding operator with
STE. The original full-precision weights w are commonly

referred to as latent weights and gradient descent is per-
formed only on the latent weights for the update. During
inference, the quantized weights ŵ are used to compute the
convolutional or dense layer output.

Due to the non-differentiability of the quantization func-
tion, it is non-trivial to backpropagate through the neural
network embedded with such an operation. To this pur-
pose, a commonly used technique for alleviating this issue
involves using the straight-through estimator (STE) [3, 12].
The basic idea of STE is to approximate the gradient of the
rounding operator as 1 within the quantization limits.

3.2. Oscillations in QAT

Recent works [7, 25] observed the oscillation phe-
nomenon as a side-effect of quantization-aware training
with STE approximation. Due to STE approximation that
passes the gradient through the quantization function, the
latent weights oscillate around the quantization threshold.

We illustrate the oscillation phenomenon in STE based
QAT using a 3D toy regression problem with both weights
and input quantization at 1-bit. Here, we optimize a latent
weight vector w and scale factors sw, sx for weights and
activations respectively with the following objective:

argmin
w,sw,sx

L(w, sw, sx) = Ex∼U ∥xw∗ − q(x, sx)q(w, sw)∥

(2)
Here, w∗ refers to the optimal ground truth value and

q(·) is the quantization function defined in Eq. (1). We
randomly sample data vector x from a uniform distribu-
tion U within range [0, 1). The oscillation behavior during
the optimization is shown in Fig. 1. Note that the quan-
tized weights oscillate around the quantization threshold in-
stead of converging close to the optimal value in Fig. 1a,
Fig. 1b, and Fig. 1c. Though the underlying reason for os-
cillation of quantized weights in Fig. 1b is the oscillation of
latent weights, oscillation of quantized weights in Fig. 1a
and Fig. 1c happens due to oscillation of learnable scale
factors. Furthermore, this oscillation behavior is not just re-
stricted to quantized weights but also impacts the quantized

2454

0.1 0.0 0.1
0

10

20

30

40

50

60
Latent Weight Distribution

Latent Weights
Quantization Levels

(a)

0 5000 10000 15000

0.00275
0.00250
0.00225

2nd conv layer

0 5000 10000 15000
Training Iterations

0.0010

0.0012

0.0014

5th conv layer

(b)

0 1000 2000 3000

0.4300

0.4305 2nd conv layer

0 1000 2000 3000
Training Iterations

0.53200
0.53225
0.53250 5th conv layer

(c)
Figure 3. Oscillation issue in YOLO5-n variant trained on COCO dataset at 4-bit precision using LSQ [9]. (a) Latent weight distributions
of 5th convolution layer in YOLO5-n, and Scale factors for (b) weight quantization during the last 15K iterations, (c) Scale factors for
activation quantization during the last 3K iterations of QAT in YOLOv5-n. Here, it can be clearly observed that latent weights peak exactly
at quantization thresholds. Also, both quantization scale factors of weights and activations are not stable even until the end of training.

activations as can be observed in Fig. 2. In the case of ac-
tivation quantization, scale factors for activations oscillate
as well and this can lead to further performance degrada-
tion of quantized models due to sub-optimal minima. Here,
we would like to point out that previous work [25] only ac-
counts for the issue of oscillation of latent weights, whereas
we show oscillations in learnable scale factors can lead to
performance degradation during QAT.

4. Side-effects of Oscillations in YOLO

The issue of oscillating weights and activations in
quantization-aware training is not just restricted to a small
toy problem but occurs in practice on YOLO networks
[30,31] trained for the task of object detection and semantic
segmentation. This leads to a significant loss in the accu-
racy of quantized YOLO models. In this section, we show
the evidence of oscillation issue prevalent in weights and
activations of quantized YOLO networks and how learning
a single scale factor for each tensor is the underlying cause
for sub-optimal latent weights.

4.1. Oscillation Issue in YOLO networks

We demonstrate the oscillation issue in YOLO networks
using the latent weight distribution of 5th layer in YOLO5-n
variant [30] trained with 4-bit quantization on COCO dataset
[19] using Learnable Step-size Quantization (LSQ) [9] with
STE approximation in Fig. 3a. Most of the latent weights lie
in between the quantization levels and the peaks of distri-
bution lie on quantization thresholds rather than the quan-
tization levels itself. Since most of the latent weights lie
around quantization thresholds, they tend to keep switching
their quantization state even at the end of the training as also
shown in [25]. Further, we plot the learnable scale factors
used to quantize weights as well as activations in Fig. 3b and
Fig. 3c respectively. The quantization scale factors remain
unstable even until the end of quantization-aware training.
The oscillation issue does not only affect the latent weights

Table 1. Comparison between hard-rounding and soft-rounding
(k=0.45). Here, soft-rounding outperforms hard-rounding func-
tion which is actually even used during QAT.

Method #-bits YOLO5-n YOLO5-s

Full precision FP 28.0 37.4

Hard Rounding
4-bit 20.6 32.5
3-bit 15.2 27.2

Soft Rounding
4-bit 21.2 32.6
3-bit 16.2 27.7

but also affects the scale factors of both weights and acti-
vations. This leads to a sub-optimal quantization state of
both weights and activations of the final QAT model. Here,
we would like to highlight that previous work [25] observed
the issue of oscillations in latent weights but here we show
that oscillation also affects quantization scale factors corre-
sponding to weights and activations.

4.2. Analysis using threshold-based Soft-Rounding

Oscillation dampening [25] was introduced as one of the
techniques to reduce the side-effect of oscillations. This
method in essence regularizes the latent weights such that
the distribution of latent weights and quantization weights
overlap each other. We step away from that and look at the
optimality of latent weights in their un-quantized state. For
this analysis, we modify the original quantization to deduce
a soft-rounding function that allows quantizing the weights
closer to quantization levels and leave the latent weights
around the quantization threshold in their latent state. We
describe our soft-rounding function q∗ that can be used to
softly round weights or activations using a threshold k as

w∗ = q∗(w; s, u, v) = s · clip
(

softround
(w
s

)
, u, v

)
,

(3)

2455

where softround (x) =

{
⌊x⌉ if |x− ⌊x⌉| ≤ k

x otherwise.

This soft-rounding function can be used on both weights
and activations to evaluate whether latent weights and ac-
tivations stuck at the quantization thresholds (see Fig. 3a)
are already closer to their optimal state. We replace the
quantization function described in Eq. (1) with this soft-
rounding function (at k = 0.45) in all the quantized layers
of pre-trained quantized YOLO models and evaluate the per-
formance on COCO dataset and the results are presented in
Table 1. Surprisingly, we found that the weights or activa-
tions in their latent state produce equivalent or better perfor-
mance than the ones in the quantized state. This indicates
that latent weights oscillate around the quantization bound-
aries partly because not all weights or activations within a
tensor can be quantized with the same single scale factor
as in the case of per-tensor quantization. If a single scale
factor per-tensor is chosen, some weights can never reach
optimality due to the limitation of per-tensor quantization.

5. Approach
In this section, we first provide the notations and formu-

late the quantization-aware training optimization problem
with learnable scale factors. Then, we introduce our two
simple methods to deal with side-effects of error induced
due to oscillation in network parameters during QAT.

Problem setup. For notational convenience, we con-
sider a fully-connected neural network with weights
Wl ∈ IRNl×Nl−1 , biases bl ∈ IRNl−1 , pre-activations hl ∈
IRNl , and post-activations al ∈ IRNl , for l ∈ {1, . . . , ℓ} up
to K layers. Then, the feed-forward dynamics of the neural
network with simulated quantization can be formulated as:

al = ϕ(BatchNorm(hl)) , hl = Ŵlâl−1 + bl ,
(4)

where Ŵl = q(Wl, slW), âl−1 = q(al−1, sl−1
a).

Here ϕ : IR → IR is an elementwise nonlinearity, and the
input is denoted by a0 = x0 ∈ IRN. We denote quan-
tized weights and activations by Ŵl and âl respectively
and use slW, sla to represent their respective quantization
scale factors. For simplicity of notation, we further also ex-
press network weight parameters corresponding to all the
layers as W = {Wi}ℓi=1. Similarly, we represent the vec-
tor corresponding to all scale factors for quantization of
various weight tensors as sW = {siW}ℓi=1 and scale fac-
tors for quantization of activation tensors as sa = {sia}ℓi=1.
Given dataset D = {xi,yi}ni=1, the typical neural network
optimization problem for quantization-aware training with
learnable scale factors can then be formulated as:

argmin
W,sw,sa

L(W, sw, sa;D). (5)

We now explain our two simple techniques to overcome the
issue of oscillating weights and scale factors and compen-
sate for sub-optimal latent weights stuck at the quantization
boundaries.

5.1. Exponential Moving Average (EMA) to
Smoothen effect of Oscillations

Weight averaging of multiple local minima by using
multiple model checkpoints attained at cyclic learning rates
with restarts, has been shown [13, 28] to lead to better gen-
eralization and wider minima. The idea of using weight
averaging for final model inference was earliest suggested
in [27]. Later, the semi-supervised learning method [28]
and self-supervised learning methods [11] utilized exponen-
tial moving average of weights to learn in a knowledge dis-
tillation manner.

To overcome the oscillating weights and quantization
scale factors due to STE approximation, we propose expo-
nential moving average of latent weights and scale factors
for both weights and activations during the optimization.
STE approximation approach leads to latent weights moving
around the quantization boundary which leads to constantly
changing latent weight states. Exponential moving average
can take into account model weights at the last several steps
of training and smoothen out the oscillation behavior and
come up with the best possible latent state for oscillating
weights. The final quantized state inference can be done us-
ing EMA weights and quantization parameters instead of the
latest update.

For trainable network weight parameters Wl
(t) at layer

l, we can compute the corresponding exponentially moving
average weights W′ l

(t) at t iteration as:

W′ l
(t) = α ·W′ l

(t−1) + (1− α) ·Wl
(t). (6)

Similarly, we can also calculate the exponential moving av-
erage scale factors for both weights and activations as:

s′W (t) = α · s′W (t−1) + (1− α) · sW (t) (7)

s′a (t) = α · s′a (t−1) + (1− α) · sa (t). (8)

Here, α is used as a decay parameter that can be tuned
to account for approximately 1/(1 − α) last SGD updates
to achieve the EMA model. We keep the decay parameter
α to be 0 at the start of the QAT procedure to enable larger
updates at the start of the training. The EMA parameters are
updated after end of every iteration of the training update
and thus do not require backpropagation. It is important to
note here that oscillation dampening and iterative freezing
proposed in [25], are only applicable on weights but oscil-
lation issue due to scale factors is even present in activation
quantization as shown in Sec. 2. To overcome that issue,
EMA on scale factors of activations can tackle it more ap-
propriately. Furthermore, we would also highlight here that

2456

other non-trainable parameters such Batch Normalization
(BN) statistics in deep neural networks already utilize expo-
nential moving average can improve the unstable BN statis-
tics if the momentum value is chosen appropriately. Recent
methods [25], suggested that BN Statistics re-estimation en-
ables improvement in the corrupted BN statistics occurring
due to oscillation of latent weights. We would like to men-
tion that corrupted BN statistics is not the only reason for
performance degradation resulting from oscillations in QAT.
Nevertheless, our EMA models yield stable updates to both
latent weight, activations, and their respective scale factors.

5.2. Post-hoc Quantization Correction (QC)

In this section, we propose a simple correction step that
can be performed in a post-hoc manner after quantization-
aware training to overcome the error induced by oscillat-
ing latent weights and scale factors. As shown empiri-
cally in the Sec. 4, oscillation results in the majority of la-
tent weights hanging at the quantization boundaries. We
have further shown in Sec. 4.2 that latent weights hanging
at quantization boundaries are already closer to optimality
than their nearest quantization levels as the soft-rounded
(based on Eq. (3)) YOLO models yield better performance
than quantized ones. The oscillation of scale factors mainly
happens due to ineffective quantization with a single quan-
tization scale factor per-tensor apart from the bias of STE
approximation. Intuitively, different regions in the tensor
might require different scale factors for an accurate quan-
tized approximation.

Our post-hoc correction quantization step simply trans-
forms the pre-activations hl ∈ IRNl of all l layers using an
affine function, to compensate for error induced in matrix
multiplications due to oscillations during the quantization-
aware training. We can now formulate the modified feed-
forward dynamics of the quantized neural network for the
post-hoc error correction step as:

h̃l = γl · hl + βl , hl = Ŵlâl−1 + bl , (9)

al = ϕ(BatchNorm(h̃l)) (10)

Here, h̃l denotes the modified pre-activations after the affine
transformation in layer l. Also, for layer l we represent the
affine function with scale correction parameters γl ∈ IRNl

and shift correction parameters βl ∈ IRNl . For simplicity of
notation, we further express a set of all correction scale pa-
rameters with G = {γi}ℓi=1 and correction shift parameters
with B = {βi}ℓi=1. We initialize these correction parame-
ters as identity transformation. We then optimize for these
correction parameters via backpropagation starting from a
pre-trained QAT model with the following objective:

argmin
G,B

L(W,G,B, sw, sa;Dc). (11)

We train these correction parameters on a small calibra-
tion set Dc, which is also part of the training set. Notice
that, for a typical convolutional layer these correction fac-
tors will have dimensions the same as the number of output
channels after the convolution operation. We would like to
highlight that these extra set of correction parameters can
be absorbed in Batch Normalization (BN) trainable param-
eters generally succeeding a convolution layer and do not
result in an extra computational load on the hardware. It is
important to note that our correction step is different from
the BN re-estimation step [25] where BN statistics are re-
estimated on the dataset after QAT. BN re-estimation can-
not recover from quantization error accumulated in forward
propagation of quantized neural network, unlike our post-
hoc correction step. In fact, re-estimating BN statistics is
not required since the exponential moving average in BN
statistics can enable a stable state of statistics if the momen-
tum value is chosen appropriately. Furthermore, these cor-
rection parameters can also be stored as quantization scale
factors by converting per-tensor quantization to per-channel
quantization. The conversion from per-tensor quantization
to per-channel quantization is a natural outcome of batch
normalization folding [24] where batch normalization pa-
rameters are folded into the quantization scale factors of
weights to get rid of BN at inference. Previous work [25] on
weight oscillations in QAT only evaluate their quantization-
aware training mechanism on per-tensor quantization but
still keep the BN layers intact in train mode during the train-
ing. Their main motivation for oscillation avoidance is to
get rid of corrupted BN statistics during the training. How-
ever, general practise [23] to support per-tensor quantization
is to fold BN parameters before QAT.

6. Experiments

In this section, we evaluate the effectiveness of our pro-
posed EMA and QC mechanisms to deal with side-effects
of oscillations during QAT on various YOLO5 and YOLO7
variants on COCO dataset [19]. In all the experiments,
we perform both weights and activation quantization. We
present state-of-the-art results for low-precision (4-bit and
3-bit) on all YOLO5 and YOLO7 variants for object detec-
tion. We also compare our method against standard base-
lines such as LSQ [9] and Oscillation dampening [25]. We
also perform some ablation studies to reflect the improve-
ment of our method in comparison to per-channel quan-
tization. Finally, we establish a state-of-the-art quantized
YOLO5 model on the task of semantic segmentation using
COCO dataset. In summary, our results establish new state-
of-the-art for quantized YOLO5 and YOLO7 at low-bit pre-
cision while outperforming comparable baselines.

Experimental Setup. Similar to [25], we apply LSQ [9]
based weight and activation quantization. Since object de-

2457

Table 2. Our quantization-aware training performance using mAP metric for object detection task on the COCO dataset. * denotes first
and last layers are trained at 4-bit quantization.

Network # Params FP
Ours (EMA) Ours (EMA+ QC)

4-bit 3-bit 4-bit* 4-bit 3-bit 4-bit*

YOLO5-n 1.87M 28.0 22.1 16.3 16.5 23.8 18.2 20.4
YOLO5-s 7.23M 37.4 33.1 28.5 25.6 34.0 30.2 32.0
YOLO5-m 21.2M 45.2 42.1 38.5 38.5 42.8 40.0 40.1
YOLO5-l 46.6M 49.0 45.9 43.1 38.0 46.6 44.0 43.6
YOLO5-x 86.7M 50.7 47.8 45.9 40.6 47.9 46.8 45.2
YOLO7-tiny 6.23M 37.5 34.6 30.3 32.8 35.2 31.0 34.3
YOLO7 37.6M 51.2 48.7 46.2 46.3 48.9 46.8 47.6

tection is a complex downstream task and quantization can
be very challenging, following the practice of existing lit-
erature [9], we quantize the first and last layer with 8-bit.
During QAT, we use per-tensor quantization [16] and learn
the quantization scaling factor using backpropagation [9]
with a learning rate of 0.0001 in ADAM optimizer. Our QAT
starts from a pre-trained full-precision network and is per-
formed for 100 epochs. For all our QAT experiments, we
use EMA decay rate of 0.9999. In QC, we train using ADAM
optimizer with a learning rate of 0.0001 to learn the cor-
rection scale factors and shift factors. We train correction
factors for a single epoch while keeping the Batch Normal-
ization (BN) statistics fixed. Rest of hyperparameters are
used as default based on official YOLO51 and YOLO72 im-
plementations. Since, both LSQ and Oscillation dampening
perform experiments only on ImageNet, we reimplemented
their methods for the task of object detection on YOLO. All
our results are reported with standard object detection or
semantic segmentation metric, namely mAP. Our code is in
PyTorch and the experiments are performed on NVIDIA A-
40 GPUs.

6.1. Results on YOLO based object detection

We evaluate both of our EMA and QC techniques using
LSQ [9] on YOLO5 and YOLO7 variants on COCO dataset
for object detection task. We present results at different
levels of precision i.e. 3-bit, 4-bit, and 4-bit with even the
first and last layer quantized to 4-bit. The object detection
of quantized YOLO5 and YOLO7 networks obtained by our
proposed methods and their full precision (FP32) training
are reported in Table 2.

Our QC method just by performing a post-hoc correc-
tion step consistently improves the EMA significantly for all
different network architectures at 4-bit and 3-bit quantiza-
tion. The improvement are especially significant on most
efficient variants namely YOLO5-n and YOLO5-s at 3-bit
(≈ 4 − 6%) and 4-bit (≈ 2%). Furthermore, even in the
case of full quantization where even the first and last lay-

1YOLO5: https://github.com/ultralytics/yolov5
2YOLO7: https://github.com/WongKinYiu/yolov7

Table 3. Comparison between LSQ [9], Oscillation dampen-
ing [25], and our proposed method for quantization-aware train-
ing using mAP metric for object detection on COCO dataset.

Method #-bit YOLO5-n YOLO5-s YOLO7-tiny

Full-Precision 32-bit 28.0 37.4 37.5

LSQ [9]

4-bit

20.6 32.4 32.9
Osc. Damp. [25] 21.5 32.9 33.5
Ours (EMA) 22.1 33.1 34.6
Ours (EMA+QC) 23.8 34.0 35.2

LSQ [9]

3-bit

15.2 27.2 28.4
Osc. Damp. [25] 16.4 27.5 29.2
Ours (EMA) 16.4 28.5 30.3
Ours (EMA+QC) 18.2 30.2 31.0

ers are quantized, our 4-bit quantization results using QC
consistently improve on our QAT models trained with EMA.
This clearly shows that latent weights that are stuck along
the quantization thresholds can still be very useful if the er-
ror induced by those weights can be corrected using correc-
tion scale factors and shift factors learnt in our QC method.
Overall, our combined EMA and QC method can reduce the
gap between full precision models and 4-bit quantized mod-
els for all YOLO5 and YOLO7 variants with a margin of
around ≤ 2.5%.

6.2. Comparison against baselines

We also perform evaluation comparisons of our EMA and
QC techniques using LSQ [9] on YOLO5 and YOLO7 variants
on COCO dataset for object detection task against baseline
methods namely, LSQ [9] and Oscillation dampening [25]
at 4-bit and 3-bit quantization using YOLO5 and YOLO7 on
COCO dataset. Both LSQ [9] and Oscillation dampening
do not perform experiments on object detection and YOLO
networks, so we re-implement their methods to create the
baselines following their papers. The comparisons are done
using the mAP metric and the results are reported in Ta-
ble 3. Both our EMA and QC methods outperform LSQ
consistently and the gap between LSQ and QC is significant

2458

Table 4. Comparison between per-channel quantization against
our QC method. We train using EMA and LSQ at different bit-
width on COCO dataset. Note, * denotes first and last layers are
also trained at 4-bit quantization.

Network # Params #-bits
LSQ + Ours (EMA)

Per-tensor Per-channel Ours (QC)

YOLO5-n 1.87M
4-bit 22.1 22.1 23.8
3-bit 16.3 14.4 18.2
4-bit* 16.5 19.4 20.4

YOLO5-s 7.23M
4-bit 33.1 32.6 34.0
3-bit 28.5 27.3 30.2
4-bit* 25.6 31.2 32.0

YOLO7-tiny 6.23M
4-bit 34.6 32.3 35.2
3-bit 30.3 27.3 31.0
4-bit* 32.8 30.3 34.3

Table 5. Comparison with baseline method i.e., LSQ [9] against
our proposed methods using mAP metric for semantic segmenta-
tion task on the COCO dataset. * denotes first and last layers are
trained at 4-bit quantization. Our methods consistently outper-
forms baseline methods on both YOLO5-n,s variants at 3-bit and
4-bit quantization.

Method #-bit
Mask (mAP) Box (mAP)

YOLO5-n YOLO5-s YOLO5-n YOLO5-s

Full-Precision 32-bit 23.4 31.7 27.6 37.6

Baseline
4-bit

16.5 27.8 18.5 32.1
Ours (EMA) 17.7 28.3 19.8 32.6
Ours (EMA+QC) 19.5 29.4 22.3 33.7

Baseline
3-bit

12.5 23.9 14.1 27.1
Ours (EMA) 13.9 24.7 15.9 27.8
Ours (EMA+QC) 15.8 25.5 18.1 29.6

Baseline
4-bit*

15.7 26.0 17.1 30.0
Ours (EMA) 16.5 26.7 17.9 30.4
Ours (EMA+QC) 18.3 27.2 20.8 31.5

on both YOLO5 and YOLO7 architectures with a margin of
≈ 2− 3% consistently. Our EMA models are either compa-
rable or sometimes even better than Oscillation dampening,
reflecting the efficacy of EMA in reducing the effect of oscil-
lation, especially resulting from activation quantization as
oscillation dampening does not account for oscillation issue
in activation quantization. Furthermore, our QC method in-
creases the gap (≈ 2−3%) even further between our method
and Oscillation dampening across both YOLO5 and YOLO7
variants at 3-bit and 4-bit quantization.

6.3. Comparison against per-channel quantization

As mentioned in Sec. 5.2, QC scale and shift factors
can be folded either in the succeeding Batch Normaliza-
tion (BN) layer after the convolution layer or into quanti-

zation scale factors by converting per-tensor quantization
to per-channel quantization. It has been noted previously
that per-channel quantization tends to be more unstable [24]
for efficient networks with depth-wise convolutions due to
a single scale factor being learnt for a depth-wise convolu-
tion filter (for eg. with size 3 × 3). Therefore, we further
also provide experimental comparisons of our QC method
against per-channel quantization to reflect the efficacy of
our method in improving the stability of per-channel QAT
by choosing QC as a post-hoc correction step after QAT. For
this evaluation, we perform QAT with EMA using per-tensor
and per-channel quantization. We perform QC only in case
of per-tensor quantization and report the results in Table 4.
First of all, as previous studies also noted, it can be observed
that per-channel quantization with depth-wise convolutions
can sometimes be inferior to per-tensor quantization. Fur-
thermore, our QC method on per-tensor quantization con-
sistently produces better performance on both YOLO5 and
YOLO7 at 3-bit as well as 4-bit quantization with a margin
of ≈ 3− 4% on YOLO7 and ≈ 2− 4% on YOLO5 variants.

6.4. Results on YOLO based semantic segmentation

We further also evaluate our methods to quantize YOLO5
variants at 3-bit and 4-bit on semantic segmentation task.
We perform these experiments using COCO dataset and
present results with mAP metric for the box and segmen-
tation mask in Table 5. Similar to the observations in the
object detection task, our QC method consistently improves
the EMA method with a margin of ≈ 1−3% across YOLO5-
n and YOLO5-s variants quantized at 3-bit and 4-bit. Fur-
thermore, QC in combination with EMA reduces the gap be-
tween full precision counterparts consistently on both de-
tection box and segmentation mask metrics.

7. Discussion

In this work, we perform the first study for QAT on ef-
ficient real-time YOLO5, YOLO7 detectors and show that
these networks suffer from oscillation issue. We further
show that the oscillation issue does not only affect weight
quantization but also activation quantization on YOLO mod-
els. To mitigate side-effects of oscillations due to STE ap-
proximation of rounding function and per-tensor quantiza-
tion, we introduce two simple techniques, namely EMA and
QC. Our proposed QAT pipeline combining EMA and QC
produces a new state-of-the-art quantized YOLO models at
low-bit precision (3-bits and 4-bits). In future work, we
believe QC scale and shift factors can be generalized by es-
timating correction factors that are weighted for specific re-
gions in the tensors that could potentially lead to even fur-
ther performance gains.

2459

References
[1] Thalaiyasingam Ajanthan, Kartik Gupta, Philip Torr,

Richard Hartley, and Puneet Dokania. Mirror descent view
for neural network quantization. In Proceedings of The
24th International Conference on Artificial Intelligence and
Statistics, volume 130 of Proceedings of Machine Learning
Research, pages 2809–2817. PMLR, 13–15 Apr 2021. 2

[2] Ron Banner, Yury Nahshan, and Daniel Soudry. Post
training 4-bit quantization of convolutional networks for
rapid-deployment. Neural Information Processing Systems
(NeuRIPS), 2019. 2

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 3

[4] Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen
Blankevoort, and Nojun Kwak. Lsq+: Improving low-bit
quantization through learnable offsets and better initializa-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops,
June 2020. 3

[5] Peng Chen, Jing Liu, Bohan Zhuang, Mingkui Tan, and
Chunhua Shen. Aqd: Towards accurate quantized object
detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 104–113,
2021. 2

[6] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. PACT: parameterized clipping activa-
tion for quantized neural networks. arXiv preprint
arxiv:805.06085, 2018. 2

[7] Alexandre Défossez, Yossi Adi, and Gabriel Synnaeve.
Differentiable model compression via pseudo quantization
noise. Transactions on Machine Learning Research, 2022.
1, 2, 3

[8] Caiwen Ding, Shuo Wang, Ning Liu, Kaidi Xu, Yanzhi
Wang, and Yun Liang. Req-yolo: A resource-aware, efficient
quantization framework for object detection on fpgas. In pro-
ceedings of the 2019 ACM/SIGDA international symposium
on field-programmable gate arrays, pages 33–42, 2019. 2

[9] Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S. Modha.
Learned step size quantization. International Conference on
Learning Representations (ICLR), 2020. 1, 2, 3, 4, 6, 7, 8

[10] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li,
Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differen-
tiable soft quantization: Bridging full-precision and low-bit
neural networks. 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 4851–4860, 2019. 1, 2

[11] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in neural information
processing systems, 33:21271–21284, 2020. 5

[12] Geoffrey Hinton. Neural networks for machine learning, lec-
tures 15b. 2012. 3

[13] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry
Vetrov, and Andrew Gordon Wilson. Averaging weights
leads to wider optima and better generalization. arXiv
preprint arXiv:1803.05407, 2018. 5

[14] B. Ham J. Lee, D. Kim. Network quantization with element-
wise gradient scaling. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2021. 2

[15] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.
2

[16] Raghuraman Krishnamoorthi. Quantizing deep convolu-
tional networks for efficient inference: A whitepaper. arXiv
preprint arXiv:1806.08342, 2018. 1, 7

[17] Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Jun-
jie Yan, and Rui Fan. Fully quantized network for object
detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2810–2819,
2019. 2

[18] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 2

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 4, 6

[20] Shih-Yang Liu, Zechun Liu, and Kwang-Ting Cheng.
Oscillation-free quantization for low-bit vision transformers.
arXiv preprint arXiv:2302.02210, 2023. 2

[21] Zechun Liu, Kwang-Ting Cheng, Dong Huang, Eric P
Xing, and Zhiqiang Shen. Nonuniform-to-uniform quantiza-
tion: Towards accurate quantization via generalized straight-
through estimation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4942–4952, 2022. 1, 2

[22] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Chris-
tos Louizos, and Tijmen Blankevoort. Up or down? Adap-
tive rounding for post-training quantization. In Proceedings
of the 37th International Conference on Machine Learning,
Proceedings of Machine Learning Research, pages 7197–
7206. PMLR, 2020. 2

[23] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yely-
sei Bondarenko, Mart van Baalen, and Tijmen Blankevoort.
A white paper on neural network quantization. arXiv
preprint arXiv:2106.08295, 2021. 1, 2, 6

[24] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yely-
sei Bondarenko, Mart van Baalen, and Tijmen Blankevoort.
A white paper on neural network quantization. arXiv
preprint arXiv:2106.08295, 2021. 6, 8

[25] Markus Nagel, Marios Fournarakis, Yelysei Bondarenko,
and Tijmen Blankevoort. Overcoming oscillations in
quantization-aware training. In International Conference on

2460

Machine Learning, pages 16318–16330. PMLR, 2022. 1, 2,
3, 4, 5, 6, 7

[26] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and
Max Welling. Data-free quantization through weight equal-
ization and bias correction. International Conference on
Computer Vision (ICCV), 2019. 2

[27] Boris T Polyak and Anatoli B Juditsky. Acceleration of
stochastic approximation by averaging. SIAM journal on
control and optimization, 30(4):838–855, 1992. 5

[28] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. Advances in neural
information processing systems, 30, 2017. 5

[29] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS:
Fully convolutional one-stage object detection. In Proc. Int.
Conf. Computer Vision (ICCV), 2019. 2

[30] Ultralytics. YOLOv5: A state-of-the-art real-time object de-
tection system. https://docs.ultralytics.com,
2021. 1, 2, 4

[31] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Yolov7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors. Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2023. 1, 2, 4

[32] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li,
Bing Deng, Jianqiang Huang, and Xian-sheng Hua. Quan-
tization networks. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2019. 1, 2

[33] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and
Yurong Chen. Incremental network quantization: Towards
lossless cnns with low-precision weights. arXiv preprint
arXiv:1702.03044, 2017. 2

[34] Bohan Zhuang, Lingqiao Liu, Mingkui Tan, Chunhua Shen,
and Ian Reid. Training quantized neural networks with a full-
precision auxiliary module. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 1488–1497, 2020. 2

2461

