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Abstract

Drone-based land surveys and tracking applications
with a moving camera require three-dimensional recon-
structions from videos recorded using a downward fac-
ing camera and are usually generated by Structure-from-
Motion (SfM) algorithms. Unfortunately, monocular SfM
pipelines can fail in the presence of lens distortion due to a
critical configuration resulting in a plane-sphere ambiguity
which is characterized by severe curvatures of the recon-
structions and erroneous relative camera pose estimations.
We propose a 4-point minimal solver for the relative pose
estimation for two views sharing the same radial distortion
parameters (i.e. from the same camera) with a viewing di-
rection perpendicular to the ground plane. To extract 3D
reconstructions from continuous videos, the relative pose
of pairwise frames is estimated by using the solver with
RANSAC and the Sampson error where globally consistent
distortion parameters are determined by taking the medial
of all values. Moreover, we propose an additional regular-
izer for the final bundle adjustment to remove any remaining
curvature of the reconstruction if necessary. We tested our
methods on synthetic and real-world data and our results
demonstrate a significant reduction of curvature and more
accurate relative pose estimations. Our algorithm can be
easily integrated into existing pipelines and is therefore a
practical solution to resolve the plane-sphere ambiguity in
a variety of top-down SfM applications.

1. Introduction
Computing the intrinsic and extrinsic parameters for a

moving camera with an optical axis perpendicular to the
ground will inevitably result in a critical configuration for
radial self calibration [28], meaning that the radial distor-
tion parameters cannot be determined uniquely. This move-
ment pattern is, however, common in many applications
like photogrammetry using UAVs to compute digital ele-
vation maps [2, 21] or top-down animal behavior studies
(e.g. for navigation analysis) [7, 24]. For example, top-

down video recordings (e.g. from a drone) benefit from im-
age planes parallel to the ground plane to enable direct on-
the-ground distance computations without suffering from
perspective distortions or occlusions. However, these con-
figurations are known to cause systematic errors in UAV-
based reconstructions and DEM computations [16]. The
video recordings are often processed using Structure-from-
Motion (SfM) pipelines to obtain 3D reconstructions of the
recorded environment for subsequent studies. No or insuf-
ficient camera calibrations lead to severe doming effects in
the resulting reconstruction making accurate measurements
in the 3D scene often impossible as illustrated in Fig. 1. The
problem arises due to ambiguities between the potential cur-
vature of the ground plane and the lens distortion.

The contributions of this paper are (i) a minimal solver
for two views with their viewing direction orthogonal to a
shared ground plane and rotations around this viewing di-
rection and (ii) an optional regularizer to mitigate poten-
tial remaining curvature. Minimal solvers are an important
part for many applications including SfM to find relative
rotations and translations between the views. Relative mo-
tions are then transformed into globally consistent motions
usually followed by bundle adjustment [18, 23]. In an SfM
pipeline, our solver can be used instead of the existing min-
imal solver or as a preprocessing step, to extract distortion
parameters that minimize the curvature of the ground plane.
In the latter case, SfM pipelines can be used without any
modification. The regularizer can be easily integrated into
existing SfM pipelines and further penalizes curved sur-
faces during bundle adjustment.

2. Related Work
Critical configurations in radial self calibration were rig-

orously analyzed in [28]. In addition to critical surfaces,
the author defines some critical motions which are camera
motions that always induce ambiguities into the radial dis-
tortion estimation. These motions are forward motion and
moving on a sphere while pointing to its center (also with
infinite radius, i.e. moving on a plane). Forward motion
is of interest in robotics and solutions have been proposed
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(a) No calibration (σ = 0.91) (b) Inaccurate calibration (σ = 0.4) (c) Accurate calibration (σ = 0.02)

Figure 1. Real-world dataset: Comparison of curvatures in the resulting 3D reconstructions with respect to different calibration scenarios.
Scene points and camera centers are illustrated as black and green points respectively. Values for σ are calculated based on the metric
defined in 6.2 and quantify curvature (planar reconstruction: low value, curved reconstruction: high value)

like [29], where the authors use a deep-learning approach to
predict the intrinsic camera parameters. The latter motion
is often discussed in remote sensing applications but only
solutions using additional hardware or heuristic solutions
have been proposed up to now. For example, the usage of
additional sensors like IMUs and GPS have been proposed
to prevent curved 3D reconstructions [9], which however
prevents the processing of already recorded videos and also
imply more complex hardware setups. The author also pro-
poses a heuristic approach to estimate distortion parameters
by running bundle adjustment on a grid of different radial
distortion parameters and selecting the parameter with the
least curvature, which is not feasible for long recordings
with many frames due to the size of the bundle adjustment
problems. Another heuristic approach using GPS informa-
tion is proposed in [15]. In [10, 27], the authors suggest us-
ing dense ground control points to mitigate the curvature.
An iterative approach is proposed in [16] using repeated
plane surface approximation with paraboloids and subse-
quent bundle adjustment.

Minimal solvers for the general relative pose problems
requiring five point correspondences have been studied ex-
tensively with many improvements made over the years
[11, 19]. For more special uses cases, camera motion
or scene constraints can be incorporated into the minimal
solver usually with the goal of reducing the number of re-
quired point correspondences [4, 17, 26]. Besides estimat-
ing extrinsic parameters like rotation and translation, mini-
mal solvers have also been proposed for the joint estimation
of radial distortion parameters [3, 20]. The goal of these
works is to propose a broader class of relative motion min-
imal solvers. They are thus not applicable for the problem
described in this paper, since it requires to assume a certain
motion pattern to remove the ambiguity [28].

A calibration free approach for SfM was proposed in

[13]. Instead of estimating the parameters through self-
calibration, the authors recover a 3D reconstruction using
quadrifocal tensors removing the need to estimate focal
length, and distortion parameters explicitly. The approach,
however, only works for intersecting viewing rays.

3. Problem Formulation
Similarly to [20], we formulate the problem as follows:

g (x′
i, λ)

T
Fg (xi, λ) = 0, ∀i = 1, . . . , n

F ∈ P,
(1)

given 2D image correspondences (xi, x
′
i) for i = 1, . . . , n,

a fundamental matrix F with a set of possible solutions P
for F . The function g (·, ·) calculates the radial undistortion
using the Fitzgibbon division model [6]:

g (x, λ) =

 x(1)

x(2)

1 + λ ∥x∥2

 , (2)

for a single parameter λ ∈ R and a distorted image point
x =

(
x(1), x(2)

)
∈ R2.

In [25], it has been shown, that the focal length cannot
be recovered from two views if the optical axes are parallel
(i.e. moving on a plane) or if they are intersecting in a finite
point and are equally distant from this point (i.e. moving
on a sphere). For this reason we assume the focal length
to be estimated with sufficient accuracy. Importantly, a vi-
olation of this assumption does not result in non-planar 3D
reconstructions when used in an SfM pipeline but will lead
to incorrect intrinsic and extrinsic camera parameters. This
use-case is especially relevant for inaccurate calibration of
the radial distortion parameters.

An essential matrix E can be decomposed as

E = R [t]× (3)
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for a 3D rotation matrix R ∈ SO(3) and the cross product
matrix notation of a 3D translation vector t ∈ R3. Since we
assume a rotation around the viewing direction which coin-
cides with the z-axis, the rotation matrix can be simplified
to:

R̃z (φ) =

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

 (4)

for an angle φ ∈ [0, 2π) which can be parameterized using
the half-angle substitution s = tan (φ/2) to

Rz (s) =
1

1 + s2

1− s2 −2s 0
2s 1− s2 0
0 0 1 + s2

 , (5)

for s ∈ R and |φ| ≠ π. This constraint is, however, negli-
gible for real-world applications. This parameterization has
advantages compared to Eq. (4), since the variable is not
bounded and ambiguities at 0 and 2π can be avoided.

The calibration manifold P from Eq. (1) is consequently
defined as:

P = {Rz (s) [t]× ∈ P3×3 | s ∈ R, t ∈ R3}. (6)

Since an essential matrix is only determined up to scale, the
scaling 1

1+s2 parameter in Eq. (5) can be omitted.

4. Radial Relative Pose on a Common Plane
For each point correspondence (xi, x

′
i) for i = 1, . . . , 4,

we have one equation:

g (x′, λ)
T (

Rz (s) [t]×
)
g (x, λ) = 0 (7)

Expanding Eq. (7), we get equations that are linear in t. By
stacking them row-wise into a matrix, we get the following
equation:

A

t1
t2
t3

 = 0, (8)

where A ∈ R [s, λ]
4×3, whose elements are polynomials in

s and λ. The determinants of each of the four 3 × 3 sub-
matrices of A must be zero since a non-trivial solution for
Eq. (8) exists, providing new constraints that are indepen-
dent of t.

The resulting polynomials can be solved by transforming
them into a polynomial eigenvalue problem as commonly
done in other minimal solvers [4, 12]. For this, three (of
four) of the polynomials from the determinants of the sub-
matrices in Eq. (8) are rewritten as a coefficient matrix mul-
tiplied by a vector containing all the monomials:

Bm = 0, (9)

for coefficients B ∈ R3×21 and the monomial vector

m =
(
1, λ, λ2, s, sλ, sλ2, s2, s2λ, s2λ2, s3, s3λ, s3λ2,

s4, s4λ, s4λ2, s5, s5λ, s5λ2, s6, s6λs6λ2
)T

(10)
consisting of the 21 monomials. Equation (9) can be rewrit-
ten into a polynomial eigenvalue problem:

Ψ(s) Λ = 0 (11)

with Λ =
(
1, λ, λ2

)T
and Ψ(s) ∈ R [s]

3×3 where

Ψ(s) ≡ s6C6 + · · ·+ s0C0 (12)

for square coefficient matrices Ci ∈ R3×3. These matrices
can be solved as described in [1] resulting in the 18 × 18
companion matrix of the polynomial eigenvalue problem:

D =



0 I 0 . . . 0
0 0 I . . . 0
...

...
. . . . . .

...
...

...
...

. . . I
−C−1

6 C0 −C−1
6 C1 . . . . . . −C−1

6 C5


(13)

The 18 eigenvalues of Eq. (13) are the potential can-
didates for s. Complex values can be omitted directly.
Each real eigenvalue is considered a solution for the rela-
tive pose problem, if the corresponding eigenvector fulfills
Λ2/Λ1 = Λ3/Λ2 given by Λ =

(
1, λ, λ2

)T
. A solution for

λ is then set to this quotient. Given s and λ, the translation
t can be determined up to scale as the non-trivial solution of
Eq. (8) using Singular Value Decomposition (SVD).

5. Usage in Structure-from-Motion Pipeline
5.1. Sampson Error

The Sampson error [22] is often used in robust estima-
tors like RANSAC [5] as an error metric because it approxi-
mates the geometric error and is thus more meaningful than
the algebraic error [8].

The algebraic error is defined as:

e = g (x′, λ)
T
Eg (x, λ) . (14)

The Sampson error is then defined using the Taylor
expansion of the geometric error and requires the partial
derivatives of the algebraic error:

∥δX∥2 =
eT e

JJT
. (15)

In our case, the algebraic error is a scalar. The partial deriva-
tive matrix J is of size 1 × 4 and is defined with respect to
the undistortion function:

h′ = g (x′, λ) , h = g (x, λ) (16)
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J =(Eh1 + 2λx′
1Eh3, Eh2 + 2λx′

2Eh3,

ETh′
1 + 2λx1E

Th′
3, E

Th′
2 + 2λx2E

Th′
3

)T
.

(17)

5.2. Recovering the Shared Distortion Parameters

Relative poses between pairwise frames are estimated
using the minimal solver and RANSAC with the Sampson
error as defined in Sec. 5.1. A globally consistent distor-
tion parameter can then be determined by using the median
across all pairwise values.

5.3. Axis Regularizer for Bundle Adjustment

Due to numerical inaccuracies, e.g. due to conver-
sions between distortion models or later bundle adjust-
ments, some curvature may still be noticeable in the final re-
construction (see Sec. 6.2). To remove the remaining dom-
ing, a regularizer can be added to final the bundle adjust-
ment steps involving radial distortion parameters. In con-
trast to [16], this does not involve fitting a parametric model
into the ground points and is thus applicable in scenarios,
where the ground cannot be sufficiently approximated us-
ing a paraboloid. The proposed regularizer influences the
camera extrinsics which in turn affects the radial distortion
parameters and finally the 3D reconstruction.

Given the defined motion constraints (rotation around
the viewing direction), the regularizer aims to transform all
viewing directions to be parallel to each other. Before bun-
dle adjustment, a dominant viewing direction is determined
by gathering all viewing directions and finding the domi-
nant vector ρ ∈ R3. The viewing directions are normalized
to unit length and stacked row-wise into a matrix A and the
dominant vector is determined by solving:

max ∥Aρ∥ , s.t. ∥ρ∥ = 1. (18)

A normalized vector maximizing Eq. (18) also maximizes
the dot product and therefore minimizes the mean angle be-
tween the viewing directions and the solution. The solution
of Eq. (18) can be obtained by using SVD and extracting
the right-singular vector of A corresponding to the largest
singular value.

The regularizer is then defined as:

J (ϕ1, . . . , ϕN ) =

N∑
i=1

∥ϕi × ρ∥2 (19)

for the rotations ϕi ∈ R3 for i = 1, . . . , N of all N poses
in angle-axis representation. The regularizer is minimized
if the rotation vector of a pose is parallel (or anti-parallel)
to the dominant vector.

6. Experiments
To benchmark the performance of the proposed methods,

they are evaluated using a synthetic dataset with a known
radial distortion and relative pose, and a real-world dataset
consisting of videos captured with different camera modal-
ities1. All experiments were done in MATLAB.

6.1. Synthetic Data

The minimal solver is tested on a synthetic dataset by
sampling random points. 400 random 3D points are sam-
pled 1000 times in a volume of [−250, 250]3 and trans-
formed using an arbitrary translation and an arbitrary ro-
tation around the viewing direction of an artificial camera
to get corresponding points. Subsequently, these points are
projected onto images planes and distortion is applied for a
random distortion parameter λ ∈ [−1, 0.2]. Note that for
a severe pincushion distortion of λ > 0.2 the approxima-
tion of the inverse of the radial undistortion functions be-
comes to inaccurate to generate accurate ground-truth im-
age points.

In Fig. 2, RANSAC is started once per sampling run and
the errors in log scale for the distortion, translation and rota-
tion error are illustrated. Median errors are very low being
3.21 × 10−13, 1.86 × 10−13, 2.67 × 10−14 for distortion,
translation and rotation error respectively, which is crucial
for real-world scenarios.

−30 −20 −10 0

Log errors

0

50
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150

C
ou

nt

Distortion
Translation
Rotation

Figure 2. Synthetic dataset: Estimation errors in log scale. For
the synthetic dataset described in Sec. 6.1, the histograms of er-
rors in log scale are plotted as the absolute difference of the real
distortion and estimated distortion in the first row, the L2-norm
of the real translation and estimated translation in the second row
and absolute angle difference between estimated and real rotation
angle in the third row. The median errors are 3.21×10−13, 1.86×
10−13, 2.67×10−14 for distortion, translation and rotation respec-
tively.

In a second experiment, Gaussian noise is added in 100
steps for standard deviations in [0, 2] given an artificial im-
age of size 1000 × 1000 with a focal length of 500. Re-

1We note that to our knowledge no publicly available dataset for this
particular critical configuration is available and existing work on compu-
tational aspects focuses on synthetic data to allow precise evaluations; see
e.g. [19, 28]
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sults are illustrated in Fig. 3a again in log scale. For all er-
rors there is a clear point where accuracy drops around 0.4,
while the reprojection error as visualized in Fig. 3b remains
small throughout the experiments.
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(a) Errors for distortion, translation and rotation in log scale.
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(b) Corresponding median reprojection errors with a 95% confidence
interval.

Figure 3. Synthetic dataset: Estimation errors and corresponding
reprojection errors. For the synthetic dataset described in Sec. 6.1,
the median errors for increasing pixel noise are plotted. Pixel noise
is quantified using the standard deviation of a Gaussian distribu-
tion. Distortion, translation and rotation errors are again measured
using the absolute difference, L2-norm and absolute angle differ-
ence respectively. See Supplement Fig. S1 for different outlier
ratios.

To investigate how an inaccurate or unknown focal
length impacts the solver, in a final experiment, the known
focal length of 500 from a synthetic dataset was shifted by
values between −200 and 200. The image size is again
1000×1000. The reprojection error is calculated and shown
in Fig. 4, revealing that even for inaccurate focal lengths,
the reprojection error stays small, showing that the method
is invariant to the focal length but as mentioned in Sec. 3
will just result in a different radial distortion parameter and
translation.

6.2. Real-World Data

Real-world experiments are performed with two cam-
eras: a hand-held gimbal stabilized GoPro Hero 5 (H5)
with heavy fish-eye distortion operated in the FOV set-
tings medium (m) and wide (w) and a hand-held unstabi-
lized Panasonic HDC TM-900 video camera with minor
distortion. In both cases the cameras were attached to a
rod to keep a certain distance from the camera operator to
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Figure 4. Synthetic dataset: Reprojection errors for inaccurate fo-
cal lengths. For the synthetic dataset described in Sec. 6.1, the
median reprojection errors for different focal length offsets with
95% confidence intervals are plotted for an artificial image of size
1000× 1000.

avoid heavy shadows and the recording of the operators feet.
All videos were recorded with a resolution of 1920×1080
pixels. Videos were recorded top-down and subsequently
processed in the SfM pipeline OpenMVG [18] on images
extract with fives frames per second from the respective
video.2

To quantify the curvature of the reconstruction the domi-
nant viewing direction is extracted as described in Sec. 5.3.
The angle between each viewing direction and this domi-
nant direction is determined and the standard deviation cal-
culated. Consequently small and large deviations are ex-
pected in planar and domed scenes respectively.

Results are shown in Tab. 1. In the uncalibrated case,
the focal length was set to an arbitrarily chosen value of
1000 for the GoPro videos and a focal length of 1905 for
the Panasonic which was extracted from a camera calibra-
tion routine. The radial distortion parameters were initially
set to zero in all cases. For the minimal solver results the
radial distortion parameters were extracted as the median
of all image pairs. For the minimal solver and regularized
results, the regularizer described in Sec. 5.3 was applied in
the final bundle adjustments in addition to the median ex-
tracted radial distortion from the previous experiment. The
results show that the minimal solver estimates sensible ra-
dial distortion for all eight videos even when the camera
is not gimbal stabilized (as in v7 and v8). Moreover, the
remaining curvature is effectively mitigated by the regular-
izer.

If the algebraic error is used instead of the Sampson er-
ror, the number of usable solutions is an order of magnitude
lower in comparison to using the Sampson error as shown in
Tab. 2. Across all eight videos, the usable solutions are sub-
stantially higher when using the Sampson error. A usable
solution is defined as a solution with a realistic radial dis-

2The videos of the dataset are publicly available at https://top-
down-sfm.cvmls.org
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video v1 v2 v3 v4 v5 v6 v7 v8
camera H5 (w) H5 (w) H5 (w) H5 (m) H5 (m) H5 (m) TM-900 TM-900
gimbal ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

uncalibrated 0.847 1.009 0.778 1.047 1.016 0.936 0.293 0.968
minimal solver (ms) 0.034 0.027 0.033 0.027 0.043 0.026 0.069 0.050
ms + regularizer 0.003 0.001 0.019 0.007 0.001 0.018 0.028 0.018

Table 1. Real-world dataset: Curvatures of eight different videos (v1,...,v8) with three different cameras settings: GoPro Hero 5 (H5) with
FOV settings wide (w) and medium (m) and a Panasonic TM-900 video recorder.

video v1 v2 v3 v4 v5 v6 v7 v8
Sampson 78.0 80.6 77.4 79.2 74.9 80.6 83.3 88.6
Algebraic 6.7 11.7 6.2 7.3 6.9 4.8 14.9 24.9

Table 2. Real-world dataset: Algebraic error versus Sampson error for videos v1 to v8. For each video the percentage of usable solutions
with |λ| < 1 are shown.

tortion parameter |λ| < 1 which includes severe pincushion
and barrel distortions.

To analyze the retrieval of radial distortion via median,
Fig. 5 illustrates the distribution of radial distortion parame-
ters for all image pairs. As can be seen, the median is a good
measure for the radial distortion. Except for a few outliers,
the values are all very close to each other. Interestingly this
is also true for videos 7 and 8, where no gimbal was used,
showing that the proposed method is robust against occa-
sional violations of the motion constraints.

v1 v2 v3 v4 v5 v6 v7 v8
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Figure 5. Real-world dataset: Radial distortion parameters for
videos v1 to v8 from Tab. 1. For each video the pairwise esti-
mated distortion parameters are plotted in a boxplot. Small vari-
ances indicate, that the minimal solver estimated similar values for
different image pairs.

Resulting reconstructions for all eight videos are shown
in Fig. 6.

To study the impact of the regularizer independently

of the minimal solver, we performed an additional exper-
iment. Figure 7 illustrates an example where the regularizer
was applied on the fully uncalibrated case without using
the minimal solver to find meaningful distortion parameters
first. The optimization is unstable and results in an unusable
reconstruction. We therefore conclude that the regularizer
cannot be used instead of the minimal solver but only as a
final adjustment step when the solution is already close the
planar scene.

In a final qualitative experiment, the reconstruction of an
insufficiently calibrated reconstruction is compared the re-
construction generated using the proposed algorithms. The
calibrated reconstruction in Figs. 8a and 8b has signifi-
cant curvature, making it unusable for many use cases.
The reconstruction using the distortion parameter from the
minimal solver mitigates this curvature significantly (see
Figs. 8c and 8d) and remaining curvature is completely
removed using the regularizer from Sec. 5.3 as shown in
Figs. 8e and 8f.

7. Discussion & Outlook

In contrast to other critical configurations no formal so-
lution exists to solve the plane-sphere ambiguity in monoc-
ular SfM settings during the estimation of the intrinsic and
extrinsic camera parameter directly. These ambiguities also
exist for movement patterns which deviate slightly from
the critical motions like freely-moving non-stabilized cam-
eras. As a consequence, additional hardware such as depth
sensors or IMUs, heuristics based post-processing and ad-
justed flight paths have been utilized to circumvent curved
reconstructions and erroneous relative camera pose estima-
tions [9,10,15,16,27]. While these solutions are applicable
for specifically generated and curated data, they often can
not be applied to existing recordings and do not solve the
intrinsic ambiguity on a formal level.
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(a) v1 (b) v2

(c) v3 (d) v4

(e) v5 (f) v6

(g) v7 (h) v8

Figure 6. Real-world dataset: Orthographic projections of 3D-
reconstruction for videos from Tab. 1. Uncalibrated reconstruc-
tions are colored in black [ ], reconstructions after setting the
radial distortion parameters to value extracted form the minimal
solver are colored in purple [ ], and after additional regularizer
in red [ ]. For a a more in-depth view of video v7, the reader
is referred to the supplement for an animated rotation around the
colored 3D reconstructed point cloud.

In this paper, we presented two effective and practical
solutions to remove the radial distortion in top-down SfM
settings, namely a minimal solver to estimate relative poses
and radial distortion parameters and a regularizer for final
bundle adjustment to remove potentially remaining curva-

Figure 7. Real-world dataset: Uncalibrated reconstruction using
the axis regularizer in the final bundle adjustment without the use
of the proposed minimal solver. Scene points and camera centers
are illustrated as black and green points respectively. As can be
clearly seen regularizing the camera pose alone does not solve the
plane-sphere ambiguity.

ture. The novelty of our solver is to exploit a priori mo-
tion constraints of top-down recordings yielding a polyno-
mial eigenvalue problem which can be solved using SVD.
Combining this solver with RANSAC and the problem spe-
cific Sampson error, globally consistent distortion param-
eters can be extracted which significantly reduce the cur-
vature of the reconstructions. Remaining curvature can be
removed by integrating the regularizer into the final bun-
dle adjustment which penalizes non-parallel rotation axes
across views. Both methods are easily added to existing
SfM pipelines and our results demonstrate that they can
remove the curvature of the plane-sphere ambiguity suffi-
ciently even for recordings with occasional violations of the
assumed motion constraints.

In the future, we are going to integrate our algorithms
into top-down and moving-camera tracking systems. For
this, we want to explore different solving techniques for
the main equation Eq. (7). The current minimal solver im-
plementation involves many symbolic math operations and
large eigenvalue problems. It will be interesting to test au-
tomatic solvers [14], which have the potential to improve
the efficiency. Moreover, we want to analyze how much de-
viation from the orthogonal movement pattern still achieves
sensible distortion parameters in real-world scenarios.
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(a) Calibrated Reconstruction (σ = 0.2), Side

Low Medium High
Height

(b) Calibrated Reconstruction (σ = 0.2), Top

(c) Minimal solver (σ = 0.07), Side (d) Minimal solver (σ = 0.07), Top

(e) Minimal solver and final axis regularizer (σ = 0.03), Side (f) Minimal solver and final axis regularizer (σ = 0.03), Top

Figure 8. Real-World scenario: Video v7 is taken with a Panasonic TM-900 video recorder with minor distortion. In the left column, the
reconstruction (black) and cameras (green) are shown from the side. In the right column, the reconstruction is shown from the top. The
colormap in the right column indicates the deviation from the fully planar reconstruction per point (i.e. distance to the ground plane). All
point clouds have been scaled, rotated and translated into the same reference coordinate system.
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