
Torque based Structured Pruning for Deep Neural Network

Arshita Gupta*, Tien Bau*, Joonsoo Kim, Zhe Zhu, Sumit Jha
Samsung Research America

{a7.gupta, t.bau, joonsoo.k, zhe.zhu, sumit.jha}@samsung.com
Hrishikesh Garud†

Google
hgarud@google.com

Abstract

Structured pruning is a popular way of convolutional
neural network (CNN) acceleration. However, current state
of the art pruning techniques require modifications to the
network architecture, implementation of complex gradient
update rules or repetitive training and long fine-tuning
stages. Our novel physics-inspired approach for structured
pruning aims to solve these issues. Analogous to ‘Torque’
we apply a force that consolidates the weights of a convo-
lutional layer around a selected pivot point during train-
ing. Using the distance-dependency nature of torque, we
can encourage high density of weights in filters around this
point and increase filter sparsity as we move away. Fil-
ters away from the pivot point can be pruned, resulting in
a minimum loss of information. We can control the tight-
ness of the weights by varying the hyper-parameters, thus
assisting us in creating a more compact network. Our pro-
posed technique is jointly able to perform both filter learn-
ing and filter importance sorting. Additionally, our method
is easy to implement, requires no change to model architec-
ture and needs very little to no fine-tuning. We show that our
approach reaches competitive results with previous state-
of-the-art by evaluating popular networks such as VGGNet
and ResNet on multiple image classification tasks. Notably,
our method can reduce the parameter count of VGGNet by
96% and still maintain the accuracy achieved by the full-
size model without any fine-tuning. This makes our method
both latency and memory efficient for hardware deployment.

1. Introduction
Recent years have seen a huge success of Deep Neu-

ral Networks (DNN) on a variety of computer vision tasks.

*indicates equal first author contribution
†contributed during his time at Samsung Research America

Most of the research community favors accuracy more than
efficiency which has led to dramatic increase in both dataset
size and model complexity. From the application perspec-
tive, since a large part of the application scenarios for DNNs
are hardware-constrained such as on smartphones, these
models should be compact in terms of both power (num-
ber of floating point operations per second (FLOPs)) and
memory (number of parameters) with minimum loss of
performance. For ImageNet [7] task, early networks like
AlexNet [27] and VGG-19 [46] have approximately 60M
and 140M parameters and 0.72 and 19.6 billion FLOPs
respectively, which are too large for practical applications.
Currently, the most impressive Generative AI models [43]
contains billions of parameters. How to smartly choose a
good balance between effectiveness and efficiency is an ac-
tive research direction.

There are several popular ways in model compression,
such as quantization [4, 5, 49], low rank approximation
[8,52], distillation [21] and pruning [9,10,13,30,34]. More
specifically, unlike unstructured pruning methods [9,10,13]
that remove connections or neurons, our approach removes
entire filters inside convolutional layers and can be catego-
rized as structured pruning (SP) similar to [17, 30, 34].

Previous SP techniques like Network Slimming (NS)
[34] requires additional layers like Batch Normalization
added to their original model in order to implement their
pruning process. However, many image based deep learn-
ing tasks, such as super-resolution, don’t require or dis-
courage the use of additional layers like normalizing layers
during training and inference due to either added complex-
ity or instability during inference. CNN-FCF [31], jointly
learns and selects important filters. Although this technique
is similar to our proposed work, it also requires an addi-
tional binary scalar. ThiNet [36] proposes selecting filters
of ith layer based on the (i+ 1)th layer. While this method
needs no architectural modifications, it requires step by step
pruning of each layer followed by fine-tuning. More recent

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2711

pruning techniques [47,48] either use complex gradient up-
date rule or require in-depth understanding of second order
derivatives which makes their work difficult to implement in
one’s pruning environment. State of art techniques like RL-
MCTS [50] although exhibit plausible performance, come
at the cost of integration of complex paradigms like rein-
forcement learning(RL) [50]. Some SP techniques [34, 36]
require a trained model as a starting point. Most of the SP
implementations consist of three phases [1] starting from
training an over-parameterized model followed by pruning
based on some criteria and finally fine-tuning the pruned
model. This three step process is often time consuming,
especially when a large percentage of the model has to be
pruned in a multi-step manner using a combination of the
above three steps.

To address the above mentioned limitations, we propose
a novel approach for structured pruning inspired by a con-
cept in physics called torque, which moves objects around a
fixed axis. A key property is that increasing the radius from
the axis to where the force is applied results in the increment
of the torque. We borrow this idea and define torque as the
constraint applied on the weights of the output filters of a
convolutional layer during training. The further away a fil-
ter is from a selected fixed axis, the more constraint (torque)
will be applied. This external force encourages a handful
of filters around the fixed point of the convolution layer to
do most of the heavy lifting, resulting in a high concentra-
tion of weights in these filters. Once a stable condition is
reached during training, we can prune the less dense filters.
Our proposed pruning method can reduce total parameters
and still maintain good accuracy of the network. Addition-
ally, it helps to keep the structural integrity of the network
by maintaining the dense connections, leading to ease in im-
plementation on hardware. An optional fine-tuning step af-
ter pruning can be applied to further boost the performance.
Moreover, most of the current SP techniques [3, 33, 50] are
trained for a specific model sparsity and have to be retrained
if this requirement changes. In contrast, our method has no
such sparsity requirement during the torque training. Once
the model is trained, the re-aligned compressed weights al-
low pruning at various sparsities.

In summary we have made the following contributions:
(1) We propose torque-based structured pruning which can
effectively reduce FLOPS while maintaining high perfor-
mance of the model. We compare our method with cur-
rent state-of-the-art SP techniques on multiple datasets and
show superior performance when compared with many re-
cent approaches. Specifically on CIFAR datatset, we are
able to achieve a high speedup of 2.6x with an insignificant
drop in original accuracy. (2) The models pruned by our
method tend to have smaller number of parameters under
the same FLOPs reduction rate. This property is very useful
in application scenarios where storage/memory resources

Figure 1. An illustration of torque based pruning method. Here
a convolutional layer with 8 filters is used as an example (pivot
marked). Vertical direction indicates the position of filters(order
increases from top to bottom). The shade of the color indicates
the magnitude of the weights. Filters on the left are randomly
initialized. Then torque is enforced on each filter to push it towards
zero. After training only a few filters have non-zero weights.

are limited.(3) Our method is easy to implement and re-
quires no alteration to original model architecture. Fur-
thermore, it can be applied to either a randomly-initialized
model or a pre-trained models. (4) Our torque trained
model can be pruned at different levels of sparsity without
the need to retrain. (5) Till a certain sparsity level, the com-
pact model created by our method after the training shows
high accuracy even without any additional fine-tuning step.

The rest of the paper is organized as follows. In Section
2, we discuss previous related work and in Section 3 we ex-
plain our proposed approach. We provide the experimental
setup in section 4. This is followed by Section 5 where we
elucidate the effects of hyper parameters in our method and
discuss our results. Finally we conclude in Section 6.

2. Related Work

Neural network pruning has been an active area of re-
search since 1980s. Early error sensitivity based methods
calculated the correlation of change in the magnitude of
each parameter to the error function. The intuition comes
from the brute force pruning technique, also dubbed the “or-
acle pruning” method [39]. The idea of oracle pruning is to
ablate each non-zero parameter and record the difference in
error. The parameters with the least impact on the error can
be removed because, evidently, they don’t contribute sub-
stantially to the network’s output. In order to determine this
type of sensitivity of parameters in a more tractable manner,
LeCun et al. [28] suggested calculating second derivative
of the loss function with respect to each parameter. How-
ever, calculating the Hessian matrix is computationally ex-
pensive, especially for modern deep learning architectures.

During training: The unimportant parameters are pe-
nalized and eventually pruned during the process of train-

2712

ing. We discuss some prior works in this section. In
Regularization-based pruning, the idea is to induce spar-
sity using regularization based techniques. Some stud-
ies [35, 41] use an approximation of the L0 norm to pe-
nalize gating variables in order to learn a sparse dropout
probability distribution function. Similarly, the L1 norm
[34, 51] has also been explored. Another popular method is
Variational-based pruning which utilizes powerful vari-
ational bayes approximation methods to learn the dropout
probability distribution [6, 25, 37, 40]. Wen et al. [52] en-
courage filters within clusters that are coordinated to be
closer during training based on the prior knowledge that
correlation exists among trained filters in DNNs and those
filters lie within several clusters. Dropout sparsity learn-
ing: The above mentioned studies can be classified as early
attempts in this category. Newer research [11,22,29,48,53]
show that use of regularization in pruning is still evolving
and there is scope for more research.

After training: This method takes an over-
parameterized network which is trained to completion
and prunes it using certain heuristics. In Magnitude-based
pruning, the parameters are pruned based on their absolute
magnitude as there is a strong correlation between the
sensitivity of the error function with respect to parameters
and their absolute magnitudes. Parameters with smallest
magnitude tend to have least impact on the network’s
performance. Another way to measure importance is using
activations instead of weights [23, 42]. Importance based
pruning methods calculate an importance metric for either
individual parameters (unstructured pruning) or each chan-
nel (structured pruning) using certain heuristics. Aketi et
al. [1] aim at pruning a network during the training process
using a layer-wise relevance metric proposed by bach et
al. [2]. Guo et al. [12] use a feature importance metric
calculated on the training data to rank and prune features
and corresponding channels. Authors of AMC [18] employ
reinforcement learning to provide better layer-wise pruning
ratios and prune channels according to the magnitude [14].

Unlike methods that use local threshold per layer [18,20,
30], our proposed method is a combination of global-local
structured pruning. Similar to magnitude based pruning,
we prune an entire filter by comparing the sum of absolute
weights of each filter (further normalized by the shape of
filter) globally across all the filters throughout the network.
In addition to the global thresholding, we set a small local
constraint (Minimum Filter (MF) rule, explained in section
5.1) on each layer to control the amount of pruning in the
layers. As far as we know, this type of pruning methodology
is rare and hasn’t been implemented in prior works. Previ-
ous structured pruning papers have a localized field of view
for pruning where they compare filter magnitudes for each
layer separately. Our method has the advantage of selecting
which filters to remove in what part of the network. This

is more flexible and lends perfectly to removing redundant
filters in a denser part of the network.

3. Torque Methodology
3.1. Motivation

Neuropsychological studies has lead to the theory of ‘en-
grams’, a group of neurons that serve as ‘physical represen-
tation of memory’ in the brain. Richard Semon, a German
zoologist who coined this term in early 1900s , believed in
a physical location in the brain where the traces of memory
were located [45]. Although, the existence of ‘engrams’ is
an active area of research, we believe that creating such lo-
calized memory ‘engrams’ in neural network can help in
concentrating most of the weights around a particular loca-
tion. By applying a non-uniform force that grows with in-
creasing distance from a fixed point, we can create a highly
compressed network with increasing sparsity in the neurons
as we move away from this fixed point. Such a network can
recover faster when high sparsity part of the network (which
is away from the fixed point) is damaged.

To achieve such a distance varying force, we exploit the
concept of Torque from physics whose strength is depen-
dent on the distance from the axis.

3.2. Proposed Approach

In physics, torque is a measure of force that causes an
object to move about a given pivot point. The torque vector
T produced by any given force F is

T = F × r (1)

where r is the position vector and F is the force vector.
Analogous to the above concept, we define torque T in

a convolutional neural network(CNN) as a force applied to
each filter in the layer about a pivot point such that it drives
the weights of filter with large torque towards zero. The
strength of this force is proportional to both the magnitude
of the filter weight and the relative distance between the
filter and the pivot point.

To understand our torque method, let us first consider a
CNN layer l containing N filters. Next, we define a pivot
point which in our CNN implementation is filter p where
p ∈ {0, 1...N − 1}. To define the torque for each filter n,
we reshape the nth weight filter of the layer and denote it
as Wln ∈ R1×MHB where M is the number of channels
and H and B are the spatial height and width of the filter
respectively for ∀n ∈ [0, N − 1]. As our torque method
works for each layer independently, we will drop the l from
Wln and refer to it as Wn for simplicity. Similarly, let us
denote the weight of pivot filter as Wp.

Similar to Equation 1, we define the position vector r′n
between any nth filter and p in a CNN layer as a combina-

2713

tion of two vectors rn and dn as shown:

r′n = [wr · rn, wd · dn] (2)

where r′n ∈ R1×(MHB+z). Here both rn and dn are the
relative distance vector between n and p. rn is dependent
on the weights of the filter and can be defined as

rn = Wn −Wp (3)

dn is defined as a monotonically increasing function of the
filter index difference between n and p. wr and wd are sim-
ple constants for rn and dn respectively.

In order to apply torque, we make both our position vec-
tor r′n and weight vector Wn of same length by padding Wn

with zero vector. The new weight tensor, W ′
n is defined as:

W ′
n = [Wn, 0⃗] (4)

where 0⃗ ∈ R1×z is a zero vector with z length . We now
define our Torque Tn for the nth filter as:

Tn = W ′
n × r′n (5)

Since we only care about the magnitude of torque Tn such
that the weight filter with larger magnitude of torque is
forced toward zero, we compute the magnitude of Tn as:

||Tn||2 = ||W ′
n||2 · ||r′n||2 · | sin θn| (6)

where θn is the angle between the vectors W ′
n and r′n. By

adopting torque into the loss function as a regularization
term, our new loss function can be defined as:

L = Σn,lΣx,yLx(F (x,Wln), y) + λT ||Tln||2 (7)

where Wln and Tln are the nth weight filter and its torque in
the lth layer in the network. Lx() is the original loss func-
tion defined on each training sample (x) and y is the label
of the sample. λT is defined as a torque rate controlling the
contribution of the torque term. Once again, we drop the l
from the above equation for simplicity,

L = ΣnΣx,yLx(F (x,Wn), y) + λT ||Tn||2 (8)

Minimizing the above loss will force the weight filter with
larger magnitude of torque toward zero. In other words,
we can compress all the weights to a small number of fil-
ters near the pivot filter in the layer. From Equations 5, 4
and 3, we know that ||Tn||2 constitutes of both Wn and rn
terms. Thus, we observe that minimizing ||Tn||2 not only
minimizes the weight filters but also reduces rn. Minimiz-
ing rn can cause Wn and Wp to be pulled closer together,
which results in two filters learning almost identical weights
(Wn ≈Wp). This can lead to a decrease in learning diverse
features and furthermore impact the overall accuracy of the
network. To solve this problem, we decide to ignore rn by

setting constants wr = 0 and wd = 1 such that the weights
are compressed near the pivot filter as well as each dense
filter is learning diverse features. Then, Equation 6 can be
rewritten as:

||Tn||2 = ||W ′
n||2 · ||r′n||2 · | sin θn| = ||Wn||2 · ||dn||2 (9)

From Equation 9, it is evident that the weight filters close
to the pivot filter would be more dense while the filters far
from the pivot filter would be sparse or zero. We adopt the
above method into our training environment by modifying
the gradient update rule. Since the effectiveness of ||Tn||2
and ||Tn||1 are similar but the ||Tn||2 is more computation-
ally expensive, we choose ||Tn||1 = ||Wn||1 · ||dn||1 in the
gradient update rule. Typically, the updating of weights by
gradient descent for each filter in a given layer is given as:

Wn ←Wn − η · (∂L(W)

∂Wn
) (10)

where η is the learning rate, L(W) is the data loss. We in-
troduce our torque method by adding an extra penalty term
to the gradient update rule.

Wn ←Wn − η ·
(
∂L(W)

∂Wn
+ λT ·

∂||Tn||1
∂Wn

)
(11)

Inserting ||Tn||1 = ||Wn||1 · ||dn||1 in the above equation,
we get

Wn ←Wn − η ·
(
∂L(W)

∂Wn
+ λT ·

∂(||Wn||1 · ||dn||1)
∂Wn

)
(12)

Wn ←Wn − η ·
(
∂L(W)

∂Wn
+ λT · (||dn||1 · (Wn)

)
(13)

where () is the sign function. The effect of this torque mod-
ified updated rule pushes the majority of the filters that are
away from the pivot filter to be zero and forces the filters
near the pivot filter to be dense as also illustrated in Figure
1. A combination of both these values decides the degree
of compression in our models. More discussions on the dn
and λT and their implications are given in section 4.3.1.

4. Experimental Setup
In this section, we discuss the different experiments we

run to show the efficacy of our proposed approach. We as-
sess our approach by training various models on image clas-
sification task which is a standard computer vision task.

4.1. Dataset

In order to compare our approach with recent pruning
approaches, we train our models on standard benchmark

2714

datasets for classification: CIFAR [26]: CIFAR-10 and
CIFAR-100 datasets contain 32 × 32 color images divided
into 10 and 100 classes respectively. Each dataset contains
a training set of 50, 000 and a test set of 10, 000. ImageNet
[44]: The ILSVRC is a large scale image dataset which
consists of 1.2 million images divided in 1000 classes. We
adopt data augmentation methods like random flipping, ran-
dom crop on the images. We also normalize the RGB val-
ues using channel means and standard deviations. For Ima-
geNet, we randomly crop the images to 224× 224.

4.2. Network Architectures

To study the process of torque based training on dif-
ferent architectures, we consider family of CNN architec-
tures with linear connections only (VGG [46]), with resid-
ual connections (ResNet [15]) as well as architectures with
Dense connections (DenseNet [24]). Specifically we ex-
periment with VGG-19 [46], the bottleneck structure of
ResNet [15] with 164 layers and a 40 layer DenseNet model
(used with a growth rate of 12) all trained on both CIFAR-10
and CIFAR-100 datasets. Moreover, we implement torque
methodology on ResNet-56 model on CIFAR-10 and bot-
tleneck structure of ResNet-50 on ImageNet and compare
our results with the current most popular structured pruning
technique in academia. These studies help us demonstrate
that the approach works in wide range of architectures.

4.3. Implementation

In this section, we discuss each of the steps in our im-
plementation pipeline of obtaining the final pruned model.
First, we train our model with torque to encourage sparsity
in filters followed by pruning the sparse filters. Optionally,
we can finetune our pruned model.

4.3.1 Training

As observed from Equation 13, a combination of both dn
and λT can help in deciding the compactness of our layer.
For simplicity and without loss of generality, we choose our
pivot channel p as the first output filter, that is p = 0 for all
the layers. For dn, we pick a monotonically increasing lin-
ear ramp function, that is |dn| = n, ∀n ∈ {0, 1, ..N−1}. We
experimented with logarithmic and exponential functions,
but the resultant torque force seemed too high. This caused
the training to stall and the parameters getting stranded in
a local minima. In the following experiments, we fix dn
and experiment with different values of λT . The effects of
different λT are studied in detail in Section 5.2.

Furthermore, we experiment with two different initial-
ization points for our network. We investigate the implica-
tions of torque on both random initialization (r) and initial-
ization with a pre-trained (p) model weights.

All models are trained with stochastic gradient descent
with learning rate (lr) of 0.1 for randomly initialization

0 10 20 30 40 50 60 70 80 90 100
Parameters Pruned (%)

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Base Model
Ne%work Slimmi g
Torque λT = 10−6
Torque λT = 10−7
Torque λT = 10−8

(a) VGG-19 on CIFAR-10

0 10 20 30 40 50 60 70 75 80 90 95
Parameters Pruned (%)

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Base Model
Ne%work Slimmi g
Torque λT = 10−6
Torque λT = 10−7
Torque λT = 10−8

(b) VGG-19 on CIFAR-100

0 10 20 30 40 50 60 70 80
Parameters Pruned (%)

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Base Model
Ne%work Slimmi g
Torque λT = 10−6
Torque λT = 10−7
Torque λT = 10−8

(c) ResNet-164 on CIFAR-10

0 10 20 30 40 50 60 70 80
Parameters Pruned (%)

0

10

20

30

40

50

60

70

80

Ac
c%
ra
cy
 (%

)

Base M del
Netw rk Slimming
T rq%e λT = 10−6
T rq%e λT = 10−7
T rq%e λT = 10−8

(d) ResNet-164 on CIFAR-100

0 10 20 30 40 50 60 70 80 90
Parameters Pruned (%)

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Base Model
Ne%work Slimmi g
Torque λT = 10−6
Torque λT = 10−7
Torque λT = 10−8

(e) DenseNet-40 on CIFAR-10

0 10 20 30 40 50 60 70 80 90
Parameters Pruned (%)

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Base Model
Ne%work Slimmi g
Torque λT = 10−6
Torque λT = 10−7
Torque λT = 10−8

(f) DenseNet-40 on CIFAR-100

Figure 2. Test accuracy drop with respect to different amounts of
pruning without any fine-tuning. For all the network architectures,
the Torque method applied is with random initialization and MF
value for pruning is set to 5 filters.

models and 0.01 for models initialized with pre-trained
weights. The lr is reduced by 0.1 after 100 and 150 epochs.
The model is trained with torque for a total of 200 epochs
and an additional weight decay of 10−4 is used. No pruning
(sparsity) ratio is required at the time of training.

4.3.2 Pruning

As described earlier in Section 2, we use a ‘global-local’
structured pruning technique. In our experiments we no-
ticed that at high pruning percentage, it is possible that an
entire layer is removed if the sum of absolute weights of
all filters in that layer is below a set global threshold. For
maintaining the structure of our networks, we impose the
minimum filter (MF) rule, which ensures that every layer
has at least the minimum number of filters. One single MF
value is applied to all the layers of the network.

2715

4.3.3 Fine-tuning

While our model shows good performance without fine-
tuning, the resultant pruned model can be subjected to an
optional fine-tuning step. For fair comparison with base-
lines, we fine-tune our pruned model and remove the torque
constraint as it was a training technique required only for
pruning and is not mandatory anymore.

5. Analysis and Result
In the following subsections, we will analyze and discuss

our results on different architectures and datasets. We com-
pare our method with other structured pruning techniques
with and without fine-tuning in Section 5.1 and Section 5.3
respectively. Additionally, we study the implications of us-
ing different λT values during training in Section 5.2.

5.1. Effect of Pruning (Before Fine-tuning)

In this section we discuss the effects of different amounts
of pruning on the network’s performance. Specifically, we
analyze the top 1 accuracy drop as we increase the total
percentage of parameters pruned for different network ar-
chitectures and datasets ‘before’ any fine-tuning step. Here
MF is set to 5 filters.

In Figure 2, we consider 3 different models namely
VGG-19, ResNet-164 and DensetNet-40, each of which is
trained on both CIFAR-10 and CIFAR-100. Each of our
models is trained with torque at 3 different λT values, λT ∈
{10−6, 10−7, 10−8}. Additionally, to show the significance
of our Torque method, we compare our results with a Base
Model and a model trained (and pruned) using NS [34] tech-
nique. ‘Base model’ means that we train a model in the
same training environment but with no torque. However,
we apply the same pruning procedure mentioned in Section
5.1 for fair comparison.

From Figure 2, we observe that in most cases, the ‘base
model’ is the first to show a drop in accuracy as the number
of pruned parameters are increased. The performance of NS
is better than base for VGG-19 and DenseNet-40 but proves
to be a bad choice for ResNet type architectures. In com-
parison, our torque trained networks are able to achieve and
maintain a higher accuracy even after substantial parameters
are pruned for all architectures. Specifically, for VGG-19 on
CIFAR10, without any fine-tuning, all our torque trained
networks show almost no loss in accuracy when subjected
to a reduction in the total parameters by 96%.

To understand our results theoretically we refer to Figure
3. In the left figure, when no torque during training, the
weights are distributed randomly throughout the layers. If
magnitude based structured pruning is used to remove least
important filters, we might lose substantial information and
furthermore it will result in long fine-tuning period as the
rest of the filters have to compensate for the lost details.

Figure 3. An illustration of weight matrix of trained layer N before
and after pruning trained without (left) and with (right) torque.

Figure 4. Usual (red region), Ideal (yellow region) and Our norm
distribution (blue region). The black dashed line is the threshold
used for pruning. This figure clearly proves that it is not hard to
choose a threshold from our norm distribution.

In contrast, when trained with torque as shown in the same
figure on the left, we observe weights compressed around a
few filters, that is, only a few filters in each layer are doing
all the learning. In this case, if least important filters are
removed, we lose very less information and the time to fine-
tune is either completely removed or reduced.

Moreover, FPGM [19] laid out two important points
where most ‘smaller-norm less-information’ pruning tech-
niques fail. The first argument is that, in practice, the fil-
ter norm distribution might have small standard deviation,
making it difficult to accurately set a pruning threshold. The
second argument is that weights with the smallest norm
might still have significant impact on the network perfor-
mance because their actual magnitudes are still large. On
further analysis, our method results in a filter norm distri-
bution with the largest peak corresponding to filters with
smallest norm as shown in ‘blue region’ in Figure 4. Ad-
ditionally, the large deviation makes it easy to set a thresh-
old for pruning (black dotted line in the Figure 4). Conse-
quently, our method also ensures that the filter weights with
minimum norm actually are small in magnitude.

Above experiments show that our methodology gives
noteworthy performance even on heavily pruned models
without the need of any fine-tuning. The implications of
using different λT values is discussed in the next section.

2716

(a) λT =10−6 (b) λT =10−7 (c) λT =10−8

Figure 5. An illustration of the weights distribution of the 14th

layer of VGG-19 network trained with different Torque Rate λT .
Blue indicates non-zeros weights (filters) while white indicates
zero weights.

5.2. Effect of Torque rate λT

One important hyper-parameter in our method is the
Torque rate λT which controls the amount of extra gradient
that is added during back propagation as shown in Equation
13. In short, it defines the strength of force with which the
weights are pushed towards the pivot point and compressed.

Figure 5 shows the effect of different λT on layer 14
of VGG19 network after training is completed. Higher the
torque rate, the more they are forced to concentrate near the
pivot point.

The real effect of the different λT is seen during the
pruning step. In Figure 2, we are clearly able to distin-
guish the different networks trained on different λT . Here
at λT = 10−8, although had given us the highest accu-
racy, we observed a drop in accuracy after approximately
90% of the parameters were pruned. On the other hand at
λT = 10−6, although the accuracy reached while training
was 90%, there was hardly any drop in accuracy event af-
ter 98% of the parameters of the model were pruned. This
is because using λT = 10−6, in contrast to 10−8, tries to
concentrate the weight density heavily on the first few ini-
tial filters, thus leading to a large number of filters being left
sparse. This is also demonstrated in Figure 5.

5.3. Results with Fine-tuning

In this subsection, we analyse the performance of our
method at different speedups (ratio of flops in the original
model to number of flops in pruned model) and compare it
with previous state-of-the-art (SOTA) SP techniques. Addi-
tionally, as mentioned in Section 4.3.1, we use two different
initialization points for our torque trained networks. In all
our results in Table 1, (r) and (p) corresponds to random ini-
tialization and initialization from pre-trained respectively.
We provide the performance of our models for different λT

in the supplementary material.
Although our current setting of MF is optimum, we no-

ticed a drastic reduction in parameters as we reduce flops in
order to compare with other competitive techniques. In our

experiments, we noticed that torque creates more sparse fil-
ters as we go deeper in the network which results in higher
percentage of filter reduction in these layers. In theory this
would work, but in the architectures mentioned in this paper
for comparison, the use of ‘strided’ and ‘maxpool’ layers
reduce the size of the feature map as we go deeper in the
network. Thus, pruning filters from deep layers reduces pa-
rameter count but does not reduce flop count to the same ex-
tent as when pruning filters from a shallower layer. Taking
this into consideration, we updated our MF for each layer to
be 30% of the total number of filters in that layer.

ResNet-56 on CIFAR-10: In Table 1a, we present
the different SP techniques on ResNet-56 for CIFAR-10
classification task. For a thorough comparison, we ana-
lyze the performance at various different speed-ups. Au-
thors of GReg-1 [48] proposes a variant of L2 regulariza-
tion with increasing penalty factors. Additionally, they in-
troduce GReg-2 [48] approach which is based on exploit-
ing the Hessian information without dealing with their ex-
act values and thus avoiding the common problems related
to Hessian approximation. However, their main focus is
mainly in model acceleration rather than compression. We
observe here that our torque (both (r) and (p)) outperform
both GReg-1 and GReg-2. Specifically, Torque (p) sur-
passes GReg-1 and GReg-2 by a margin of ≈ 0.5% in drop
in accuracy at 2.15× and ≈ 0.6% drop in accuracy at 2.6×
with a much larger parameters pruned. ABCPruner [33]
proposes to search for the optimal pruned structure by un-
covering channel number in each layer. Additionally, they
start with shrinking the total combinations of pruned struc-
tures in order to efficiently search for their desired struc-
ture. However, we believe that such a constraint by the
user requires deep knowledge of the network being pruned
and changes with different architectures. In torque, because
there is no such restriction, the model is free to explore
the different combinations of channel per layer throughout
its training process. Moreover, our ’global-local’ pruning
technique ensures optimal number of channels are pruned
in each layer. As shown in the table, our approach outper-
forms ABCPruner by securing≈ 0.3% lower accuracy drop
with a higher speedup of 2.23× and much larger number
of parameters pruned. The authors of WHC [3] present a
SP technique by considering both magnitude of channels
as well as dissimilarity between channel pairs to recognize
redundant filters. However, we attribute the superiority of
our Torque (p) results over [3] on the fact that we ensure
dissimilarity between channels during the training itself as
also explained in section . Thus we are able to achieve a
0.2% less accuracy drop as compared to WHC at speed up
of 2.23×. We also observe that although RL-MCTS [50]
performs marginally better than our method, Torque method
is much easier to implement and requires no additional RL
network. Moreover, our method is faster to implement in

2717

Model Base
Acc.
(%)

Pruned
Acc.
(%)

Acc.
drop
(%)

Speed
Up

Pruned
params
(%)

AMC [18] 92.80 91.90 0.90 2.00× -
CP [20] 92.80 91.80 1.00 2.00× -
FPGM [19] 93.59 93.26 0.33 2.11× -
SFP [17] 93.59 93.36 0.23 2.11× -
WHC [3] 93.59 93.47 0.12 2.11× -
LFPC [16] 93.59 93.24 0.35 2.12× -
GReg-1 [48] 93.51 93.25 0.26* 1.99× 49.82
GReg-2 [48] 93.51 93.28 0.23 1.99× 49.82
Torque (r) (ours) 93.48 93.28 0.20 2.15× 63.21
Torque (p) (ours) 93.48 93.76 -0.28 2.15× 65.00
ABC Pruner [33] 93.26 93.23 0.03 2.18× 54.20
WHC [3] 93.59 93.66 -0.07 2.21× -
RL-MCTS [50] 93.2 93.56 -0.36 2.22× -
Torque (r) (ours) 93.48 93.17 0.31 2.22× 63.75
Torque (p) (ours) 93.48 93.73 -0.25 2.23× 65.64
GReg-1 [48] 93.51 92.92 0.59* 2.55× 42.76
GReg-2 [48] 93.51 92.85 0.66* 2.55× 42.76
Torque (r) (ours) 93.48 93.06 0.42 2.61× 66.16
Torque (p) (ours) 93.48 93.40 0.08 2.60× 66.85
WHC [3] 93.59 93.29 0.30 2.71× -
Torque (r) (ours) 93.48 92.59 0.89 2.72× 67.39
Torque (p) (ours) 93.48 93.26 0.22 2.72× 67.44

(a) Results of ResNet-56 on CIFAR10

Model Base
Acc
(%)

Pruned
Acc
(%)

Acc.
drop
(%)

Speed
Up

Pruned
params
(%)

Kron-OBD [47] 73.34 60.70 12.64 5.73× 82.55
Kron-OBS [47] 73.34 60.66 12.68 6.09× 83.57
ED [47] 73.34 65.18 8.16 8.80× 88.63
GReg-1 [48] 74.02 67.55 6.47 8.84× 90.98
Greg-2 [48] 74.02 67.75 6.27 8.84× 90.98
Torque (r) (ours) 73.03 65.87 7.16 8.88× 90.83
Torque (p) (ours) 73.03 63.91 6.12 8.89× 90.81

(b) Results of VGG-19 on CIFAR100

Model Base
Acc.
(%)

Pruned
Acc.
(%)

Acc.
drop
(%)

Speed
up

Pruned
params
(%)

SFP [17] 76.15 74.61 1.54 1.72× -
HRank [32] 76.15 74.98 1.17 1.78× 36.81
TaylorFO [38] 76.18 74.50 1.68 1.82× 44.44
RL-MCTS [50] 77.34 76.8 0.54 1.85× -
Torque (p) (ours) 76.07 75.07 1.00 2.05× 62.41
ThiNet [36] 75.3 72.03 3.27 2.26× 51.56
ABC Pruner [33] 76.01 73.52 2.49 2.30× 56.01
CNN-FCF [31] 76.15 74.55 1.6 2.33× 52.52
Torque (p) (ours) 76.07 74.58 1.49 2.34× 64.50

(c) Results of ResNet-50 on ImageNet

Table 1. Results with respect to speedup and pruned parameters. (r) and (p) corresponds to random initialization and initialization from
pre-trained models respectively.

terms of time required to train and prune model at differ-
ent speedups. For even higher speed-ups, Torque initial-
ized with a pre-trained model outperforms all previous tech-
niques by a large amount along with large percentage of
parameters pruned. This evidently proves that our torque
method is able to compete with state-of-the-art accuracy for
a given ResNet model on cifar-10 classification task and is
both latency as well as memory efficient.

VGG-19 on CIFAR-100: Next, we evaluate torque for
VGG-19 trained on CIFAR-100 in Table 1b. Similar to Ta-
ble 1a, we observe that Torque (p) is able to surpass both
GReg-1 and GReg-2 by a margin of≈ 0.15% accuracy drop
at an even higher speed-up.

In most of our experiments, we have observed that start-
ing from pre-trained weights gives better accuracy. Our un-
derstanding is that for the same number of epochs, it is ad-
vantageous for the model to be at a good minima in order to
absorb any damage done during the torque training process.

ResNet-50 on ImageNet: To further examine the ef-
ficacy of our method, we test our methodology on a larger
dataset. In Table 1c, we compare our results with previous
SP techniques including HRank [32] which uses the rank
of the feature map as a criteria for pruning. Our method
surpasses majority of the previous complex methods, all
while attaining a much higher speed-up and more param-
eters pruned. Additionally by using our easily adaptable

Torque technique, ResNet-50 trained on ImageNet can be
subjected to a pruning percentage of more than 60% of orig-
inal parameters and a speed up of as high as 2.34x (less than
50% of total FLOPS) and still experience only a marginal
drop in accuracy of less than 1.5% of the original model.

6. Conclusion

We propose a novel approach for structured pruning
without altering the CNN model architecture. We have
demonstrated both theoretically from Figure 3 and empiri-
cally from Figure 2 that our torque technique helps to shrink
the fine-tuning step, by either completely removing or min-
imizing the time required in the process. Extensive exper-
iments indicate that our approach outperforms majority of
the previous structured pruning methods with higher speed-
up rate and lower accuracy drop. At a given speed up,
our approach prunes more parameters than our competitors
which is beneficial for more constrained deployment. We
also investigate the distribution of the norm of the weights
produced by our approach in Figure 4, which gives an intu-
ition why this simple method works well. In the future, we
plan to extend our method to other layers, such as attention,
to further expand its application especially in generative AI.

*indicates that these values were obtained from running their open
source code and differs from what was reported in their paper.

2718

References
[1] Sai Aparna Aketi, Sourjya Roy, Anand Raghunathan, and

Kaushik Roy. Gradual channel pruning while training using
feature relevance scores for convolutional neural networks.
IEEE Access, 8:171924–171932, 2020. 2, 3

[2] Sebastian Bach, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Müller, and Wojciech
Samek. On pixel-wise explanations for non-linear classi-
fier decisions by layer-wise relevance propagation. PloS one,
10(7):e0130140, 2015. 3

[3] Shaowu Chen, Weize Sun, and Lei Huang. Whc: Weighted
hybrid criterion for filter pruning on convolutional neural
networks. In ICASSP 2023-2023 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
pages 1–5. IEEE, 2023. 2, 7, 8

[4] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Wein-
berger, and Yixin Chen. Compressing neural networks with
the hashing trick. In International conference on machine
learning, pages 2285–2294. PMLR, 2015. 1

[5] Brian Chmiel, Liad Ben-Uri, Moran Shkolnik, Elad Hoffer,
Ron Banner, and Daniel Soudry. Neural gradients are near-
lognormal: improved quantized and sparse training. arXiv
preprint arXiv:2006.08173, 2020. 1

[6] Bin Dai, Chen Zhu, Baining Guo, and David Wipf. Com-
pressing neural networks using the variational information
bottleneck. In International Conference on Machine Learn-
ing, pages 1135–1144. PMLR, 2018. 3

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009. 1

[8] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann Le-
Cun, and Rob Fergus. Exploiting linear structure within
convolutional networks for efficient evaluation. Advances in
neural information processing systems, 27, 2014. 1

[9] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. arXiv
preprint arXiv:1803.03635, 2018. 1

[10] Trevor Gale, Erich Elsen, and Sara Hooker. The state
of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019. 1

[11] Aidan N Gomez, Ivan Zhang, Siddhartha Rao Kamalakara,
Divyam Madaan, Kevin Swersky, Yarin Gal, and Geoffrey E
Hinton. Learning sparse networks using targeted dropout.
arXiv preprint arXiv:1905.13678, 2019. 3

[12] Jinyang Guo, Wanli Ouyang, and Dong Xu. Channel pruning
guided by classification loss and feature importance. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 10885–10892, 2020. 3

[13] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 1

[14] Song Han, Jeff Pool, John Tran, and William Dally. Learn-
ing both weights and connections for efficient neural net-
work. Advances in neural information processing systems,
28, 2015. 3

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European
conference on computer vision, pages 630–645. Springer,
2016. 5

[16] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang
Zhang, and Yi Yang. Learning filter pruning criteria for deep
convolutional neural networks acceleration. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2009–2018, 2020. 8

[17] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi
Yang. Soft filter pruning for accelerating deep convolutional
neural networks. arXiv preprint arXiv:1808.06866, 2018. 1,
8

[18] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and ac-
celeration on mobile devices. In Proceedings of the Euro-
pean conference on computer vision (ECCV), pages 784–
800, 2018. 3, 8

[19] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi
Yang. Filter pruning via geometric median for deep con-
volutional neural networks acceleration. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 4340–4349, 2019. 6, 8

[20] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Proceedings
of the IEEE international conference on computer vision,
pages 1389–1397, 2017. 3, 8

[21] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network, 2015. 1

[22] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden,
and Alexandra Peste. Sparsity in deep learning: Pruning
and growth for efficient inference and training in neural net-
works. J. Mach. Learn. Res., 22(241):1–124, 2021. 3

[23] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung
Tang. Network trimming: A data-driven neuron pruning ap-
proach towards efficient deep architectures. arXiv preprint
arXiv:1607.03250, 2016. 3

[24] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 5

[25] Durk P Kingma, Tim Salimans, and Max Welling. Varia-
tional dropout and the local reparameterization trick. Ad-
vances in neural information processing systems, 28, 2015.
3

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25, 2012. 1

[28] Yann LeCun, John Denker, and Sara Solla. Optimal brain
damage. Advances in neural information processing systems,
2, 1989. 2

[29] Carl Lemaire, Andrew Achkar, and Pierre-Marc Jodoin.
Structured pruning of neural networks with budget-aware
regularization. In Proceedings of the IEEE/CVF Conference

2719

on Computer Vision and Pattern Recognition, pages 9108–
9116, 2019. 3

[30] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710, 2016. 1, 3

[31] Tuanhui Li, Baoyuan Wu, Yujiu Yang, Yanbo Fan, Yong
Zhang, and Wei Liu. Compressing convolutional neural net-
works via factorized convolutional filters. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3977–3986, 2019. 1, 8

[32] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:
Filter pruning using high-rank feature map. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 1529–1538, 2020. 8

[33] Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang,
Yongjian Wu, and Yonghong Tian. Channel pruning via au-
tomatic structure search. arXiv preprint arXiv:2001.08565,
2020. 7, 8

[34] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In Pro-
ceedings of the IEEE International Conference on Computer
Vision (ICCV), Oct 2017. 1, 2, 3, 6

[35] Christos Louizos, Max Welling, and Diederik P Kingma.
Learning sparse neural networks through l 0 regularization.
arXiv preprint arXiv:1712.01312, 2017. 3

[36] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter
level pruning method for deep neural network compression.
In Proceedings of the IEEE international conference on com-
puter vision, pages 5058–5066, 2017. 1, 2, 8

[37] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov.
Variational dropout sparsifies deep neural networks. In In-
ternational Conference on Machine Learning, pages 2498–
2507. PMLR, 2017. 3

[38] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Fro-
sio, and Jan Kautz. Importance estimation for neural net-
work pruning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11264–
11272, 2019. 8

[39] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for re-
source efficient inference. arXiv preprint arXiv:1611.06440,
2016. 2

[40] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and
Dmitry P Vetrov. Structured bayesian pruning via log-normal
multiplicative noise. Advances in Neural Information Pro-
cessing Systems, 30, 2017. 3

[41] Wei Pan, Hao Dong, and Yike Guo. Dropneuron: Simpli-
fying the structure of deep neural networks. arXiv preprint
arXiv:1606.07326, 2016. 3

[42] Adam Polyak and Lior Wolf. Channel-level acceleration of
deep face representations. IEEE Access, 3:2163–2175, 2015.
3

[43] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 1

[44] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 5

[45] R Semon. The mneme london, 1921. 3
[46] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1, 5

[47] Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong
Zhang. Eigendamage: Structured pruning in the kronecker-
factored eigenbasis. In International conference on machine
learning, pages 6566–6575. PMLR, 2019. 2, 8

[48] Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neu-
ral pruning via growing regularization. arXiv preprint
arXiv:2012.09243, 2020. 2, 3, 7, 8

[49] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu
Chen, and Kailash Gopalakrishnan. Training deep neural
networks with 8-bit floating point numbers. Advances in neu-
ral information processing systems, 31, 2018. 1

[50] Zi Wang and Chengcheng Li. Channel pruning via lookahead
search guided reinforcement learning. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 2029–2040, 2022. 2, 7, 8

[51] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural net-
works. Advances in neural information processing systems,
29, 2016. 3

[52] Wei Wen, Cong Xu, Chunpeng Wu, Yandan Wang, Yiran
Chen, and Hai Li. Coordinating filters for faster deep neural
networks. In 2017 IEEE International Conference on Com-
puter Vision (ICCV), pages 658–666, 2017. 1, 3

[53] Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng,
Kai Shuang, and Xiang Li. Neuron-level structured pruning
using polarization regularizer. Advances in neural informa-
tion processing systems, 33:9865–9877, 2020. 3

2720

