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Abstract

Object detection is crucial in diverse autonomous sys-
tems like surveillance, autonomous driving, and driver as-
sistance, ensuring safety by recognizing pedestrians, vehi-
cles, traffic lights, and signs. However, adverse weather
conditions such as snow, fog, and rain pose a challenge, af-
fecting detection accuracy and risking accidents and dam-
age. This clearly demonstrates the need for robust ob-
ject detection solutions that work in all weather conditions.
We employed three strategies to enhance deep learning-
based object detection in adverse weather: training on real-
world all-weather images, training on images with syn-
thetic augmented weather noise, and integrating object de-
tection with adverse weather image denoising. The syn-
thetic weather noise is generated using analytical methods,
GAN networks, and style-transfer networks. We compared
the performance of these strategies by training object de-
tection models using real-world all-weather images from
the BDD100K dataset and for assessment employed unseen
real-world adverse weather images. Adverse weather de-
noising methods were evaluated by denoising real-world
adverse weather images and the results of object detection
on denoised and original noisy images were compared. We
found that the model trained using all-weather real-world
images performed best, while the strategy of doing object
detection on denoised images performed worst.

1. Introduction

Object detection is an essential component in au-
tonomous driving, ensuring the identification of pedes-
trians, vehicles, traffic signals, and obstacles to enhance
safety. The advancement of the deep-learning approach

and the availability of diverse data have led to robust and
accurate models for object detection [18]. However, ob-
ject detection in challenging weather conditions like snow,
fog, and rain results in reduced accuracy due to obscu-
rity/absence of salient object features, noise from weather
patterns (rain streaks and snowflakes), lens interference, and
decreased ambient light.

Efforts to address the issue of robust object detection in
adverse weather have resulted in several strategies to im-
prove object detection accuracy. One such strategy involves
training deep learning models with well-annotated real-
world datasets encompassing all weather conditions. While
datasets such as [38], [2], and [19] offer images depicting
diverse weather conditions, they often lack well-balanced
all-weather/daylight conditions or do not have object anno-
tations for adverse weather images. As these datasets are
not holistic, the second option is to augment clear weather
images through physics-based rendering approaches [40],
[8], or generative adversarial networks [13], [21], or a fu-
sion of both as demonstrated in [33]. Each method car-
ries distinct advantages and limitations, with GANs achiev-
ing complex noise patterns at the cost of potentially alter-
ing image content drastically. At the same time, physics-
based approaches lack realism in noise patterns but main-
tain image integrity. The third option is to do denoising and
then detect objects for enhanced accuracy. Several image-
denoising methods exist that focus on dehazing [32] [10],
deraining [20], and desnowing [17]. However, most denois-
ing methods are evaluated based on image quality improve-
ment rather than object detection performance on denoised
images.

Given these strategies’ varied nature and potential im-
plications, a systematic and comparative evaluation of each
approach becomes imperative. By meticulously assessing
the strengths and weaknesses of these strategies, we can
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work toward more robust, accurate, and reliable object de-
tection systems that operate in all weather conditions. Con-
sequently, this work evaluates the first and second strategies
by training YOLOv5 [14] models using the BDD100k [38]
dataset and testing their performance in unseen all-weather
conditions from the DAWN [19] dataset. The third strat-
egy is examined by selecting various analytical and deep
learning-based adverse weather denoising methods, denois-
ing real-world adverse weather images, followed by ob-
ject detection assessment. During this study, we tried to
answer these three questions: Can simple image augmen-
tations like blurring, noising, and occlusion be enough to
improve object detection in adverse weather using clear
weather images? Are synthetic weather augmentation (an-
alytical, GAN, or style transfer) in the absence of real all-
weather images helpful in training a robust object detection
model? Lastly, are current image-denoising methods suffi-
cient for robust object detection in adverse weather? That
leads to the following contributions of this work.

1. Evaluation of image augmentation strategies for robust
object detection in adverse weather.

2. Synthetic weather noise generation using style-transfer
network and impact on object detection accuracy under
adverse weather conditions.

3. Evaluation of adverse weather image denoising in tan-
dem with object detection.

2. Literature Review
The performance of object detection algorithms in ad-

verse weather conditions is challenging due to reduced visi-
bility, lighting variations, and weather-induced noise. These
challenges are addressed in literature by improving weather
augmentation techniques, varying training approaches, and
creating denoising techniques to improve image quality and
enhance object detection models’ robustness and accuracy
in adverse weather conditions.

Several analytical methods have been proposed in the lit-
erature for creating realistic weather augmentation in clear
weather images. For instance, fog effect generation often
employs Beer-Lambert’s law of attenuation for a light beam
passing through particles, as demonstrated in [40] [30] with
diverse ways to estimate the depth map. In the context of
rain rendering, [12] combines clear images with rain and
fog layers based on scene depth. Meanwhile, [33] uti-
lizes a physics-based particle simulator for individual rain
streaks generation as a function of rainfall rate. For snow
augmentation, [34] generated a 3D scene with snow using
snowflake density, snowflake sizes, and relative velocity in
OpenGL and rendered a 2D snow layer which is blended
with a clear weather image. However, these methods com-
monly overlook image illumination while generating ad-

verse weather, focusing more on denoising applications
than object detection, which additionally requires label ver-
ification. While analytical methods fall short in replicating
intricate noise patterns, GAN-based approaches, explored
in [13] [21], are more effective in generating complex noise
but fail to generate rainstreaks and snowfall. Consequently,
[33] introduces a fusion of physics-based rain rendering
with a GAN-based approach.

In addition to realistic weather augmentation, innovative
training methods for object detection in adverse weather
have also been researched. Some incorporate end-to-end
training of denoising GANs and object detection models to
enhance denoising and object detection as explored in [1]
[31]. However, GANs may introduce spurious details, po-
tentially affecting smaller objects like pedestrians. Other
work like [25] introduced training a convolution network to
generate parameters for effective dehazing using the analyt-
ical method along with the object detection pipeline. These
methods predominantly pertain to foggy weather condi-
tions, and their general applicability still needs to be ex-
plored.

Combining adverse weather denoising methods with ob-
ject detection holds promise for improved performance in
adverse conditions. However, the results of [26] and [20]
showed degradation with this approach. [26] concludes that
dehazing algorithms have minimal impact on heavy fog but
are effective for images with moderate fog intensity. Fur-
thermore, [20] evaluates deraining methods and observes
degraded object detection performance (mean average pre-
cision) on derained images in driving scenarios.

Most of these studies undergo separate evaluations and
are contrasted against baseline models without retraining
for specialized tasks like autonomous driving. This high-
lights the importance of our study, which comprehensively
evaluates the effectiveness of different strategies to enhance
object detection’s robustness, contributing to the progress
of robust object detection in adverse weather conditions.

3. Methods and Material
This section presents a comprehensive overview of the

technical approaches used in this study to generate synthetic
weather noise, detailing the techniques employed and the
models selected to address the challenges of enhancing ob-
ject detection accuracy in adverse weather conditions.

3.1. Adverse Weather Augmentation

Several strategies exist for creating adverse weather
noise from analytical or deep learning-based approaches.
This study employs three simplified approaches for weather
noise generation: analytical approaches, GAN networks,
and style-transfer networks, and the code1 is made avail-

1https://github.com/hgupta01/Weather_Effect_
Generator
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Figure 1. Weather augmentation using physics-based method (2nd column), GAN-based network (3rd column), and style-transfer network
(4th columns) using the clear weather images (1st column) for rain (1st row), fog (2nd row), and snow (3rd row).

able for reproducibility. Fig 1 shows the augmented images
using the methodologies implemented in this work. The
augmentation techniques are employed in an offline man-
ner, implying that chosen images are first augmented and
then annotations are checked manually.

3.1.1 Analytical Method of Noising

The analytical approach implemented in our work utilizes
the illumination information for deciding the fog color, vis-
ibility distance, image darkening factor, and the illumina-
tion threshold value (ti) used to calculate the alpha channel
(α) for blending the rain or snow layer with a clear weather
image. There are a few common steps/functions employed
in this work for generating the fog, rain, and snow augmen-
tation which are as follows:

• Illumination estimation: The LIME method [11] is
used to estimate an illumination map by finding the
maximum values across RGB channels and refining
the obtained map by imposing a structure prior. The il-
lumination map is a 2D array with values in the range
of 0, 1 which is used to calculate the histogram with
four bins representing the illumination classes (dark,
low brightness, moderate brightness, and bright). The
histogram is normalized and the illumination threshold
(ti) is the maximum value.

• Image darkening: The image brightness is reduced by
multiplying the saturation and value channels of HSV
images with a factor of 0.75, 0.65, and 0.5 for less
bright, moderately bright, and bright images respec-
tively, followed by conversion to RGB colorspace.

• Depth map (D) estimation: MiDaS 3.0 DPTL-384 [28]
is utilized to estimate depth maps for clear weather im-
ages.

• Alpha channel (α) estimation: For alpha channel esti-
mation, images are converted to greyscale with values
in the range of 0, 1, then the pixel values (p) greater
than ti are replaced by 1− p, followed by blur using a
kernel of size 11×11. This inversion of pixel values is
rooted in the observation that for low illumination the
rain streak or snowflakes are less visible in a dark back-
ground and more pronounced near the illuminated area
while the reverse is true for well-illuminated scenes.

• Color level adjustment: This involves highlighting sig-
nificant rain streaks and snowflakes by identifying pix-
els within the range of minimum and maximum color
values. Subsequently, non-selected pixels are set to 0,
and the chosen pixels are rescaled to a range of 0 to
255 pixel values. The OTSU threshold is effective as
a minimum threshold for automated color level adjust-
ment.

Fog Augmentation: For each image, visibility distance,
fog color, and image darkening factor are selected based on
image illumination. After selecting the various parameters
the image is darkened and the heterogeneous fog generation
method proposed in [40] based on the Beer-Lambert law of
attenuation was used to generate the fog effect. Equation 1
is used for fog attenuation, where I is the intensity after
traveling distance d in fog particle, O is the opacity, and Ial
is the fog color.
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Ifog = I +O ∗ Ial (1)

where,
I = Io exp(−βd)

O = 1− exp(−βd)

β =
3.912

V
m−1

(2)

Io is intensity value of clear image, β is the extinction co-
efficient, V is the visibility in meters, and d is the distance
taken from depth map D.

Rain Augmentation: For rain augmentation, we estimate
the visibility distance, fog color, and image darkening fac-
tor based on image illumination and sequentially apply the
darkening effect and fog attenuation with visibility greater
than 500m. Subsequently, we generate a rainstreak layer (l)
of the same size through a sequence of four steps. First,
we create a 2D array with Gaussian noise, apply the motion
blur, scale and crop the array to the original size if needed,
and lastly, apply the color level adjustment to keep promi-
nent rain streaks. By adjusting the parameters in each step,
we can modify the rain streak size giving the effect of far
way and near rain streaks. The resulting rain layer (l) is
then blended into the image using Equation 3.

Iblend = Io ∗ (1− α) + l ∗ α (3)

Snow Augmentation: Similar to the process of rain aug-
mentation, we applied darkening and fog effects based on
illumination. The procedure for generating the snowflakes
layer (l) involves creating a 2D array of Gaussian noise, fol-
lowed by zooming and cropping the image, applying motion
blur, using color level adjustment with an OTSU threshold
to enhance prominent snowflakes, and finally applying the
crystallization effect. Like the rain effect generation pro-
cess, adjusting parameters at each step allows us to con-
trol the size of snowflakes, resulting in effects ranging from
distant to close snowfall. As with the rain effect, we em-
ployed alpha blending (Equation 3) to seamlessly integrate
the snow layer into the image.

3.1.2 GAN-based Noising

In addition to the analytical weather noise generation, we
employed a GAN-based approach using CycleGAN [42]
to learn the mapping between clear-foggy, clear-rainy, and
clear-snowy weather. The generator architecture, similar
to [15], includes two downsampling blocks, nine ResNet
blocks, and two upsampling blocks. The discriminator re-
sembled the PatchGAN architecture with three hidden lay-
ers of ConvNet. To ensure context similarity of the driving
dataset, we utilized adverse weather images from the Boreas

Dataset [2] for training. Images were resized to a width
of 512px while maintaining the aspect ratio, then randomly
cropped to 224×224 dimensions. Models were trained for
100 epochs using the Adam optimizer with a batch size of 2,
a learning rate of 0.0002, and β = 0.5, 0.999. The trained
models generated weather effects on the same clear images
used for training, keeping the original size.

3.1.3 Style-transfer Noising

We explored the application of neural style transfer, as in-
troduced in [9], to generate weather-related noise within
clear images. The algorithm takes an input image, a con-
tent image, and a style image and iteratively optimizes the
input image to match the content features and the style fea-
tures simultaneously. The process modifies the input image
while minimizing the difference between its content and the
content image’s features (content loss), as well as its style
and the style image’s features (style loss). While the origi-
nal method employs the VGG19 model, pre-trained on the
ImageNet dataset for artistic style transfer, we adapted it for
weather-style transfer by fine-tuning the VGG19 model as
an image-based weather classifier.

3.2. Adverse Weather Denoising

We assessed various analytical and DL-based denois-
ing methods for object detection enhancement in ad-
verse weather. The amount of research in this field
presents challenges in testing and incorporating all meth-
ods. Hence, we selected analytical and DL models (con-
volution and transformer-based GANs) whose implementa-
tions are available along with pre-trained weights and their
frequent use for comparison in literature.

Dehazing: Extensive efforts have been directed toward
enhancing foggy image restoration. The selected analytical
techniques are image haze removal [43], zero restore [16],
and RADE [23]. [43] uses color attenuation prior to esti-
mating the depth map from hazy images, which is used
to get the transmission map. This transmission map aids
in restoring scene radiance through atmospheric scattering
modeling. The [16] method optimizes a zero-shot network
to deduce parameters in Koschmieder’s model, which char-
acterizes image degradation due to light scattering in real-
world scenarios. [23] algorithm splits the image into three
regions: grayish sky, non-white objects, and pure white ob-
jects; then processes the non-white and non-grayish por-
tions with luminance-inverted multi-scale Retinex accom-
panied by color restoration (MSRCR) and region-ratio-
based adaptive Gamma correction. These processed areas
are subsequently reassembled using mean-filtered region
masks.
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Figure 2. Result of dehazing algorithms evaluated in this work.

We selected multi-scale-cnn-dehazing [29], cycle-
dehaze [7] and FFA-Net [27] for DL approches. FFA-Net
[27] constitutes an end-to-end feature fusion attention net-
work, comprising novel components like a feature attention
module, a basic block structure consisting of local resid-
ual learning and feature attention, and an attention-based
different levels of feature fusion structure. multi-scale-cnn-
dehazing [29] proposes a multi-scale DL model for dehaz-
ing by learning the mapping between hazy images and their
corresponding transmission maps. While cycle-dehaze [7]
is a CyclicGAN network trained on an unpaired set of clean
and hazy images.

Deraining: Deraining is one of the most researched ad-
verse weather denoising cases in literature for analytical
and DL modeling. In this work, we evaluated UGSM [6]
and LPDerain [22] analytical methods, and deep learning
methods like JORDER-E [36], SPANet [35], sync2real [37],
IPT [3], and DRT [24] developed for deraining.

[22] is a decomposition-based method that uses Gaus-
sian Model Mixture (GMM) based priors for the back-
ground and rain streak layers. An additional residue re-
covery step to separate the background residues is used to
improve the decomposition quality. [6] formulates a sim-
ple but efficient unidirectional global sparse model UGSM
for single-image rain removal. [36] introduces contextual-
ized deep networks that handle deraining by detecting rain
locations in the image, removing the rain, and finally re-
constructing the image with local details without rain. [35]
and [36] are DL methods that extract features, identify rain,
and construct a clean output. [35] uses a novel Spatial At-
tentive Network while [36] uses contextualized deep net-
works.

[37] builds a Gaussian-Process based UNet with a semi-
supervised learning framework to train a model with real-
world data instead of just synthetic data. While [3] and [24]
are transformer-based deraining architectures where [3] is a

Figure 3. Denoised images using image deraining methods evalu-
ated in this work.

Figure 4. Denoised images using the desnowing algorithms evalu-
ated in this work.

multi-head and multi-tail network trained on ImageNet and
then fine-tuned to solve derain challenges and [24] proposes
a vision transformer with a recursive local window-based
self-attention structure with residual connections.

Desnowing: Desnowing is challenging due to the com-
plex snow’s characteristics, such as opaqueness, different
shapes and sizes, uneven densities, and irregularity. We
evaluated one classical method [41], and three DL-based
methods DDMSCN [39], HDCWNet [5], and SnowFormer
[4] for desnowing.

[41] creates a filter based on the area of the image that
does not include snow and guides the desnowing process
to create an output. [39] incorporates the semantic and ge-
ometric maps as input and learns the semantic-aware and
geometry-aware representation to remove snow. [5] pro-
poses a method to find deletable snowflakes from images
based on the novel feature called the contradict channel and
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clean the image. [4] is a visual transformer with a multi-
head cross-attention mechanism to perform local-to-global
context interaction between scale-aware snow queries and
then desnowing the image using this information.

4. Dataset and Evaluation
4.1. Object Detection Dataset

Train Dataset: The Berkeley Deep Drive (BDD100K)
dataset was used for training the object detection models.
This comprehensive dataset offers various environmental
scenarios and detailed annotations, enabling robust evalu-
ation of adverse weather object detection strategies. It com-
prises 100k annotated images covering different weather
conditions (clear, overcast, cloudy, rain, fog, snow, and
unknown) at different times of day (daytime, night, and
dusk/dawn) and split into training (70K), validation (10K)
and testing (20K) subsets. The dataset has four broad ob-
ject categories: vehicles (car, truck, bus, and train), hu-
mans (pedestrians and riders), bikes (bicycle and motorcy-
cle), and miscellaneous (traffic light and signs), each image
has 2D bounding box annotations and weather information.

We divided training and validation images into distinct
subsets based on weather types. Two major object cate-
gories were used for training: vehicle (car, truck, bus, and
train) and person (pedestrians and riders). Randomly 1500
clear weather images were selected, and various weather
augmentation techniques outlined in Section 3 were ap-
plied. Approximately 1000 images were selected after man-
ually rechecking the labels for each weather and weather
augmentation approach. This resulted in five distinct train-
ing sets:

1. IMAGESET1: clear, overcast, cloudy, and unknown

2. IMAGESET2: IMAGESET1 + real-world adverse
weather (fog, rain, and snow)

3. IMAGESET3: IMAGESET1 + analytical weather
augmentation

4. IMAGESET4: IMAGESET1 + GAN weather aug-
mentation

5. IMAGESET5: IMAGESET1 + style-transfer weather
augmentation

Test Dataset: DAWN dataset [19] is used to assess the
performance of object detection models trained using vari-
ous weather augmentation techniques and adverse weather
denoising methods. It encompasses severe real weather
conditions like rain, fog, snow, and sandstorms. Further-
more, to assess the strategies on clear weather scenarios,
the dataset from Udacity was utilized2.

2https://github.com/udacity/self-driving-car/
tree/master/annotations

4.2. Object Detection Model

We employed a state-of-the-art object detection model,
YOLOv5 [14], from Ultralytics. This model performs a
single forward pass through the neural network to simulta-
neously predict bounding boxes and class probabilities for
objects in an image. YOLOv5 features an adaptive anchor
box mechanism, enabling precise detection across various
object sizes, ranging from small to large bounding boxes. It
is a lightweight, faster, and memory-efficient architecture,
with a codebase that can be modified effectively for model
training. Our study used the pre-trained YOLOv5-l model
as the initial starting point.

4.3. Training Details

Image Augmentations: Image augmentations like geo-
metric, color, noise, and occlusion augmentations are used
to enhance the model’s ability to generalize and improve its
robustness. In our work, three sets of augmentations were
designed to facilitate the object detection model training on-
line.

1. IMAGEAUG1: geometric augmentations (translate,
scaling, and left-right flipping) and mosaic augmenta-
tion.

2. IMAGEAUG2: IMAGEAUG1 + color augmenta-
tions (HSV jittering, greying, CLACHE), noise aug-
mentation (median blur), and occlusion augmentation
(mixup).

3. IMAGEAUG3 (for mimicking weather noise): IM-
AGEAUG1 + color augmentations (HSV jittering,
RGB Jittering, randomly adjusting brightness and
contrast), noise augmentation (defocus, motion blur,
Gaussian noise, pixel dropout, and image compres-
sion) and occlusion augmentation (mixup).

IMAGEAUG3 is used only with clear weather images
(IMAGESET1) to study the effect of basic augmentation
like motion blurring, defocus, pixel dropout, and RGB jit-
tering on object detection in adverse weather conditions.
Each image augmentation is applied with a probability of
0.01, except for geometric and mosaic augmentations.

Training Pipeline: We utilized the YOLOv5 training
pipeline with an image size of 640px×640px and a batch
size of 60 images. Each model is trained for 50 epochs us-
ing a stochastic gradient descent optimizer. The optimizer
has a learning rate of 0.01 with cosine learning rate decay
till 0.001, a momentum of 0.937, and a weight decay of
0.0005. The training loss functions encompassed box, class,
and object loss functions. The training was conducted on
an NVIDIA Tesla A100 graphics card, and the system com-
prised an Intel Xeon Gold CPU @ 2GHz with 64GB RAM.
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Table 1. Object detection results for combinations of training sets and image augmentations on clear, fog, rain, and snow test im-
ages from Udacity and DAWN datasets. Training sets include IMAGESET1: clear weather, IMAGESET2: all weather, IMAGE-
SET3: IMAGESET1+analytical weather augmentation, IMAGESET4: IMAGESET1+GAN based weather augmentation, and IMAGE-
SET5: IMAGESET3+style-transfer weather augmentation. IMAGEAUG1: geometric augmentation and mosaic, IMAGEAUG2: IM-
AGEAUG1+(color augmentation, blurring, and MixUP), IMAGEAUG3: IMAGEAUG1+(color augmentation, noise augmentation, motion
blur, and MixUP).

Clear Fog Rain Snow
mAP P R mAP P R mAP P R mAP P R

IMAGESET1
IMAGEAUG1 0.474 0.834 0.734 0.506 0.855 0.704 0.478 0.763 0.735 0.472 0.848 0.690
IMAGEAUG2 0.482 0.830 0.741 0.519 0.832 0.788 0.506 0.781 0.758 0.487 0.800 0.752
IMAGEAUG3 0.480 0.841 0.730 0.515 0.838 0.775 0.481 0.848 0.706 0.489 0.781 0.750

IMAGESET2 IMAGEAUG1 0.482 0.841 0.730 0.506 0.838 0.713 0.469 0.824 0.713 0.505 0.809 0.771
IMAGEAUG2 0.484 0.832 0.753 0.523 0.813 0.770 0.474 0.750 0.781 0.509 0.834 0.776

IMAGESET3 IMAGEAUG1 0.476 0.824 0.747 0.502 0.785 0.775 0.452 0.839 0.705 0.493 0.798 0.765
IMAGEAUG2 0.483 0.820 0.748 0.515 0.847 0.755 0.507 0.768 0.790 0.496 0.821 0.749

IMAGESET4 IMAGEAUG1 0.478 0.825 0.738 0.497 0.836 0.758 0.476 0.769 0.714 0.484 0.845 0.744
IMAGEAUG2 0.481 0.820 0.743 0.508 0.858 0.762 0.495 0.830 0.768 0.488 0.808 0.757

IMAGESET5 IMAGEAUG1 0.476 0.830 0.731 0.517 0.809 0.757 0.488 0.752 0.830 0.492 0.829 0.731
IMAGEAUG2 0.480 0.814 0.744 0.521 0.814 0.784 0.512 0.737 0.833 0.498 0.861 0.730

Eleven YOLOv5-l models were trained, incorporating
different combinations of training sets and image augmen-
tation combinations.

4.4. Results

Table 1 presents the performance of YOLOv5-l model
trained with different combinations of training sets (IM-
AGESET1 to IMAGESET5) and image augmentations (IM-
AGEAUG1 to IMAGEAUG3). We reported mean average
precision (mAP), precision, and recall for object detection
in adverse weather conditions (clear, fog, rain, and snow).
The mAP represents the overall detection performance by
taking into account both localization and recognition accu-
racy. Precision and recall offer insights into the accuracy
of positive predictions and the proportion of actual posi-
tive instances correctly identified by the model. The best-
performing combination is highlighted in each column.

The best mAP was observed with the model trained us-
ing real all-weather conditions (IMAGESET2), while the
best precision emerged from the clear weather image set
(IMAGESET1) overall. Moreover, when comparing syn-
thetic weather augmentation, the style-transfer based train
set (IMAGESET5) exhibited higher mAP in contrast to
other synthetic weather augmentation methods.

We further evaluated several adverse weather denoising
methods by applying denoising on test images and perform-
ing object detection on denoised images using “base” model
trained with IMAGESET1+IMAGEAUG1. The mAP, pre-
cision, and recall for object detection on denoised images
are reported in Table 2, Table 3, and Table 4 for dehazing,
deraining, and desnowing algorithm respectively.

Across all three adverse weather scenarios, most denois-
ing methods led to a decline in object detection performance

Table 2. Result of object detection using “base” model (IMAGE-
SET1+IMAGEAUG1) on dehazed images.

mAP P R

hazy 0.506 0.855 0.704
haze-removal [43] 0.492 0.835 0.739
zero-restore [16] 0.273 0.681 0.556
RADE [23] 0.477 0.847 0.741
Cycle-Dehaze [7] 0.441 0.798 0.667
Multiscale-Dehazing [29] 0.491 0.797 0.764
FFA-Net [27] 0.508 0.865 0.715

compared to the original noisy images, with slight improve-
ments noted in some cases. In the context of dehazing,
FFA-Net [27] exhibited better performance. For deraining,
IPT [3] demonstrated superior precision, while mAP was
better on the original images. Similarly, regarding desnow-
ing methods, precision proved better on noisy images, while
mAP saw improvement on denoised images using the ana-
lytical approach [41]. Overall, object detection yielded bet-
ter results on the original noisy images than on denoised
ones.

5. Discussion
This study comprehensively assessed the performance

of object detection models trained with various synthetic
weather augmentation images in real adverse weather con-
ditions. Additionally, we evaluated several adverse weather
denoising methods by doing object detection on denoised
images and comparing the results with object detection on
noisy images.
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Table 3. Result of object detection using “base” model (IMAGE-
SET1+IMAGEAUG1) on derained images.

mAP P R

rainy 0.478 0.760 0.735
LPDerain [22] 0.456 0.869 0.631
JORDER-E [36] 0.459 0.740 0.713
DRT [24] 0.466 0.809 0.701
IPT [3] 0.441 0.871 0.608
UGSM [6] 0.468 0.840 0.749
SPANet [35] 0.473 0.763 0.801
Syn2Real [37] 0.432 0.828 0.640

Table 4. Result of object detection using “base” model (IMAGE-
SET1+IMAGEAUG1) on desnowed images.

mAP P R

snowy 0.472 0.840 0.690
snow removal [41] 0.477 0.791 0.712
DDMSN [39] 0.459 0.823 0.657
hdcwnet [5] 0.457 0.814 0.666
snowformer [4] 0.450 0.838 0.632

For training a robust all-weather object detection model
using only clear weather images, we explored the impact
of basic augmentations. While these augmentations (IM-
AGEAUG1, IMAGEAUG2, and IMAGEAUG3) did not
significantly enhance mAP results compared to synthetic
weather augmentation, they did exhibit improved preci-
sion. A reason for this enhanced precision could be that
the model was trained using clear images, making the ob-
ject features more distinguishable compared to the distorted
features present in synthetic weather images. Among the
basic image augmentations, IMAGEAUG2 yielded the best
training outcomes across different training sets.

We also evaluated synthetic weather augmentations
achieved through analytical methods (IMAGESET3), GAN
networks (IMAGESET4), and style-transfer networks (IM-
AGESET5) in the context of all-weather object detection.
The use of style-transfer-based weather augmentations led
to enhanced mAP performance, while GAN-based augmen-
tations yielded poorer results than training solely with the
clear weather dataset (IMAGESET1). The GAN-based ap-
proach introduced significant alterations and additional in-
formation to the images, negatively impacting the results
while generating complex weather noise. On the other
hand, style-transfer networks add slight noise without heav-
ily modifying the images compared to other augmentation
methods, which might lead to better results. Analytical ad-
verse weather augmentation improved object detection re-
sults slightly more than training with only clear weather im-

ages. This shows the effectiveness of weather augmentation
in training a robust all-weather object detection model. It
could also be used to generate a more balanced dataset with
all weather conditions.

Reviewing the outcomes in Table 2, Table 3, and Table 4,
it becomes apparent that most existing adverse weather de-
noising methods are not sufficiently compatible with object
detection models. Most denoising methods resulted in the
worst performance of object detection models (low mAP)
on denoised images compared to the original noisy images.
The reason for poor performance could be the inability of
the denoising methods to add information that may aid in
object detection. Instead, the denoising methods could add
more noise that degrades the object detection performance,
especially for the DL-based denoising algorithm. While the
methods assessed in this study improved image quality by
enhancing opaque object features and eliminating weather
effects, this enhancement didn’t consistently translate to
improvements in downstream computer vision tasks. This
highlights the need for alternative approaches, such as the
end-to-end training of denoising and object detection mod-
els as proposed in [1] [31].

6. Conclusion

In conclusion, this study delved into enhancing object
detection accuracy in adverse weather conditions. The
methodologies employed are synthetic weather augmenta-
tion strategies, encompassing physics-based, GAN-based,
and style-transfer approaches. The comprehensive evalua-
tion showed that real-world all-weather conditions resulted
in the best overall detection performance. At the same time,
synthetic weather augmentation demonstrated its potential,
with the style-transfer network emerging as particularly im-
pactful. Moreover, the exploration of adverse weather de-
noising methods cast light on the intricate trade-offs be-
tween noise reduction and detection precision, underlining
the inherent complexity of this task. Despite the challenges
of adverse weather, the findings underscored the potential
for continued advancements in object detection and denois-
ing techniques, positioning this research as a stepping stone
towards more robust and reliable computer vision systems
in the face of diverse weather conditions.
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