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Abstract

Visual tracking of tiny and low-contrast objects such as
insects in cluttered natural environments is a very challeng-
ing computer vision task. This is particularly true for ma-
chine learning algorithms, which usually require distinct vi-
sual foreground features to reliably identify the object of in-
terest. Here, we propose a novel deep learning-based track-
ing framework capable of detecting tiny and visually cam-
ouflaged ants (covering only a few pixels) in complex and
dynamic high-resolution videos. In particular, we intro-
duce refinable recurrent Hourglass Networks, which com-
bine color and temporal information to continuously detect
insects recorded using a freely moving camera. Moreover,
this architecture provides comprehensible heatmaps of po-
sitional estimations and a seamless integration of optional
user-input to further refine the tracking results if neces-
sary. We evaluated our algorithm on an extremely challeng-
ing wildlife ant dataset with a resolution of 1024 × 1024
and report a mean deviation of 19 pixels from the ground
truth (object ≈ 30 px) without any user input. By provid-
ing only 0.6% manual locations this accuracy can be im-
proved to a mean deviation of 9 pixels. A comparison to
a well known deep learning-based single frame detection
algorithm (YOLOv7), two state-of-the-art tracking methods
(ToMP and KeepTrack), a probabilistic tracking framework
and a comprehensive ablation study reveal superior per-
formances in all our experiments. Our tracking framework
therefore provides a foundation for challenging tiny single-
object tracking scenarios and a practical and interactive
solution for biologists and ecologists.

1. Introduction
Visual object tracking is an important research area in

computer vision and has been strongly improved by deep
learning techniques [19]. Tracking animals is a prime ex-
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ample for the applicability of these algorithms [7]. While
these algorithms perform well for large animals, the local-
ization and temporal association of tiny insects such as ants
is however still a challenging task [4] since small appear-
ances aggravate both, the in-frame detection [35] and the
tracking [44].

In particular four difficulties can be identified for the de-
tection of very small objects since tiny objects (1) do not
provide sufficient visual features; (2) have a very limited
visual context; (3) suffer from inappropriate foreground-
background ratios; and (4) often lack a sufficient number
of positive and diverse training examples [3].

Since most of the existing deep learning-based tracking
algorithms use a tracking-by-detection paradigm [28], these
algorithms also suffer from the four aforementioned chal-
lenges. Additional challenges include (5) potentially more
frequent temporal ambiguities (e.g. occlusions; visual clut-
ter) [7]; (6) aggravated temporal associations (especially in
a moving camera scenario) [16]; and (7) difficulty to propa-
gate consistent two-dimensional object representations over
time [41]. Especially for very small and low-contrast ob-
ject tracking in relatively large images, misdetections are
inevitable so that (8) efficient correction strategies are re-
quired if a very high accuracy is needed for behavioral in-
sect studies.

1.1. Contribution

To address these eight challenges and to provide a
wildlife insect tracker, we implemented a novel deep
learning-based tracking framework which combines spa-
tial color information with temporal motion cues into refin-
able recurrent Hourglass Networks. Point representations
are used to reflect the tiny appearance and absence of vi-
sual features or context information and continuous insect
localisations are facilitated in an end-to-end joint detec-
tion and tracking paradigm. The Hourglass-based feature
embeddings provide interpretable heatmaps of potential in-
sect locations and the recurrent network architecture allows
the seamless integration of optional user-input to refine the
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tracking results.
We tested our framework using a challenging single-

animal ant dataset (113,548 frames with a 1024 × 1024
resolution) comprising a foreground/background ratio of
0.0429%, extreme clutter, frequent occlusions, moving
camera recordings and a very low foreground contrast with
highly ambiguous background appearances (Fig. 1). Our
results demonstrate that our framework outperforms several
state-of-the-art algorithms reaching a median L2-deviation
of 5.6 pixels from the ground truth (given an animal size of
30 pixels). In addition, a comprehensive ablation study is
used to examine the importance of different input configu-
rations and we study the impact of the processing modules
of our architecture with respect to other implementations.

Figure 1. Tracking data overview. Full resolution 1024 × 1024
RGB image and corresponding motion map (M) are given. Blue
40× 30 rectangle and RGB / M blow-up indicate the ant position.
Additional 40 × 30 crops of different ants (dashed ellipses) and
backgrounds are given in the bottom row. See Supp. Video S1.

2. Related Work

Due to the above mentioned challenges, the literature
on deep learning-based tracking of small objects like ants
in complex environments is limited. Instead, the exist-
ing work focuses on high-magnification recordings in con-
trolled background conditions resulting in an easy-to-detect
insects with a resolution of at least 64 × 64 pixels [4]. In
the regime of tiny object tracking most work focuses on the
detection challenges [35], combined work on detection and
temporal association however has gained more attention re-
cently [44].

2.1. Tiny Object Detection

The definition of tiny objects vary slightly but usually
objects with a relative size smaller than 1% down to 0.1%
of the original image are considered as tiny [18, 35] and
potential detection strategies include super-resolution tech-
niques [1, 22, 32], data augmentation [5, 17], context-based
methods [14, 23], dedicated anchoring mechanisms [9, 39]
and loss functions [25, 38] and the learning of multi-scale
representations such as feature pyramid networks [10, 13].
Tiny object detection capabilities have also entered the
mainstream algorithms. YOLOv7 uses an anchor-based de-
tection strategy [36] and also CornerNet [20], CornerNet
lite [21] and CenterNet [42] utilize stacked Hourglass Net-
work backbones with additional loss adjustments. Recently,
the first tiny object detection challenge evaluated different
algorithms [40] and the winning architecture used a two-
stage detector based on a Faster R-CNN with ResNet101
backbone and feature fusion techniques [26]. It should be
noted that tiny object detection algorithms are usually de-
veloped for very specific use-cases such as face detection
(e.g. [1, 14]). Another popular application is to detect small
objects on remote sensing data such as aerial (e.g. drone)
and satellite imagery [33, 37].

2.2. Tiny Object Tracking

Similar to tiny object detection, tracking visually small
objects in relatively large images is still underrepresented in
the literature [44]. Due to the small object size point repre-
sentations are often used as in CenterTrack, which utilizes
CenterNet conditioned with two consecutive frames and a
heatmap featuring detections from more distant frames [41].
Object center points are then matched by predicting an off-
set vector from the previous to the current location. For
non-stationary camera recordings, a single object tracking
algorithm for satellite videos has been proposed [43]. This
algorithm is based on a deep Siamese network to compare
template regions with search regions in the next frame and
incorporates an inter-frame difference centroid inertia mo-
tion model to reduce the satellite-induced model drift. In a
recent tiny object tracking dataset, a baseline algorithm is
introduced [44]. This algorithm is based on a knowledge
distillation technique on high resolution data for a teacher
network, whereas the student network receives lower res-
olution images. Both, teacher and student network, share
the same network architecture called SuperDiMP, which it-
self is a combination of DiMP [2] and PrDiMP [6]. ToMP
[29] and KeepTrack [30] are discriminative model predic-
tors learning to distinguish the object of interest from the
background. The former utilizes a transformer-based model
predictor to capture global relations and has been shown to
perform well on many benchmark datasets [29]. The latter
actively keeps track of distractor objects that have a similar
appearance to the object of interest [30]. It uses a learned
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association network to match targets and distractors for each
frame of a video and was integrated into SuperDiMP. ToMP
has been shown to generally outperform KeepTrack, except
for extremely challenging tracking scenarios with small,
fast moving objects and distractors present. In particular,
occlusions in combination with distractors are a common
failure case for ToMP [29]. The aim and scope of Su-
perDiMP, ToMP and KeepTrack and their associated bench-
mark datasets is to solve generic single object tracking. We,
however, are not trying to solve generic tracking, but track-
ing of task specific tiny objects in extremely challenging
data, where generic trackers fail. Therefore the benchmark
datasets of the those algorithms are unsuited for our pro-
posed algorithm.

Even though not tuned for tiny object tracking, the
ROLO algorithm shares some similarity with our proposed
method [31]. ROLO combines object representations based
on YOLO with a recurrent neural network (LSTM) to pro-
cess spatial and temporal information jointly. Apart from
the previously discussed deep learning based strategies,
there are also attempts to track small objects using prob-
abilistic inference strategies such as factor graphs [34].
Since such algorithms require complete start-to-end image
stacks they suffer from slow computational times and are
also purely based on motion cues, which aggravates ob-
ject re-identifications after ambiguous situations such as oc-
clusions. It should be noted that most tracking algorithms
use consecutive image pairs and IoU / Hungarian matching
methods so that prolonged occlusions, which frequently oc-
cur in behavioral insect recordings, cannot be resolved effi-
ciently. Moreover, none of the above mentioned deep learn-
ing algorithms enable an efficient integration of additional
user input to refine the tracking results in high-uncertainty
situations: Only a few manually added locations suffice and
smoothly steers the trajectory towards these locations rather
than causing abrupt changes along the trajectory.

3. Method

In the following, we first describe our input modalities in
Sec. 3.1. Afterwards, we present our tracking methodology
which is organized in a modular fashion. These modules are
called single frame, recurrent and refinement module and
are outlined in Secs. 3.2 to 3.4 respectively. Each module
is built on top of the previous module and incrementally
contributes to minimizing a shared loss function, which is
described in Sec. 3.5. 1

3.1. Input Configurations

To track tiny ants from continuous potentially high-
frame-rate top-down video recordings, both spatial and tem-

1The code is available at https://github.com/LarsHaalck/
refinable-rnn.

poral information can be used. Spatial information is pro-
vided from the RGB channels directly (1024 × 1024 for
each channel) and we provide additional temporal cues by
calculating pixel-wise differences of consecutive camera
motion compensated frames, which we call motion maps.
These image differences are similar to the unaries described
in [34] and are defined by subtracting successive video
frames after rectifying camera motion through the use of
pairwise homographies. In contrast to [34], we do not weigh
the resulting motion cues by a centered Gaussian. Since
these motion maps share the pixel dimensions of the im-
ages we can add them as an additional layer to our input
resulting in a 1024 × 1024 × 4-dimensional input layer as
shown in Fig. 2. The impact of the additional motion maps
is studied by providing three different input configurations
for our network: RGB (I, 3 channels), motion maps (M, 1
channel) or RGB concatenated with motion maps along the
channel axis (I+M, 4 channels).

3.2. Single Frame Module

The single frame module is the most basic module of our
proposed tracking framework and results in a single frame
object detection algorithm when only RGB information is
provided as input. The only way this module has access to
temporal information is through motion maps. This module
heavily relies on the detection capabilities of its feature ex-
traction backbone. Therefore, we studied two mutually ex-
clusive backbone architectures with different levels of com-
putational complexity to identify the best overall trade-off
between time and accuracy.
Hourglass Networks In order to learn the representation of
tiny object variations, Feature Pyramid and stacked Hour-
glass Networks have become very popular since these mod-
els can effectively fuse local and global information [40]. In
fact, it has been shown that additional local information is
particularly useful for object detection given very small ap-
pearances [35]. Therefore, we test two different Hourglass
backbones, namely CornerNet [20] (HG) and CornerNet-
Squeeze [21] (HGS) and evaluate these models with respect
to their prediction accuracy and model size.

The lower part of Fig. 2 shows a schematic overview our
Hourglass approach. Regardless of the version, the Hour-
glass Network first computes a representation feature map
of size hhgn×whgn×dhgn, which corresponds to the output
of the last layer with the highest spatial resolution before the
Corner Pooling is applied. Using Convolutions and Trans-
posed Convolutions, this feature map is then scaled up and
reduced in depth to an easily interpretable single channel
heatmap hm ∈ Rh×w with the same size as the input frame
(see Fig. 5). To determine the position of the object, we
calculate the arg max along the height and width of hm.
ResNet50 Since all Feature Pyramid-like networks that first
down- and then upsample the spatial resolution come at a
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Figure 2. Our method can be separated into three different modules: single frame module, recurrent module and refine module. For single
frame detection, we take the (pooled) feature map output of the backbones and compute the position of the object directly. The recurrent
module adds temporal memory by appending an LSTM to the spatially pooled feature representations. This LSTM receives the current
pooled backbone representation as input and computes a new spatio-temporal representation as its output. After a transformation depending
on the model, the representation is added to the (pooled) backbone output and the prediction is created analogously to the single frame
module. To refine the tracking predictions, we can incorporate user input (e.g. a starting point or corrections) by replacing the LSTM’s
hidden state with a new version based on an MLP’s representation of a user-provided location (xgt, ygt) for the respective frame.

cost of more computational overhead (resulting in slower
tracking speeds), we further reduce this overhead by explor-
ing the performance of a standard ResNet50 as the back-
bone for our detection and tracking task. As seen in the top
part of Fig. 2, a given input f ∈ Rh×w is first reduced to
a feature map of size hres × wres × dres by the ResNet50,
that is subsequently reduced by Global Average Pooling to
a representation vector of dimension dres which has been
shown to be able to preserve localization information [15].
We explore two different ResNet50-based architectures, a
regression (RR) and a classification (RC) model. For re-
gression, we directly predict a coordinate (x, y) using a sin-
gle MLP with the representation vector as input. For clas-
sification, we deploy two MLPs that predict x ∈ Rw and
y ∈ Rh respectively. The elements of each vector represent
a position along the width and height of the image. An esti-
mation of the object’s position is then made by calculating
the arg max along x and y independently. A heatmap can be
constructed by computing the outer product of the predicted
vectors x and y after applying Softmax.

3.3. Recurrent Module

Our recurrent module extends the single frame module
in a straight-forward way and enables the incorporation of
continuous temporal embeddings. As the dotted blue ar-
rows in Fig. 2 show, the recurrent module is built on top
of the features extracted from the respective backbone ar-
chitecture by appending an LSTM [12] to the output of the
pooled feature maps, that are additionally resized with fully
connected layers to match the LSTM’s input dimensional-
ity drnn The output of the LSTM is subsequently resized
by fully connected layers to match the previous depth of the
feature maps produced by the backbone resulting in dhgn
for the Hourglass Network and dres for the ResNet50 archi-
tecture. In the case of the Hourglass backbone, we add this
vector to its output feature map by broadcasting it to each
spatial position of the feature map. Alternatively, we ex-
plore the possibility of transforming the output of the LSTM
into a single channel feature map of size whgn × hhgn with
an MLP, which is then added to the output of the Hour-
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glass backbone. We call this model, depending on the back-
bone, Hourglass Spatial (HG-S) or Hourglass Squeeze Spa-
tial (HGS-S). If the ResNet50 is used, the vector can be di-
rectly added to the pooled feature representation. The final
positional prediction for the frame is computed as described
in the single frame module (Sec. 3.2).

3.4. Refine Module

Up to this point, our algorithm does not need to rely on
any user-specified positional information during inference
as long as there is only one dominantly visible object of in-
terest as it is frequently the case in moving-camera record-
ings. Given the often unavoidable ambiguities in tracking
extremely small objects such as ants in their natural habitat,
explicit user input might however be required (see Sec. 1) to
resolve these ambiguities. For this reason, we introduce the
refine module (dashed red arrows in Fig. 2) which receives a
supplied coordinate (xgt, ygt) ∈ R2 for a given frame as an
additional input. This coordinate is transformed by a small
MLP into a new hidden state vector hsnew, which replaces
the current hidden state of the LSTM and therefore incor-
porates localization information into our algorithm without
the need to recompute an entire forward pass of the back-
bone architecture with modified input. In other words, this
module enables to interact with the recurrent neural network
by resetting and correcting a (potentially corrupted) state to
generate refined trajectories in an interactive and efficient
way.

The impact of potential user input is shown in Fig. 3. Let
f0 to f5 be consecutive frames of a video. Then we can pro-
vide the LSTM with an optional initial hidden state h0 based
on the ground truth gt0 of the first frame f0, ensuring a cor-
rect starting point. Assuming that the next three frames are
predicted correctly, the tracker loses the object indicated by
erroneous positional estimates in f4 (i.e. predicted position
deviates strongly from the ground truth). With the refine
module, a corrected hidden state can be inserted based on
ground truth information gt3 for the previous frame. The
trajectory is then refined either by incorporating gt3 in all
succeeding positional estimates (violet arrows) or in a bidi-
rectional fashion (orange arrows). Bidirectional inference is
implemented by using an exponential moving average that
is stopped after fixed number of frames and by feeding them
backwards into the recurrent module starting from the re-
fined frame.

3.5. Loss Functions

There are three different kinds of outputs and therefore
learning targets to train and test our models. For predict-
ing the objects coordinate using regression we simply min-
imized the Mean Squared Error

Lreg = ∥cpred − cgt∥22 (1)

f0 f1 f2 f3 f5

gt0 gt3

f4
h1 h2 h3

h0

h4 h5

h′
3

h′
2 h′

3 h′
4 h′

5

h′
3

h′
4 h′

5
no click
forward

bidirectional

Figure 3. Impact of refine module. Given an erroneous detection
at frame four (f4) a user-specified (x, y)-location gt3 can be in-
corporated. The impact on the forward and bidirectional inference
refinements are given in violet and orange respectively. Frames
are denoted as fi, hidden states as hi and corrected hidden states
as h′

i.

between the predicted coordinate cpred = (xpred, ypred)
and the ground truth cgt = (xgt, ygt) during training. For
the classification tasks, which incorporate the two vector
output of RC and the heatmap outputs from the HG net-
works, we minimize the focal loss variant proposed in [42].
For the 1D case of two separate vectors for the x and y po-
sition, we use an unnormalized 1D Gaussian

e−
(x−xgt)

2

2σ2 and e−
(y−ygt)

2

2σ2 (2)

centered around the ground truth coordinate elements
(xgt, ygt). Analogously we use a full 2D Gaussian for the
heatmap generation in the HG architectures

e−
(x−xgt)

2+(y−ygt)
2

2σ2 . (3)

The classification loss is defined as

Lcls = −
N∑
i=1

{
(1− pi)

2 log(pi) , li = 1

(1− li)
4(pi)

2 log(1− pi) , li ̸= 1
(4)

where N is the number of spatial positions in the flattened
prediction and li the ground truth label at flattened posi-
tion i. The Softmax operation without temperature scaling
is used along the spatial positions to convert the network’s
outputs at flattened position ci into probabilities pi.

4. Results
Dataset We perform all our experiments on dataset of
113,548 frames from different videos recorded using a
hand-held camera with 60 frames per second and a reso-
lution of 1024× 1024 pixels. The dataset is a subset of the
ontogeny dataset [11]. Each frame has a ground truth label
of (x, y) coordinates in pixels for the exact ant position. The
training dataset consists of 53,877 frames, while the valida-
tion dataset contains 8,883 frames. The remaining 50,788
frames are used as a test split.
Notation In the following paragraphs, we use short nota-
tions for different input configurations, architecture combi-
nations, inference modalities (i.e. recurrent or single) and
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refinement settings. The notations is derived from the con-
figurations and modules described in Sec. 3: Images (I),
Motion Maps (M), Images and Motion Maps (I+M), Hour-
glass (HG), Hourglass Spatial (HG-S), Hourglass Squeeze
(HGS), Hourglass Squeeze Spatial (HGS-S), ResNet classi-
fication (RC), ResNet regression (RR), recurrent inference
(Rec.) and single frame inference (Single). Hourglass Spa-
tial (HG-S) was not used due to the high amount of training
parameters.
Technical Details Our architecture described in Sec. 3 is
trained in two stages. In the first stage, we train the single
frame module, containing the backbone pretrained on Ima-
geNet [8] combined with a loss as described in Sec. 3.5. We
train the network using a batch size of 12, a learning rate of
1e−4 using AdamW [27] and σ = 3 for the unnormalized
Gaussian. For the second stage, we train the recurrent part
of our architecture on video sequences with a length of 32,
keeping the backbone fixed, while allowing parameter re-
finements of the predictor. Training the modules separately
and keeping the single frame module fixed for the recurrent
module, facilitates the training on longer sequences in con-
trast to training end-to-end. For the Hourglass architectures,
we use a batch size of 4, while ResNet based architectures
use a batch size of 12. All other parameters are unchanged.
In both stages, the only data augmentations are independent
random zeroing of image and motion maps input and ran-
dom 90◦ rotations.

4.1. Comparison to State-of-the-Art

We compare our tracker with four different state-of-
the-art methods: a probabilistic factor graph optimization
based tracker described in [34] that was specifically de-
signed for a similar dataset, YOLOv7 [36] in its biggest
variant YOLOv7-E6E with 151.7M parameters as a frame-
work for single-frame detection, ToMP [29] in its variant
ToMP50 and KeepTrack as specified in [30]. The factor
graph method uses only motion similar to our motion maps
called unaries (see Sec. 3.1) as its input, while YOLOv7
uses only RGB images. To provide better comparability,
we extend the YOLOv7 pipeline to process a stacked 4D in-
put consisting of images and motion maps as in our method
(see Sec. 3). YOLOv7 was pretrained using COCO [24]
and trained further using our training dataset until conver-
gence. Ground truth animal positions were transformed into
bounding boxes, by using the position as the bounding box
center with a fixed height and width throughout all frames.
To infer only a single bounding box, non-maximum sup-
pression was disabled and the bounding box with the high-
est confidence extracted in each time-step without linking
detections over time. For ToMP and KeepTrack the fully
trained model was used as-is without retraining, since both
methods are generic trackers that generally do not require
training on the current dataset. The first ground-truth posi-

tion is supplied to the architecture and for each frame the
center of the bounding box is extracted as the inferred posi-
tion. The results are shown in Tab. 1.

median [px] mad [px]
I+M, HGS-S 5.6 2.4
I+M, HGS 5.8 2.7
I+M, YOLOv7 [36] 17.8 8.2
I, YOLOv7 [36] 26.9 13.5
M, Factor-Graph [34] 12.2 8.1
I, ToMP [29] 895.2 143.3
I, KeepTrack [30] 713.3 208.4

Table 1. Comparison of our architecture with YOLOv7 [36], the
factor graph based method [34] ToMP [29] and KeepTrack [30].
Results are measured in median and median of absolute deviations
given the L2-deviation in pixels from the ground truth.

Given the full input of images and motion maps, our
tracker outperforms YOLOv7 in both input modalities as
well as the factorgraph-based method, ToMP and Keep-
Track. YOLOv7 being a very optimized architecture
achieves an inference time of around 50ms per image on
a consumer grade graphics card (NVIDIA RTX 3090) in
comparison to our architecture with an inference time of
around 55ms for HGS and 140ms for HGS-S. Although
using a very optimized parallelized version of the factor
graph method, it takes around 200ms per image on an AMD
Ryzen Threadripper PRO 3995WX due to the need to solve
a combined optimization problem for all frames. The au-
thors also introduce a way to incorporate manual correc-
tions into this optimization problem but in contrast to our ar-
chitecture, the changes always affect the full solution lead-
ing to delayed updates of detections especially for longer
videos. The high deviation from the ground-truth in ToMP
and KeepTrack are caused by frequent and sometimes long-
lasting losses of the object of interest. In fact both trackers
often fixated on other moving objects such as plants, which
could be caused by the very small size and low contrast of
the object if interest.

4.2. Ablation Study

To evaluate each part of our architecture, we tested
our pipeline against different input modalities, backbone
choices and compared the performance from the recurrent
module of our pipeline with its single frame detection coun-
terpart. To show the effects of different choices on different
backbones, we select two reference architectures and input
modalities: HGS-S and RC both with images and motion
maps as their input. The quantitative results are shown in
Tab. 2.

In the first experiment, different backbones were tested,
showing that the Hourglass Squeeze backbone performed
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Best Different Arch. Different Input Single vs Recurrent
Input
Architecture
Single/Rec.

I+M
HGS-S
Rec.

I+M
HG
Rec.

I+M
HGS
Rec.

I+M
RC
Rec.

I+M
RR
Rec.

M
HGS-S
Rec.

I
HGS-S
Rec.

M
RC
Rec.

I
RC
Rec.

I+M
HGS-S
Single

I+M
RC
Single

med [px] 5.6 6.0 5.8 12.0 23.9 5.8 6.3 29.0 27.4 7.3 15.5
mad [px] 2.4 2.9 2.7 6.2 12.1 2.8 3.3 21.9 15.4 3.3 7.9

Table 2. Comparison of different input modalities, backbones and inference modes (single vs recurrent) are shown. Columns are color
coded for Hourglass Squeeze Spatial (HGS-S) in blue, as well as ResNet Classification (RC) in red for better visibility. The column marked
’Best’ identifies the best performing architecture. Results are measured in median and median of absolute deviations given the L2-deviation
in pixels from the ground truth.

Figure 4. Performance comparison of single frame inference (left column; purple [ ]), recurrent inference without refinement (middle
column; red [ ]), and recurrent inference with refinement (right column; green [ ]). The top row depicts a complete trajectory of a tracked
object and the bottom row a zoomed section outlined by the black rectangle. Ground-truth trajectories are shown in blue [ ] (Zoom in for
top row). The shaded area defines a constant error band around the ground truth containing all detections of the recurrent inference with
refinement.

best. Evaluating different input modalities, revealed that all
architectures benefited from a combination of images and
motion maps. Interestingly, supplying only motion maps to
HGS-S delivered better results than providing only images.
Finally, we tested the performance gain from using the re-
current part of our architecture, showing improvement in all
tested architectures.

Qualitatively, these improvements are illustrated in
Fig. 4. Single frame inference is close to the ground truth
most of the time, with many outliers in more complex en-
vironments. In contrast, recurrent inference without any
manual corrections reduces the amount of outliers signifi-
cantly. A single refinement in form of a supplied location

is then able to remove remaining inaccuracies by resetting a
faulty hidden state impacting successive frames. Note that
the manual correction is intentionally not integrated as a
hard constraint for the new inference. Since results from the
LSTM are added and not replaced (see Fig. 2), the supplied
correction is able to guide the model towards the ground-
truth without strictly enforcing it, resulting in a smooth in-
tegration rather than a potentially abrupt positional change
over time.

To study the impact of refinements in more detail, we
compare the heatmaps before the final prediction of single
inference, recurrent inference with refinements and recur-
rent inference without refinements in a challenging scenario

7132



as shown in Fig. 5. Heatmaps of the single frame inference
include strong noise which aggravates accurate predictions.
In contrast, heatmaps of the recurrent inference without re-
finements, are much more directed towards the actual ob-
ject while still maintaining a higher amount of uncertainty.
Supplying a single manual location in time frame ti and no
additional refinements in the following frames, reduces the
uncertainty significantly and allows following frames to be
predicted more precisely.

Image ti Image ti+5 Image ti+10

Single ti Single ti+5 Single ti+10

No Ref. ti No Ref. ti+5 No Ref. ti+10

Ref. ti

100 px

No Ref. ti+5 No Ref. ti+10

Figure 5. Heatmap visualization of a challenging scene for three
timestamps comparing single inference, recurrent inference with
refinements and recurrent inference without refinements. Ground-
truth positions are shown in boxes in dark blue [ ] and inferred
positions in circles in light blue [ ]. See Supp. Video S2 for a full
video.

Across all our experiments we observed that refinements
aid the reduction of outliers in the recurrent module which
however does not affect the median in most circumstances.
Analyzing the mean L2-deviation from the ground truth of
HGS-S with images and motion maps as its input, we ob-
serve a mean of 19 pixels, which can be reduced to 8.7

pixels with 0.64% of refined frames selected by a maximal
allowed deviation threshold of 60 pixels from the ground
truth. When using a bidirectional inference, where we
also allow corrections backwards from a refined frame, this
mean reduces to 8.4.

5. Conclusion

In this paper, we proposed a novel tracking framework
for tiny insects in natural environments. Our solution out-
performs two state-of-the-art algorithms on a challenging
dataset. A fast integration of manual corrections combined
with the direct and interpretable feedback in the form of
heatmaps, make our solution a valuable system for a vari-
ety of animal behavior studies. We tested our framework on
an extremely challenging ant dataset and demonstrate that
the combination of Hourglass Networks with LSTMs out-
compete all other tested architectures.

The modular design of our system also enables a vari-
ety of straight-forward extensions. For example, the resul-
tant heatmaps could also be used to guide a user to poten-
tial frames with high uncertainty so that the refine module
could be used in a targeted fashion. Moreover, the Hour-
glass architectures are well-suited to be extended for multi-
ple animals with a small change of the inference modality.
Instead of an arg max predicting only one position, multiple
positions could be extracted from the heatmaps. Since we
focused on moving camera scenarios, in which the camera
is constantly kept over a moving object of interest, the scope
of this paper was on single objects over time.

In the future, we will explore these possibilities and
address some open challenges such as further optimized
bidirectional inference. Specifically, this type of inference
could be incorporated into the training to make the model
more robust. Moreover, different weighting strategies can
be evaluated to further increase the performance of bidirec-
tional inference.
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