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Abstract

Deep metric learning (DML) aims to minimize empirical
expected loss of the pairwise intra-/inter- class proximity vio-
lations in the embedding space. We relate DML to feasibility
problem of finite chance constraints. We show that minimizer
of proxy-based DML satisfies certain chance constraints, and
that the worst case generalization performance of the proxy-
based methods can be characterized by the radius of the
smallest ball around a class proxy to cover the entire do-
main of the corresponding class samples, suggesting multiple
proxies per class helps performance. To provide a scalable
algorithm as well as exploiting more proxies, we consider
the chance constraints implied by the minimizers of proxy-
based DML instances and reformulate DML as finding a
feasible point in intersection of such constraints, resulting in
a problem to be approximately solved by iterative projections.
Simply put, we repeatedly train a regularized proxy-based
loss and re-initialize the proxies with the embeddings of the
deliberately selected new samples. We applied our method
with 4 well-accepted DML losses and show the effectiveness
with extensive evaluations on 4 popular DML benchmarks.
Code is available at: https://github.com/yetigurbuz/ccp-dml

1. Introduction

Deep metric learning (DML) poses distance metric prob-
lem as learning the parameters of an embedding function so
that the semantically similar samples are embedded to the
small vicinity in the representation space as the dissimilar
ones are placed relatively apart in the Euclidean sense. The
typical embedding function is implemented as convolutional
neural networks (CNN) for visual tasks and the parameters
are learned through minimizing the empirical expected loss
with possibly deliberately selected mini-batch gradient up-
dates [36, 44]. The loss terms in the empirical loss penalize
violations of the desired intra- and inter-class proximity con-
strains. Large-scale problems (in terms of #classes) suffer
from the noisy estimation of the expected loss with mini-
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Figure 1. Simple illustration of our chance constrained DML for-
mulation over two sets where each set’s elements are the embedding
function parameters θ that yield an embedding space in which the
distances to anchor samples assess the semantic dissimilarity with
high probability (i.e., satisfying chance constraints). We consider
the parameters of the desired embedding function f(·; θ∗) to lie in
the intersection of such sets. We show that to each such set, there
corresponds a proxy-based DML solution. Hence, we solve DML
as a set intersection problem via solving multiple proxy-based DML
problems.

batches [36, 48, 57]. Recently, augmenting the mini-batches
with virtual embeddings called proxies is shown to better
approximate empirical loss in large-scale problems [36, 57]
owing to pseudo-global consideration of the dataset during
loss computation. These advances raise a critical question:
"How does increasing proxies help?" which is partially ad-
dressed empirically with the methods exploiting multiple
proxies per class [40, 57, 72].

Characterizing generalization performance of proxy-
based DML can be a decisive step towards theoretically
addressing that question. To this end, we approach DML
differently by posing it as a feasibility problem. In particular,
we consider a chance constraint [3] for the desired embed-
ding function and relate it to the typical expected loss of
DML. Using such a relation, we provide an upper bound to
the generalization error of proxy-based DML. Aligned with
the literature, the form of the bound suggests possible room
for the improvement on the generalization performance if
more and diverse proxies are considered per class. How-
ever, straightforward increase of the proxies may not help;
since, i) proxies of the same class tend to merge [40] and ii)
memory is prohibitive to arbitrarily increase the proxies.
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To alleviate these limitations, we relate the minimizer of
the proxy-based DML to a feasible point of some chance
constraints, and reformulate DML as finding a point at the
intersection of the sets that the proxies imply. We provide a
scalable algorithm using iterative projections to the individ-
ual sets to solve the problem. Each projection corresponds
to a regularized proxy-based DML. Hence, we inherently in-
crease the number of diverse proxies included in the problem.
We empirically study the implications of our formulation
and show its effectiveness by applying our method on 4
DML losses and testing on 4 DML benchmarks. Results
show consistent and state-of-the-art (SOTA) performance in
improving the baselines.

2. Related Work
We discuss the works which are most related to ours.

Briefly, our contributions include that i) we reformulate
DML as a chance constrained feasibility problem, ii) we
characterize generalization of proxy-based DML by expand-
ing on the discussions of the works studying generalization
bounds, iii) we write the feasibility problem, i.e., DML, as
a set intersection problem to be solved by iterative projec-
tions using proxy-based DML, and iv) we effectively utilize
arbitrary number of proxies per class.

DML. Primary momentum in DML includes i) tailoring
the loss terms [36] to impose the desired intra- and inter-class
proximity constraints in the representation space, ii) pair
mining [44, and the references therein] to increase diversity
in the loss computation or to reduce noise [32], and iii)
synthesizing informative samples with generative models
[8, 31, 67, 68] or via interpolation [11, 25, 54]. To improve
embedding quality, detaching class-discriminative and class-
shared features [14, 31, 42], intra-batch feature aggregation
[30, 49], ranking surrogates [39], and further regularization
terms [19, 23, 45, 65] are utilized. Going beyond of a single
model and loss, ensemble [22, 47, 62, 69, 70] and multi-task
based approaches [9,34,43] are also used. Different to them,
we approach DML from a unique perspective, redefining it
as a set intersection problem with chance constraints.

Ranking losses in DML. Typical DML objective en-
forces distance ranking constraints among the samples in
the embedding space via hinge losses penalizing ranking
violations. The contrastive [15, 17], triplet [48, 58], and
generalized contrastive with margin [59] losses are the sim-
plest forms of the pairwise distance ranking based losses.
Proceeding approaches utilize smoothed versions of these
losses by replacing hinge loss with log-sum-exp [37, 56]
or soft-max [51,64] expressions, which inherently employ
ranking among more samples via soft-batch-mining. Un-
til very recently, log-sum-exp based ranking loss has been
revamped with Bayesian perspective [20]. Likewise, we re-
discover contrastive loss as a surrogate loss for our chance
constrained DML formulation. Different to existing work,

our formulation gives algorithmic implications to solve the
DML as a set intersection problem which indeed can be
solved efficiently with proxy-based DML.

Proxy-based DML. Proxy-based methods consider aug-
menting the mini-batch with more samples for less noisy
estimate of the expected loss and circumvent the costly em-
bedding computation to include more samples in the mini-
batches. Proxies typically are vectors representing embed-
dings of the class centers [6,21,35,53] and are trained along
with the embedding function parameters. Non-trainable
proxies are also exploited in [26, 57] to gradually augment
mini-batch with previously computed embeddings. In proxy-
based DML, the pairwise distances are computed between
the proxies and the mini-batch samples. Thus, pseudo-global
dataset geometry is considered during loss computation. To
better represent global geometry, multiple proxies per class
are considered in [40, 41, 72] and a hierarchical structure is
imposed to proxies in [63] where the former two [40, 41]
build on improving R@1 (immediate neighbourhood) by
fine-grained clustering of class samples to overlook intra-
class variances. In our analysis, we also align with increasing
the proxies. Our work differs in that i) we build on reduc-
ing the probability of proximity violations (i.e., improving
MAP@R) and ii) we progressively increase the proxies by
relating the proxy-based DML instances.

DML as constrained optimization. Pioneer metric learn-
ing approaches [58, 60] consider sample-driven proximity
constraints to formulate the problem and exploit alternating
projections to perform projected gradient ascent. Recently,
sample-driven constraints are reconsidered in [5] for a re-
formulation of DML as a set intersection. Sharing the set
intersection concept, we approach the problem with a differ-
ent perspective using chance constraints rather than sample-
driven constraints, which enables us to formally develop
a method that does not suffer from the poor scalability of
exploiting class representatives unlike the method proposed
in [5] does. What makes our method unique is the theoreti-
cally sound way we connect the proxy-based DML and set
intersection concepts to arbitrarily increase the number of
class representatives exploited in the problem.

Characterizing generalization bounds. Notion of ro-
bustness in learning algorithms is studied in [61] and gen-
eralization error bounds of several techniques are derived
accordingly. This study is extended to metric learning set-
ting in [2]. These works study the deviation between the
expected loss and the empirical loss over the whole dataset.
Differently in [50], deviation between two empirical losses,
core-set loss, is studied to characterize generalization loss
when a subset of the training data is exploited. Generaliza-
tion bound for metric learning is further studied in [7, 29] to
analyze and suggest training strategies. Our work expands
on the theories in the aforementioned works to characterize
and improve generalization bound for proxy-based DML.
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3. Notation and Problem Definition
In typical DML, we consider the set Z = X × Y with

elements z = (x ∈ X , y ∈ Y) where X is a compact space
and Y = {1, . . . , C} is a finite label set. We will use x (or
y) to denote data (or label) component of z. We have pZ ,
an unknown probability distribution over Z . Indicator of
the two samples, zi and zj , belonging to the same class is
denoted as yij ∈ {91, 1} where yij = 1 if yi = yj .

We are interested in finding the parameters θ of an em-
bedding function f(·; θ) : X−→IRD so that the parametric
distance, ∥xi 9 xj∥fθ := ∥f(xi; θ) 9 f(xj ; θ)∥2, is small
only whenever yi = yj . For any pair (zi, zj) ∼ pZ and
embedding function f(·; θ), we associate a loss ℓ(zi, zj ; θ)
penalizing proximity violations in the embedding image. We
omit f dependency in the ℓ notation for simplicity. We are
to consider minimization of the expected loss:

θ∗ = argmin
θ

Ezi,zj [ℓ(zi, zj ; θ)] (3.1)

In practice, we are given a dataset of n instances sampled
i.i.d. from Z as {zi}i∈[n] ∼ pZ where [n] = {1, . . . , n},
and an algorithm As1xs2 which outputs parameters θ
minimizing empirical expected loss with a training error
e(As1xs2) for a given set {(zi, zj)}i,j∈s1xs2 of pairs from
the dataset, where sk = {sk(l) ∈ [n]}l∈[nk] ⊆ [n] is a pool
of indexes chosen from the dataset, [n]. In other words,

As1xs2 := argmin
θ

1
|s1| |s2|

∑
i∈s1

∑
j∈s2

ℓ(zi, zj ; θ) , (3.2)

and we formally define DML as A[n]x[n], i.e., minimizing
empirical expected loss with all possible pairs. We consider
improving the generalization error of As1xs2 which is:

L(As1xs2) = Ezi,zj [ℓ(zi, zj ;As1xs2)]. (3.3)

4. Method
We will iteratively solve multiple proxy-based DML prob-

lems. At each problem, we re-initialize the class proxies by
samples from the dataset. We relate the problems by reg-
ularizing the learned parameters to be in the close vicinity
of the previous ones. In the following sections, we provide
theoretical foundation behind the motivation of our method.
We defer all the upcoming proofs to appendix [13].

We start with reformulating DML with a chance con-
straint. We will introduce two propositions that allow us
to decompose the chance constraint into finite chance con-
straints. We also show minimizer of proxy-based DML
satisfies some chance constraints. Hence, we link DML to
finding a point in the intersection of finite sets, which we
solve using iterative projections that correspond to regular-
ized proxy-based DML problem instances.

In the formulations throughout the paper, we rely on
Lipschitz continuity of the loss function for which we re-
fer to Lemma 4.4. Our approach focuses on enhancing the

Figure 2. Illustration of our method (CCP, Algorithm 1) and the
geometry of the embedding space in MNIST dataset: Boxes repre-
sent the converged proxies, while circles represent the next proxies
resulting from K-Center (Algorithm 2). (a) In proxy-based DML
(before our method), proxies coalesce into one. (b) With CCP
(through iterations 1-4), diverse proxies are obtained, resulting in a
reduced covering radius. Magnified version is in suppl. [13].

generalization performance in the seen domain, with impli-
cations for the crucial goal of generalizing to unseen classes
in DML. In DML models, the embedding vector is derived
by globally averaging local CNN features, which act as vi-
sual words [12, 71]. By prioritizing improved generalization
during training, we can transfer the semantic knowledge cap-
tured by these visual words to effectively represent samples
from unseen classes. Furthermore, our empirical studies
provide strong evidence supporting the effectiveness of the
proposed formulations and their implications for DML.

4.1. Chance Constrained Formulation of DML

We consider the solution of the following chance con-
strained feasibility problem:

min
θ

0⊺θ s. to pzi,zj (yij(∥xi 9 xj∥fθ − β) ⩾ 0) ⩽ ε (4.1)

with some small ε. In essence, we want the probability
of observing two samples of the same (different) class be-
ing apart (close) more than β in the embedding space be-
ing low. We write that probability as expected violation,
Ezi,zj [1(yij(∥xi 9 xj∥fθ − β) ⩾ 0)] where 1(·) being indi-
cator function, and bound it for β ⩾ α > 0 as:

pzi,zj (yij(∥xi 9 xj∥fθ − β) ⩾ 0)

⩽ 1/αEzi,zj [(yij(∥xi 9 xj∥fθ − β) + α)+] ,
(4.2)

using Markov’s inequality where (u)+ = max{0, u}. Note
that to each value of the expectation e(θ) there corresponds
an ε = e(θ)/α which the chance constraint satisfies. Hence,
we use the expectation as the surrogate of the penalty term for
the chance constraint and can redefine the aforementioned
feasibility problem as the expected loss minimization in (3.1)
with ℓ(zi, zj ; θ) = (yij(∥xi9xj∥fθ−β)+α)+. In particular,
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we end up with minimization of the expected contrastive
loss with positive margin [59].

We now consider the relaxed feasibility problem in which
we consider m chance constraints conditioned on given m
samples S={zi}i∈[m] ∼ pZ , say anchor samples. To be
more precise, we want to find θ ∈ CS with:

CS={θ | pzj (yij(∥xi9xj∥fθ−β)⩾0) ⩽ ε, ∀i∈[m]}, (4.3)

where [m] indexes the samples in S. Using expectation
bounds as in (4.2), the unconstrained problem becomes:

θ∗ = argmin
θ

1
m

∑
i∈[m]

Ezj [ℓ(zi, zj ; θ)] . (4.4)

We are particularly interested in the problem of the form
in (4.4) owing to its relation to proxy-based methods to char-
acterize their generalization. Prior to delving into such a
relation, we first bound the deviation from the actual expec-
tation in (3.1) when we solve the problem in (4.4) instead.

Proposition 4.1. Given S={zi}i∈[m]
i.i.d.∼ pZ such that

∀k∈Y {xi|yi=k} is δS-cover1 of X , ℓ(zi, zj ; θ) is
ζ-Lipschitz in xi, xj for all yi, yj and θ, and bounded by L;
then with probability at least 1− γ,∣∣∣Ezi,zj [ℓ(zi, zj ; θ)]− 1

m

∑
i∈[m]

Ezj [ℓ(zi, zj ; θ)]
∣∣∣

⩽ O(ζ δS) +O(L
√

log
1
γ/m).

Proposition 4.1 gives an upper bound which is controlled
by the diversity of the anchor samples defining the relaxed
problem. Theoretically, such a controlled bound allows DML
to be formulated as a feasibility problem of finite sets for
some accepted error tolerance. In practice, the best we can do
is using all the samples in the dataset as the anchor samples
when defining CS in (4.3). Granted that the minimization in
(4.4) with the empirical loss boils down to the classical DML
in (3.2), it has different stochastic optimization procedure.
The relaxed problem suggests sampling batch of instances
rather than pairs, which yields less noisy gradient estimates
with the same batch budget.

4.2. Reducing Chance Constraints

The loss terms conditioned on anchor samples in (4.4) are
computationally prohibitive in large-scale problems. Thus,
we are interested in reducing the chance constraints, i.e.,
anchor samples. To this end, proxy-based methods are quite
related in that a proxy-based DML constitutes a superset of
the feasible region of the primary DML problem in (4.1) as
we will show shortly.

Proxy-based methods use parametric vectors {ρi}i∈[C] to
represent embedding of the class centers and minimize the

1S ⊂ S′ is δS -cover of S′ if ∀z′∈S′, ∃z∈S : ∥z − z′∥2 ⩽ δS .

pair losses with respect to those centers. Formally, given a
dataset {zi}i∈[n] ∼ pZ , proxy-based methods consider the
following problem:

min
θ,ρ

1
nC

∑
i∈[C]

∑
j∈[n]

ℓ̂(ρi, zj ; θ), (4.5)

where ℓ̂(ρi, zj ; θ) is a loss term in which the pairwise dis-
tance is computed as ∥ρi − f(xj ; θ)∥2. We can associate
an algorithm Asx[n] defined in (3.2) to the minimizer of
(4.5) with e(Asx[n]) training error where s = {s(i) ∈ [n] |
f(xs(i);Asx[n]) = ρi}i∈[C]. In other words, to each proxy,
we associate a dataset sample whose embedding matches
that proxy, assuming such sample exists. Hence, the mini-
mizer of the proxy-based methods can be reformulated as
the following feasibility problem:

min
θ

0⊺θ s. to pzj (yij(∥xi9xj∥fθ−β)⩾0) ⩽ ε, ∀i∈s, (4.6)

where s, as explained above, indexes C-many dataset sam-
ples corresponding to proxies, and ε= 1

αL(Asx[n]) from the
expression in (4.2). L(Asx[n]) defined in (3.3) is shown to
be bounded in [2], hence so is ε. Reformulation of proxy-
based DML defines the feasibility problem in (4.3) with one
sample per class.

We now consider more general case where we use m sam-
ples per class from the dataset {zi}i∈[n]∼pZ to define the
feasibility problem. We have m-many disjoint 1-per-class
sets s = ∪k∈[m]sk, where sk = {sk(i)∈[n] | ysk(i)=i}i∈[C]

with ∩k∈[m]sk = ∅. We define the problem:

min
θ∈∩kCsk

0⊺θ where Csk = {θ | ∀i ∈ sk,

pzj (yij∥xi 9 xj∥fθ − β) ⩾ 0) ⩽ ε}.
(4.7)

Solving the problem by minimizing the empirical expecta-
tion bounds in (4.4), we end up with an algorithm Asx[n]

in which we are minimizing expected loss over a subset of
all possible pairs. We want to characterize the generaliza-
tion performance of the algorithm Asx[n]. We consider the
following bound from [50] for the generalization error:

Ezi,zj [ℓ(zi, zj ;Asx[n])] ⩽
∣∣∣ 1
|s|n

∑
i,j∈sx[n]

ℓ(zi, zj ;Asx[n])
∣∣∣
(L1)

+
∣∣∣Ezi,zj [ℓ(zi, zj ;Asx[n])]− 1

n2

∑
i,j∈[n]x[n]

ℓ(zi, zj ;Asx[n])
∣∣∣
(L2)

+
∣∣∣ 1
n2

∑
i,j∈[n]x[n]

ℓ(zi, zj ;Asx[n])− 1
|s|n

∑
i,j∈sx[n]

ℓ(zi, zj ;Asx[n])
∣∣∣
(L3)

(4.8)

where the bound is controlled by (L1) training loss (i.e.,
e(Asx[n])), (L2) the deviation between expected loss and
empirical loss over all possible pairs, and (L3) the deviation
between empirical loss over all possible pairs and empirical
loss over the subset of pairs defining the algorithm Asx[n]. It
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is widely observed that high capacity CNNs can reach very
small training error. Moreover, L2 is proved to be bounded
in [2] and is independent of A. Thus, L3 characterizes the
generalization performance of using the subset of pairs over
exploiting all possible pairs.

Proposition 4.2. Given {zi}i∈[n]
i.i.d.∼ pZ and a set s ⊂ [n].

If s = ∪ks′k with s′k is the δs-cover of {i ∈ [n] | yi = k}
(i.e., the samples in class k ), ℓ(zi, zj ; θ) is ζ-Lipschitz in
xi, xj for all yi, yj and θ, and bounded by L, e(Asx[n])
training error; then with probability at least 1− γ we have:∣∣∣ 1

n2

∑
i,j∈[n]x[n]

ℓ(zi, zj ;Asx[n])− 1
|s|n

∑
i,j∈sx[n]

ℓ(zi, zj ;Asx[n])
∣∣∣

⩽ O(ζ δs) +O(e(Asx[n])) +O(L
√

log 1/γ
n ).

Corollary 4.3. Generalization of the proxy-based methods
can be limited by the maximum of distances between the
proxies and the corresponding class samples in the dataset.

Proposition 4.2 implies that increasing the number of
chance constraints with more anchor samples in the feasible
point problem formulation of DML improves the generaliza-
tion error bound as long as the included samples improve
the covering radius of the dataset. In other words, including
more anchor samples do not improve the bound unless the
covering radius is decreased. Similarly, Corollary 4.3 infor-
mally suggests possible improvement on the generalization
error bound of the proxy-based methods if we manage to in-
troduce more proxies which are spread over the dataset once
trained. In practice introducing more proxies generally does
not help the performance since they eventually coalesce into
a single point [40]. Besides, the computation resource limits
the number of proxies to be included in the formulation. In
the next section, we develop an approach to alleviate these
problems.

4.3. Solving the Feasibility Problem

We now introduce our chance constrained programming
(CCP) method, outlined in Algorithm 1, exploiting proxy-
based training together with satisfying arbitrarily increased
chance constraints. In short, we repeatedly solve a proxy-
DML and improve the solution by re-initializing the proxies
with the new samples reducing the covering radius.

We consider the problem in (4.7) as finding a point
in the intersection of the sets. In particular, given
dataset {zi}i∈[n]∼pZ , we have m many 1-per-class sets
sk = {sk(i) ∈ [n] | ysk(i) = i}i∈[C] to define the constraint
set as Cs = ∩k∈[m]Csk . If the sets were closed and con-
vex, the problem would be solvable by iterative projection
methods [1, 4]. Nevertheless, it is not uncommon to perform
iterative projection methods to non-convex set intersection
problems [38, 52]. Hence, we propose to solve the problem
approximately by performing iterative projections onto the

Algorithm 1 CCP DML

initialize θ∗ randomly, given {zi}i∈[n]∼pZ dataset
initialize ρ∗ with random samples, set budget b
repeat

ρ← GreedyKCenterProxy(ρ∗, b, f(·; θ∗))
repeat

sample s = {j ∈ [n]}j∈[m]∼[n] a batch
gθ←λ (θ∗−θ)+∇θ

1
m|ρ|

∑
ρxs ℓ(ρi, zj ; θ)

gρ←∇ρ
1

m|ρ|
∑

ρxs ℓ(ρi, zj ; θ)

(θ, ρ)←ApplyGradient(θ, ρ, gθ, gρ)
until convergence
θ∗←θ, ρ∗←ρ

until convergence

feasible sets Csk defined by sk. At each iteration k we solve
the following projection problem given θ(k91):

θ(k) = argmin
θ∈Csk

1
2∥θ

(k91) − θ∥22, (4.9)

where Csk is defined in (4.7). Using expectation bounds as
the surrogate of the penalty terms for the chance constraints
as we do in § 4.1, we have:

θ(k)=argmin
θ

λ
2 ∥θ

(k91) 9 θ∥22 + 1
C

∑
i∈[C]

Ezj [ℓ(zsk(i), zj ; θ)],

(4.10)
where λ is a hyperparameter for the projection regulariza-
tion. We can minimize the resultant loss by using batch
stochastic gradient approaches. However, the batch should
be augmented by C many anchor samples to compute the
loss, which becomes prohibitive for large-scale problems. To
alleviate costly embedding computation of C many samples,
we propose to use proxies ρi in place of the embedding of
the samples zsk(i). Namely, at each iteration k, we initialize
ρi = f(zsk(i); θ

(k91)) and solve:

θ(k), ρ∗=argmin
θ,ρ

λ
2 ∥θ

(k91) 9 θ∥22 + 1
C

∑
i∈[C]

Ezj [ℓ(ρi, zj ; θ)],

(4.11)
where the resultant problem we solve at each iteration cor-
responds to a proxy-based DML. Any pairwise distance
based loss can replace ℓ(·) with anchor samples being class
proxies. I.e., we repurpose existing objectives with a regu-
larization term in an iterative manner. Although we set up
the formulation using single proxy per class, extending it to
accommodate multiple proxies is a straightforward process.

Theoretically, we should cycle through the sets until con-
vergence to solve θ∈∩k∈[m] Csk . Thus, we must pick anchor
samples for each set to initialize proxies. The updates of
the proxies are not guaranteed to mimic the actual updates
of the corresponding anchor samples. With that being said,
we will still have a solution, as (4.6) suggests, to feasibility
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of some chance constraints as long as the converged prox-
ies ρ∗ are diverse. We empirically observe that the proxies
initialized with diverse samples converge to embedding of
distinct samples (Fig. 2). Hence, on one hand, we have so-
lutions to different constraint sets as long as we re-initialize
the proxies with new samples and solve proxy-based DML
problems. On the other hand, Proposition 4.2 implies that
generalization is improved as long as we end up with con-
verged proxies reducing the covering radius. Therefore, the
theory suggests a set intersection mechanism to reduce the
covering radius yet allows a greedy algorithm via iterative
projections to select (i.e., initialize) the next proxies on the
fly instead of explicitly defining the sets we will iterate on.
Such a result is useful especially for the cases where the
dataset is stochastically extended with random data augmen-
tations which obstruct explicit set forming.

Proxy selection. We can simply use random sampling
for anchor samples to initialize proxies since we eventually
observe informative samples reducing the covering radius
through the iterations. We can as well explicitly mine sam-
ples that possibly help with reducing the covering radius.
Thus, we also exploit clever selection of proxies as outlined
in Algorithm 2. Given a budget b, we sample b many in-
stances per class and compute their embeddings to form a
pool. We then select the samples that reduce the covering
radius most once added to proxy set. This selection is equiv-
alent to K-Center problem as formulated in [50]. Such a
selection of proxies helps converged proxies to be diverse.
b = 1 reduces to random sampling. In both, we inherently
increase the number of anchor samples defining the problem
and hence reducing the covering radius.

Algorithm 2 Greedy K-Center Proxy

input: proxy set ρ, sampling budget b and f(·; θ)
repeat for each class c

sc ← {xi | yi = c}i∈[b], b-sample-per-class
initialize rc ← {}, p← f(sc; θ)
repeat

q ← argmaxu∈p\rc minv∈ρc∪rc ∥u− v∥2
rc ← {q} ∪ rc

until |rc| = |ρc|
return ∪crc

4.4. Implementation Details

Embedding function. For the embedding function f(·; θ)
we use ImageNet [46] pretrained CNNs with ReLU activa-
tion, max- and average-pooling. We exploit architectures
until the output of the global average pooling layer. We add
a fully connected layer (i.e., linear transform) to the output
of the global average pooling layer to obtain the embedding
vectors. We state the following lemma to prove our loss is
Lipschitz continuous.

Lemma 4.4. Generalized contrastive loss defined as
ℓ(zi, zj ; θ) := (yij(∥xi 9 xj∥fθ − β) + α)+ is

√
2ωL-

Lipschitz in xi and xj for all yi, yj , θ for the embedding
function f(·; θ) being L-layer CNN (with ReLU, max-pool,
average-pool) with a fully connected layer at the end, where
ω is the maximum sum of the input weights per neuron.

ω can be made arbitrarily small with weight regulariza-
tion, which is commonly used [57]. SOTA methods widely
use ℓ2 normalization on the embeddings. For normaliza-
tion, we apply v̂ = v/∥v∥2 if ∥v∥2 ⩾ 1 or identity otherwise
(i.e., v̂ = v if ∥v∥2 ⩽ 1). Unlike ℓ2 normalization, such a
transform is Lipschitz continuous, hence so are our loss.

Solving projections. Performing a projection defined
in (4.11) involves a minimization problem. We monitor
MAP@R validation accuracy and use early stopping patience
of 3 to pass the next projection.

5. Experimental Work
5.1. Setup

We follow the suggestions of recent work [10, 36, 44]
explicitly studying the fair evaluation strategies for DML in
order to minimize the confounding of the factors other than
our method. Specifically, we mostly follow the MLRC pro-
cedures proposed in [36] to provide fair and unbiased evalu-
ation of our method as well as comparisons with the other
methods. We offer detailed experimental setup information
in the supplementary material [13, § 2.1] for reproducibility.
Backbone. BN-Inception [18] with 128D embedding.
Datasets. CUB [55], Cars [27], In-shop [33], SOP [37] with
MLRC [36] data augmentation.
Training. Adam [24] optimizer with 1095 learning rate, 1094

weight decay, 32 batch size (4 per class), 4-fold: 4 models (1
for each 3/4 train set partition).
Evaluation. Average performance (Separated-128D) with
mean average precision (MAP@R) at R where R is defined
for each query and is the total number of its true references.
Losses with CCP. C1-CCP: Contrastive [15], C2-CCP: Con-
trastive with positive margin [59], MS-CCP: Multi-similarity
(MS) [56], Triplet-CCP: Triplet [48].
Compared methods and fairness. We compare our method
against proxy-based SoftTriple [40], ProxyAnchor [21] and
ProxyNCA++ [53] methods as well as XBM [57]. Our exper-
iments cover wide range of the DML losses since ProxyAn-
chor is indeed proxy-based MS loss except for missing a mar-
gin term, similarly ProxyNCA is log Σ exp-approximation
of proxy-based Triplet with hard negative mining, and for
single proxy case SoftTriple ≡ ProxyNCA.
CCP hyperparameters. We introduce 3 new hyperparame-
ters to a typical DML: λ, #proxy (proxy per class), b (pool
size). We optimize λ-#proxy with Bayesian search (details
are in supplementary material [13, § 1.2]) and b-#proxy with
grid search (Fig. 5). Based on our analysis, we set λ=2·1094,
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Table 1. Conventional evaluation with BN-Inception. Red: the best.
Blue: the second best. Bold: previous SOTA.

Backbone→ BN-Inception-512D

Dataset→ CUB Cars196 SOP In-shop

Method ↓ R@1 R@1 R@1 R@1

SoftTriple-L [40] 65.40 84.50 78.60 -
C1-XBM-L [57] 65.80 82.00 79.50 89.90
ProxyAnchor [21] 68.40 86.10 79.10 91.50
DiVA [34] 66.80 84.10 78.10 -
ProxyFewer [72] 66.60 85.50 78.00 -
PROFS [5] 66.00 86.30 78.70 -
Margin-S2SD [43] 68.50 87.30 79.30 -
HIST [30] 69.70 87.40 79.60 -

C1-CCP-L 67.74 83.74 79.86 90.98
C2-CCP-L 69.87 83.90 80.01 91.72
MS-CCP-L 69.09 86.01 79.75 91.84

#proxy=8, b=12 for CUB and Cars. For SOP and In-shop,
we reduce #proxy=4 and b=7 owing to relatively less num-
ber of samples per class in the dataset.
Conventional evaluation. We additionally follow the rel-
atively old-fashioned conventional procedure [37] for the
evaluation of our method. We use BN-Inception [18] and
ResNet50 [16] backbones with 512D embeddings. We use
global max pooling as well as global average pooling, like-
wise the recent approaches [21,53,54,57]. We use batch size
of 128 for BN-Inception and 96 for ResNet50.

5.2. Results

MLRC. We present the tabulated MLRC evaluation re-
sults in in supplementary material [13, Tables 1 and 2] and
summarize MAP@R rankings with 128D embeddings in
Fig. 3. We use Method-S/L naming convention to denote
memory size in XBM, and the proxy per class in SoftTriple

Figure 3. Summary of relative improvements for MLRC evaluation.
iIn-shop result is not available for HPL-PA [63].

Table 2. Conventional evaluation with ResNet50. Red: the best.
Blue: the second best. Bold: previous SOTA. †Results from LIBC [49].

Backbone→ ResNet50

Dataset→ CUB Cars196 SOP In-shop

Method ↓ R@1 R@1 R@1 R@1

C1-XBM128 [57] - - 80.60 91.30
ProxyAnchor512 [21] 69.70 87.70 80.00† 92.10†

DiVA512 [34] 69.20 87.60 79.60 -
ProxyNCA++512 [53] 66.30 85.40 80.20 88.60
PROFS512 [5] 64.90 81.30 76.90 -
Margin-S2SD512 [43] 69.00 89.50 81.20 -
LIBC512 [49] 70.30 88.10 81.40 92.80
ProxyAnchor-DIML128 [66] 66.46 86.13 79.22 -
MS+Metrix512 [54] 71.40 89.60 81.00 92.20
HIST512 [30] 71.40 89.60 81.40 -
HPL-PA512 [63] - - 80.04 92.46

C1-CCP-L512 69.87 87.12 81.74 92.07
C2-CCP-L512 71.04 85.93 81.66 92.46
MS-CCP-L512 70.37 89.02 81.59 92.71

and CCP where S denotes 1, and L denotes 4(10) for Soft-
Triple and 4(8) for CCP in In-shop, SOP (CUB, Cars196).
For fairness, we match XBM memory size and the number
of proxies in CCP. We observe that CCP consistently outper-
forms the associated baseline methods on each dataset. Con-
trastive loss’ compelling performance with CCP is important
to support the implications of our formulation. Moreover,
performance improvements on the losses which do not di-
rectly fit in our formulation show the broader applicability of
our method to the pairwise distance based losses. Addition-
ally, CCP framework outperforms not only the related proxy-
based methods but also every single benchmarked approach
in [36]. When compared with SoftTriple and XBM (i.e.,
multiple proxy methods), CCP outperforms them by large
margin especially in the cases where less number of proxies
are used (i.e., method-S comparisons in Fig. 3). We ob-
serve especially in large-scale datasets (SOP & In-shop) that
even single proxy per class brings substantial performance
improvement with CCP. Finally, outperforming hierarchi-
cal proxy-based loss [63] further supports CCP’s superior
embedding geometry.

Conventional. We provide R@1 results in Tables 1 and 2
for the comparison with SOTA. We observe that our method
outperforms SOTA in most cases and performs on par with
or slightly worse in a few. Predominantly, our method has
superior performance on large-scale datasets, especially com-
pared to PROFS [5] which suffers from the poor scalability
of exploiting class representatives.

5.3. Ablations

We include the analyses for the implications of our for-
mulation and the effects of the hyperparameters. We defer
computational analysis to supplementary material [13, § 1.2].
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(a) (b)

Figure 4. Impact of alternating proxies (a) and typical distribution
of the steps per projection problem (b).

Proof of the concept. We evaluate our method using
ResNet20V2 [16] on MNIST [28] dataset with 2D embed-
dings to show the implications of our formulation. In Fig. 2,
we provide the distribution of the samples in the embedding
space. We use 4 proxies per class and pool size b=16. We
observe that when single proxy-based method is converged
(Fig. 2-(a)), the class proxies collapse to a single point. Once
we continue training with proposed approach (Fig. 2-(b)),
the covering radius decreases, leading to performance im-
provement. We as well observe that diverse samples result
in diverse proxies. In supplementary material [13, § 1.2],
we extend this study and further provide the visualization
of the validation data in CUB dataset to see how reducing
the covering radius in training transfers to the test domain.
We additionally experiment the case where we use samples
instead of proxies. Though it is not practically applicable to
large-scale problems, it is important to see whether our intu-
itions about alternating proxies in place of samples hold. We
obtain 98.06% MAP@R performance with sample-based
training against 97.21% MAP@R performance of proxy-
based training. This empirical result supports our motivation
on using the proxies in place of samples.

Effect of alternating problems. We provide results on
MNIST in Fig. 2 to show the effect of solving alternating
problems instead of single proxy-based DML. We addition-
ally evaluate the baseline losses through solving only a single
proxy-DML (Loss-Proxy) to show (Fig. 4-(a)) that our per-
formance increase is not solely coming from augmentation
of proxies in the problem. We clearly observe that alternat-
ing proxies helps performance as our formulation suggests.
Moreover, we also provide a typical distribution of the steps
per proxy-based projection problem in Fig. 4-(b) to show
that we are not greedy on alternating the proxies just to pro-
vide more examples. We do have some relatively small steps,
implying the selected proxies are not informative enough to
change the geometry of the embedding space.

Effect of proxy selection. We analyze the relation be-
tween the number of proxies and the pool size used for the

Figure 5. Analysis of the relation between the number of proxies
and the pool size used for the proxy selection on CUB (left) and
Cars (right) dataset with C2-CCP.

proxy selection with C2-CCP. The related plots are in Fig. 5.
We observe that both increasing the number of proxies and
the pool size for proxy selection help performance. We inter-
estingly see that for single proxy case, increasing the pool
size gives no better results than random selection. Owing
to our greedy proxy selection, we do consider the past ge-
ometry no earlier than single step. Thus, in the single proxy
case, we are prone to oscillate between similar samples for
proxy selection. On the other hand, selecting the samples
that reduce the covering radius most brings better general-
ization over random selection. That said, random sampling
in proxy selection (i.e., pool size = #proxy) still works well
since random sampling indeed can provide diversity in the
samples as well. Such a result supports that the key to our
method is alternating the proxies with new samples. As long
as we re-initialize the proxies with new samples, we will
have some diverse proxies through the iterations. To this end,
we use Greedy K-Center to pick the samples in a clever way
to reduce the covering radius as much as we can (analogous
to mining in batch construction).

6. Conclusion
Bringing a different perspective to DML formulation, we

formulate DML as a chance constrained optimization prob-
lem and theoretically show that a contrastive loss based DML
objective is a surrogate for the chance constraints. We rig-
orously convert the initial problem formulation into another
form enabling expressing DML as a set intersection problem.
The theory suggests a set intersection mechanism yet allows
a greedy algorithm via iterative projections. To this end, we
also relate the solution of a proxy-based DML approach to
one of the supersets to be intersected to obtain the desired
solution. As a result, we formally develop a proxy-based
method that inherently employs arbitrary number of proxies
for better generalization, realizing the mechanism suggested
by the theory with a simple, yet effective, algorithm. Support-
ing our claims, extensive evaluations on 4 DML benchmarks
with 4 DML losses showed the effectiveness of our method.
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