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Abstract

Automotive radars have an important role in au-
tonomous driving systems. The main challenge in automo-
tive radar detection is the radar’s wide point spread func-
tion (PSF) in the angular domain that causes blurriness
and clutter in the radar image. Numerous studies suggest
employing an ’end-to-end’ learning strategy using a Deep
Neural Network (DNN) to directly detect objects from radar
images. This approach implicitly addresses the PSF’s im-
pact on objects of interest. In this paper, we propose an
alternative approach, which we term ”Boosting Radar Re-
flections” (BoostRad). In BoostRad, a first DNN is trained
to narrow the PSF for all the reflection points in the scene.
The output of the first DNN is a boosted reflection image
with higher resolution and reduced clutter, resulting in a
sharper and cleaner image. Subsequently, a second DNN
is employed to detect objects within the boosted reflection
image. We develop a novel method for training the boosting
DNN that incorporates domain knowledge of radar’s PSF
characteristics. BoostRad’s performance is evaluated using
the RADDet and CARRADA datasets, revealing its superi-
ority over reference methods.

1. Introduction

Automotive radars play an important role in autonomous
driving systems, offering extended detection range and re-
silience to adverse weather and lighting conditions. These
radars emit RF signals, which interact with objects and
bounce back to the receiving antennas as echoes. By ap-
plying signal processing algorithms [6], the received sig-
nals are coherently combined over a brief duration (e.g.,
20ms) and across multiple antennas to generate a radar im-
age. This image, characterized by dimensions of range and
angle, captures the intensity of the radar’s received energy
at range and angle coordinates of each pixel. Serving as a
visual representation of the scene, the radar image is further
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Figure 1. Radar’s point spread function (PSF).
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Figure 2. Comparison of low-resolution realistic automotive radar
reflection image (a) and high-resolution ’super-radar’ image (b).
White points depict vehicle, black asterisk shows radar reflection
point from vehicle. Reflection points in (a) have wide PSF, while
in (b) the PSF is narrow.

processed using computer vision algorithms to extract valu-
able scene information, thereby enhancing the perception of
the environment.

One of the key obstacles in object detection from radar
images is the presence of blurriness and excessive clutter
noise. These issues arise due to the wide point spread func-
tion (PSF) of the radar in the angular domain, which is a
consequence of its coarse angular resolution. Fig.1(a) il-
lustrates the spreading function of a single reflection point,
represented by a white point. The PSF consists of a main-
lobe centered on the reflection point, along with multiple
angular side-lobes that are attenuated replicas of the main-
lobe at angle offsets from the main-lobe. These main-lobe
and side-lobe components are depicted with different col-
ors in Fig.1(b). In radar images, reflections from objects
appear as multiple points, each exhibiting a wide PSF in the
angular domain. Fig. 2(a) shows a radar image of a simu-
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lated car (white dots) with black asterisks marking the re-
flection points. The PSF centered at each black asterisk has
an angular resolution of 8◦, which is commonly found in
production-grade automotive radars. The wide main-lobe
of the PSF causes image blurriness, making it difficult to
accurately determine object shape, orientation and class, as
well as discriminating between closely located objects. Ad-
ditionally, the PSF’s side lobes contribute to image clutter in
scenarios involving multiple objects, resulting in both miss-
detection of objects with low reflection intensity and false
detection of clutter as actual objects.

Fig.2(b) illustrates the radar image for the same reflec-
tion points as in Fig.2(a). However, in this case, the radar
used has an angular resolution of 0.1◦, resulting in a PSF
with significantly narrower main-lobe and lower side-lobes.
It is clear that this narrower PSF allows for better estimation
of object characteristics and eliminates clutter. Neverthe-
less, achieving such high angular resolution through hard-
ware in automotive radars presents practical challenges.
It would necessitate a larger physical size and a greater
number of antennas, making it difficult to mount on vehi-
cles while also increasing system complexity and cost [4].
Therefore, it is crucial to explore algorithmic alternatives
that can reduce the PSF of practical radars, such as demon-
strated in Fig. 2(a).

Several notable works [7, 10, 18, 25, 31, 39, 40, 42, 43]
have proposed an ’end-to-end’ learning approach for object
detection, which involves training a Deep Neural Network
(DNN) to estimate objects directly from the radar image
using ground truth reference bounding boxes. In this ap-
proach, the adverse effects of the radar’s PSF on the objects
of interest are implicitly mitigated. In contrast, our paper
presents a distinct approach called Boosting Radar Reflec-
tions (BoostRad). In BoostRad, a boosting DNN is trained
to narrow the main-lobe and reduce the side-lobes of the
PSF for all reflection points in the scene. The output, re-
ferred to as the boosted image, is a higher-resolution and
cleaner radar image with reduced clutter. Subsequently, a
second DNN is employed to perform object detection from
the boosted image. The boosting DNN aims to transform
a low-resolution image, illustrated in Fig. 2(a), into a rep-
resentation that closely resembles the high-resolution radar
image depicted in Fig.2(b). This transformation enables en-
hanced object detection capabilities.

We present a novel approach for training the boosting
DNN, distinguished by two key aspects. Firstly, it utilizes
a deep learning technique that incorporates domain knowl-
edge of the physical PSF characteristics of the radar. This
is achieved through the integration of a unique ground truth
reference of a high-resolution radar image with narrow PSF
that is converted to a reflection probability map, and a cus-
tomized loss function, enabling effective narrowing of the
PSF. Secondly, to overcome the practical issue of acquiring

real reference images with narrow PSF, we have developed
a radar simulation that generates synthetic data. This allows
us to train the boosting DNN exclusively on synthetic sam-
ples. Notably, the trained model demonstrates promising
performance when applied to real radar images.

The performance of BoostRad was assessed using the
RADDet [42] and CARRADA [28] datasets, which com-
prise automotive radar images taken from various scenarios.
The evaluation clearly demonstrates the performance ad-
vantage of BoostRad over multiple reference ’end-to-end’
object detection methods.

The main contributions of this paper are:

1. A novel technique that narrows the PSF in radar im-
ages, leading to improved object detection. This tech-
nique stands out due to its deep learning approach that
incorporates domain knowledge of the physical sen-
sor’s PSF characteristics. The method can also be ex-
tended to tackle the wide PSF issue in other image-
producing sensors, such as ultrasound, MRI, CT, tele-
scopes, and low-end cameras.

2. Insight into the debate between ’end-to-end’ and
multi-stage object detection approaches. The paper
challenges the prevailing trend of ’end-to-end’ ob-
ject detection approaches by demonstrating the supe-
rior performance of multi-stage methods in radar im-
ages. By enhancing the image prior to object detec-
tion, the proposed technique surpasses ’end-to-end’
approaches, prompting further investigation of multi-
stage approaches in the field of computer vision.

3. Highlighting the value of synthetic simulation data for
radar images. This paper successfully trained a DNN
to narrow the PSF using synthetic data alone. The
demonstrated effectiveness of the trained DNN on real
radar data serves as a motivation for further exploration
and utilization of radar simulation in computer vision.
Additionally, the details of the developed radar simu-
lation are disclosed to facilitate its utilization, thereby
promoting further progress in radar-based computer
vision research.

2. Related Work
2.1. Radar Object Detection

One approach to integrate DNNs into radar object de-
tection involves using radar detection points, known as the
radar point cloud, as input for the DNN [9,12,15,19,34,36].
These points are identified using the Constant False Alarm
Rate (CFAR) algorithm [32], which detects peaks in the
radar image surpassing a local noise threshold. However,
CFAR introduces information loss during subsequent DNN
processing.
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To address the information loss caused by CFAR, an al-
ternative approach directly applies DNNs to the radar image
for object detection, bypassing CFAR. Kim et al. [18] uti-
lized YOLO [31] on radar images, demonstrating better per-
formance than the conventional CFAR-based method. Xu
et al. [10] adapted a ResNet-18 encoder with a CNN de-
coder to output 3D bounding box center, size, and orienta-
tion. RADDet [42] employed residual blocks and YOLO
detection heads [7]. Zhang et al. [43] used a CNN ver-
sion of U-Net for radar object detection. Meyer et al.
[25] proposed graph convolution networks. Additional en-
hancements have been made by integrating temporal pro-
cessing [39, 40] and by fusing radar and camera images
[5, 14, 16, 17, 20, 24, 26, 27].

2.2. Radar Datasets

Numerous publicly available automotive radar datasets
with object detection annotations exist, which can be cat-
egorized to two groups based on the type of radar data
they offer. The first group includes datasets with radar
point cloud data (the CFAR detections), such as nuScenes
[8], Radar Scenes [37], Pointillism [3], Cooperative Radars
[35], aiMotive [22], and Astyx [23].

The second group consists of datasets providing radar
reflection intensity images before CFAR processing. The
RADIATE dataset [38] captures unique 360◦ scanning radar
reflection images, distinguishing it from conventional auto-
motive radars with antenna arrays. The CRUW dataset [41]
offers radar images with a limited range of up to 25m and
the annotations include object center points without bound-
ing box information. RADIal [30] and K-Radar [29] contain
higher-resolution radar reflection intensity images, but low
level radar hardware details are undisclosed. As a result,
simulating the radar and generating synthetic data for these
datasets is unattainable.

The CARRADA dataset [28] provides radar reflection
images from 30 controlled scenarios in an open environ-
ments with few objects per scene using a Texas Instruments
(TI) automotive radar prototype [1, 2]. RADDet [42] offers
TI radar-derived reflection intensity images across 15 di-
verse automotive scenarios. Both datasets have up to 50m
range and 2D bounding box annotations. An important dis-
tinction lies in the availability of hardware specifications for
the TI prototype radar used in these datasets. This availabil-
ity enables radar simulation and the generation of synthetic
radar data, offering a notable advantage.

3. Object Detection With Reflection Boosting
A block diagram of the proposed object detection sys-

tem is depicted in Fig. 3. The input radar image with range
and angle dimensions undergoes processing by the reflec-
tion boosting DNN, which enhances resolution and reduces
clutter by narrowing the main-lobe and damping side-lobes
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Figure 3. BoostRad Overview: The boosting DNN enhances input
reflection image Hinput to a radar image Hboost with a narrower
PSF, resembling the ’super-radar’ image Hsuper . Subsequently,
object detection DNN identifies objects in the boosted image.

of the PSF across all reflection points in the scene. Subse-
quently, another DNN detects objects within the boosting
DNN output.

The boosting DNN is trained with a ground truth refer-
ence image from a high-resolution radar referred to as the
’super-radar’. This radar captures images from the same
scene as the automotive radar but with a PSF featuring a
narrower main-lobe and lower side-lobes. However, a no-
table challenge lies in the unavailability of a ’super-radar’
hardware. Moreover, the selection of ’super-radar’ resolu-
tion enhancement factor and a suitable loss function play
a crucial role in successfully training the boosting DNN to
closely align automotive radar images with the ’super-radar’
images. These challenges are addressed comprehensively in
Sections 3.1 and 3.3 that follow.

3.1. Reflection Boosting Network

Architecture. The reflection boosting network is de-
picted in Fig. 4. The input to the network is the reflection
intensity image with a uniform grid in the dimensions range
and sinus of the azimuth angle. In this coordinate system,
the radar’s PSF is spatially invariant and separable in range
and angle dimensions. These properties are essential for
narrowing the PSF. While our method primarily addresses
radars without elevation data, its applicability can extend to
radars featuring azimuth and elevation by increasing the in-
put tensor’s dimensions. The input image comprises three
channels: the real and imaginary parts of the highest inten-
sity along the Doppler domain for each range-angle pixel,
and the Doppler frequency corresponding to the most in-
tense Doppler bin. In this paper, we refer to the latter chan-
nel as the Doppler map.

The boosting network is a 2D convolutional neural net-
work tailored to preserve the radar image’s range dimension
while expanding the azimuth angular dimension. This ap-
proach retains the fine radar range resolution (usually below
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25cm) while increasing the initially lower angular resolu-
tion. This enhancement in angular resolution is achieved
through successive layers of transpose convolutions in the
angular domain. The network’s output head consists of two
layers of 1× 1 convolution filters followed by the Sigmoid
function.

Ground Truth Reference and Loss Function. The
boosting network’s training involves generating the prob-
ability of reflection for each output range-azimuth pixel,
with an azimuth resolution κ times higher than the input.
The ground truth reference is a reflection image constructed
from a ’super-radar’ that corresponds to the input image
scenario. The ’super-radar’ image angular resolution is κ
times greater than the input radar image. As a result, the
PSF in the ’super-radar’ image is narrower by factor κ and
has lower side-lobes than the input radar image. However,
obtaining a practical ’super-radar’ is unfeasible due to the
complex and costly requirements, including a larger aper-
ture with numerous antennas. To circumvent this limitation,
we’ve developed a radar simulation that generates synthetic
pairs of automotive and ’super-radar’ images originating
from the same scene. These synthetic pairs are subsequently
employed for training the boosting DNN. A comprehensive
explanation of this simulation process is provided in Sec-
tion 3.3.

The proposed ground truth reference holds two signifi-
cant advantages. Firstly, it shares the same sensor physi-
cal modality as the radar that produced the input image. In
both images, the positions and intensity of reflection points
remain consistent; the sole distinction lies in the spread-
ing functions. Notably, this differs from using a LIDAR
as a reference, where the reflection points of the LIDAR
deviate considerably from the radar’s. Secondly, this ref-
erence allows for the careful selection of achievable angu-
lar resolution, serving as a realistic goal for the network.
While the ideal scenario would entail an extremely high
κ, akin to LIDAR output resolution, physical constraints
limit achievable output resolution, and complete elimina-
tion of the radar spreading function remains unattainable.
As shown in the ablation study in Section 4.3, selecting an
excessively high κ results in a decline in performance.

For calculating the loss function, we transform the
’super-radar’ reflection intensity for each range and angle
pixel into reflection probability. Let the intensity at the nth

pixel of the ’super-radar’ image be denoted as zn. We make
the assumption that zn follows a chi-square distribution [13]
with variance σ2

s when the pixel contains a reflection point
(where σ2

s varies with range), and has a noise variance of σ2
n

when the pixel lacks a reflection point. Under this assump-
tion, we deduce that the ground truth reference probability
is formulated as

pn =
e−|zn|2/(2σ2

s)

e−|zn|2/(2σ2
s) +

σ2
s

σ2
n
e−|zn|2/(2σ2

n)
. (1)

For a more comprehensive explanation of the derivation of
(1), please refer to the supplementary material.

The reflection boosting DNN is trained with a weighted
cross-entropy loss between the pixel-wise probabilities of
the boosting DNN output image and the ground truth refer-
ence image. The loss function is given by

Lboost = ρn
∑
n∈Ωn

Lbce(pn, p̂n)+

ρr
∑
n∈Ωr

Lbce(pn, p̂n) + ρs
∑
n∈Ωs

Lbce(pn, p̂n), (2)

where Lbce(pn, p̂n) is the cross entropy loss between pn and
p̂n. The notations in (2) are as follows. The symbol n is the
boosting DNN output pixel index, p̂n is the DNN estimated
probability of a reflection in the nth pixel, and pn is nth

pixel reflection probability from the ground truth reference
image given in (1). The symbols Ωn, Ωr, and Ωs denote
three different sets of pixels, which will be explained below,
and ρn, ρr, ρs correspond to weight factors associated with
each respective set.

The loss function in (2) comprises three loss function
terms corresponding to three sets of pixels from the input
radar image denoted by Ωn, Ωr and Ωs. The set Ωr is the
image’s pixels containing reflection points. The set Ωs are
pixels belonging to a reflection point’s spreading function
but not the reflection point’s pixel itself. These pixels can
be distinguished as pixels not included in Ωr that have in-
tensity above a noise level threshold. For example, we set
the threshold 8 dB above the noise standard deviation (cal-
culated empirically). The set Ωn comprises pixels contain-
ing noise; these are the remaining pixels that do not belong
to the sets Ωr and Ωs. We refer the reader to Fig. 1(b) for
an illustration of the pixel sets. The set Ωr is colored white
in the figure, the set Ωs includes the red (main-lobe) and
orange (side-lobes) pixels, and the set Ωn is colored blue.

The partitioning into these three sets facilitates the as-
signment of distinct weight factors (ρr, ρs, ρn) to the cor-
responding loss terms for each set. Notably, this partition-
ing empowers the enhancement of the weight factor asso-
ciated with the pixels within the spreading function (ρs),
thereby compelling the boosting DNN to effectively nar-
row the spreading function and reduce its side-lobes. The
effectiveness of this enhancement will be illustrated in the
ablation study detailed in Section 4.3.

3.2. Object Detection Network

The object detection DNN features four input chan-
nels. The first channel comprises the output of the re-
flection boosting DNN, converted to Cartesian coordinates.
This transformation is important for object detection since
object shape and size remain consistent in these coordi-
nates. The second channel contains the Cartesian coordi-
nates transformation of the Doppler map, which also serves
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Figure 4. Diagram depicting reflection boosting DNN architecture
with 4x expansion in output angular dimension compared to input.

as an input channel for the boosting DNN. Each pixel in
the Doppler map represents the Doppler frequency of the
highest-intensity Doppler bin within the Doppler domain
of each range-angle pixel in the original reflection intensity
image. The remaining two channels consist of the Carte-
sian coordinates (x, y) for each cell. While object shapes
remain invariant in Cartesian coordinates, their surface re-
flection intensity varies based on their position relative to
the radar. Radar reflection intensity from surfaces depends
on their angle and distance from the radar. This information
relies on the object’s position in relation to the radar. By
providing Cartesian input coordinate values for each pixel,
the network learns these relationships and applies them to
object detection.

The object detection DNN is a standard U-Net architec-
ture [33] that has an encoder-decoder network with skip
connections. The encoder has ten convolution layers that
gradually down-sample the spatial features by a factor of
16. The decoder has eight convolution layers that gradu-
ally up-sample the spatial features back to the original in-
put dimension. Batch normalization and ReLU activation
functions are applied after each layer. The final layer is a
1 × 1 convolution layer, which outputs the probability of
an object class (class score) and the 2D bounding box pa-
rameters of the vehicle in a bird’s-eye view for each spatial
cell. The bounding box specifications encompass the off-
set of the object center point from the cell center, the ob-
ject’s width and height, and the orientation represented by
cos(θ), sin(θ), with θ being the object’s orientation angle.
When the dataset lacks the bounding box’s orientation an-
gle, θ remains fixed at zero. During inference, non-maximal
suppression is applied to filter out overlapping bounding
boxes. The object detection network is trained using stan-
dard cross-entropy loss for classification and L2 regression
loss for bounding box parameters.

3.3. Synthetic Data Generation

Training the boosting DNN in Section 3.1 requires
a unique ground truth reference reflection image of the
’super-radar’. However, the ’super-radar’ hardware is not
a commodity available and may not be practical for imple-

mentation due to the large aperture, high number of anten-
nas, and system complexity. To overcome this limitation,
we developed a high-fidelity radar simulation that gener-
ates synthetic radar reflection intensity images of realistic
scenes for any desired radar specification.

Fig. 5 presents the simulation procedure for generating
radar images, which is elaborated below. In the first part,
the CARLA simulation [11] generates a realistic driving
scenario with roads, bridges, pavements, buildings, signs,
poles, persons, vehicles, etc. From this CARLA simula-
tion, a dense 3D point cloud is generated, capturing posi-
tions from all visible surfaces in the scene that can reflect
radar signals. In the subsequent phase, each of these points
is assigned a reflection intensity value using standard radar
signal propagation and reflectivity formulas [21]. The re-
flection point intensity is a function of three factors: (a) the
surface material, (b) the angle between the normal vector of
the point’s surface and the direction from the point to the
radar, and (c) the distance between the point and the radar.

In the subsequent phase, the radar-received signal is syn-
thesized using the reflection points and specific radar pa-
rameters, such as the antenna array layout and the transmit-
ted waveform. The received signal is a sum of the received
signals from all the reflection points in the scene with ad-
ditional Gaussian noise. The received signal of each reflec-
tion point is generated by the point’s reflection intensity, the
distance between the point to the transmit and the receive
antennas, and the radar’s transmit waveform [6, 13]. In the
final step of the simulation, standard radar signal processing
techniques are applied to the received signals collected from
all antennas, resulting in the production of the radar reflec-
tion intensity image. For more details on the mathematical
formulas utilized in the simulation’s implementation, please
refer to the supplementary material.

To enable boosting DNN inference on an actual phys-
ical radar, it’s essential to train the DNN using synthetic
simulation data that closely aligns with the physical radar
characteristics. This simulation requires knowledge of the
antenna array layout and the transmit waveform employed
by the physical radar. For the ground truth reference, we
simulate a higher resolution radar with narrow PSF, featur-
ing an increased number of transmit and receive antennas
spanning a broader aperture than the physical radar being
tested.

4. Experiments and Results
To assess the performance of BoostRad, we utilize the

RADDet [42] and CARRADA [28] datasets. Both of these
datasets comprise radar reflection images alongside 2D
bounding box annotations for objects. The radar images
were captured using a TI prototype automotive radar [1, 2],
that has 50m range capability. The hardware specifica-
tions of the TI radar are publicly accessible, enabling us
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Figure 5. Radar simulation pipeline with illustrated simulated sce-
nario: camera image, reflection points, and radar reflection image.

to simulate it and generate synthetic training data for the re-
flection boosting DNN (as detailed in Section 3.3). These
datasets provide comprehensive testing coverage for auto-
motive radar scenarios. RADDet encompasses images from
15 different densely populated automotive scenarios under
favorable weather conditions. On the other hand, CAR-
RADA contains 30 staged scenarios with fewer objects per
scenario, yet these are captured in varying conditions, in-
cluding fair and more challenging weather conditions such
as snow.

In the RADDet dataset utilized in [42], the test and train-
ing images were sourced from the same scenarios, often
with small time gaps between them. This split creates a
strong correlation between test and training examples, lead-
ing to overfitting on the test set. To address this, we adjusted
the RADDet data split for our performance evaluations, en-
suring different scenarios in the train and test sets. Unlike
RADDet, the CARRADA dataset didn’t display this issue,
so we retained the original data partitioning as proposed
in [28]. For dataset partitioning details, including ablation
tests with the original RADDet split, see the supplementary
material.

Implementation details. The boosting and object de-
tection models were trained on single NVIDIA Tesla V100
GPU, for 100 epochs with batch size 32, and ADAM op-
timizer with learning rate of 10−4. More implementation
details can be found in the supplementary material.

4.1. Object Detection Performance Evaluation

The boosting DNN’s training set was generated by sim-
ulating the TI radar prototype used in RADDet and CAR-
RADA datasets (see Section 3.3). It included 15,000 syn-
thetic radar images and their corresponding ’super-radar’
reference images, with a 12 times higher angular resolu-
tion (κ = 12) than the TI radar prototype. After train-
ing the boosting DNN, its weights were frozen for subse-
quent object detection training. Radar images from RAD-
Det or CARRADA were passed through the boosting DNN,

and its output replaced the original radar image for the
object detection DNN. It’s important to highlight that the
same boosting DNN was utilized for both datasets. Con-
versely, the object detection DNN was optimized indepen-
dently for RADDet and CARRADA, and their respective
performances were evaluated separately.

We assess BoostRad’s object detection performance
against three reference methods: ’U-Net’, ’RADDet’, and
’Probabilistic’. The first method employs the same U-Net
as BoostRad’s, but with the original radar reflection image
as input instead of the boosting DNN output image. ’RAD-
Det’ refers to the object detection network introduced in the
RADDet paper [42], while ’Probabilistic’ refers to the net-
work from [10]. To examine the boosting DNN’s gener-
alization across different architectures, we also evaluated
’RADDet’ and ’Probabilistic’ using the boosting DNN out-
put as input instead of the original radar reflection image

Table 1 summarizes the average precision (AP) results
for the tested methods on RADDet and CARRADA at IOU
thresholds 0.1 and 0.3. Supplementary material contains
further results for larger IOU values. AP represents the area
under the precision-recall curve and is provided for the ’car’
and ’person’ classes. In the car class, we also include trucks,
which are larger vehicles such as vans. Cars are easier to
detect than persons since their reflection intensity is signifi-
cantly higher. To assess the performance on more challeng-
ing cases within the ’car’ class, we also present the AP for
cars at range (denoted by R) exceeding 40m. The ’Boost-
ing’ in the second column specifies whether the input to the
object detection network was the boosting DNN output (✓)
or the original reflection image (✗). Green values indicate
the AP difference between using boosting DNN output and
original reflection image for the same detection method.

We first examine in Table 1 the results of BoostRad
compared to the reference methods ’U-Net’, ’Probalistic’,
and ’RADDet’ when the reference methods use the orig-
inal reflection intensity image and not the boosting DNN
output. This comparison reveals that BoostRad consis-
tently achieves higher AP values than the reference meth-
ods, across all IOU values, object classes, detection dis-
tances, and datasets. For class car, the performance advan-
tage of BoostRad over the best reference method, ’U-Net’,
is relatively small when calculating the AP for all ranges.
The reason is that most cars are at relatively close distances
and could be relatively easily detected by all methods. How-
ever, in more challenging scenarios such as ’person’ detec-
tion at all distances and ’car’ detection beyond 40m with
an IOU of 0.3, BoostRad demonstrates a notable perfor-
mance gain over the reference methods. ’U-Net’ stands out
as the best-performing reference method, potentially due to
its supplementary channels containing (x, y) Cartesian co-
ordinates, which contributes to object detection. Notably,
the ’RADDet’ method exhibits lower AP than the values re-
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ported in [42] due to differences in the train-test set split,
preventing overfitting (details in the supplementary mate-
rial).

Next, we evaluate the performance gain using the boost-
ing DNN output instead of the original reflection intensity
image as input for the ’RADDet’ and ’Probalistic’ refer-
ence methods. The results in Table 1 show that the AP of
both reference methods improves when using the boosting
DNN output instead of the original reflection intensify im-
age. The performance gain increases as the detection cases
are harder, i.e., persons at all distances and cars at a distance
greater than 40m.

4.2. Qualitative performance evaluation

Fig. 6 provides a qualitative comparison between Boost-
Rad and the ’U-Net’ reference method, using two exam-
ples from the RADDet test set. Additional qualitative ex-
amples can be found in the supplementary material. Each
row within the figure corresponds to a distinct scenario. For
each scenario, we present the original radar reflection im-
age (a), the image after passing through the boosting DNN
(b), and the camera image of the scene (c). Detected bound-
ing boxes from the ’U-Net’ reference method are plotted in
purple in (a), while those from BoostRad are plotted in pur-
ple in (b). Ground truth bounding boxes are indicated in
white within (a) and (b), and in red in (c). Car and per-
son bounding boxes are labeled with text and identification
numbers. Other objects in the environment, such as poles
and structures, are marked on the figure to aid orientation,
even though they aren’t part of the dataset and thus aren’t
classified.

From Fig. 6, it’s evident that the original radar reflec-
tion intensity image (a) appears blurred and cluttered, at-
tributed to the radar’s wide PSF. In contrast, the image at the
boosting DNN’s output (b) is sharper, cleaner, and displays
a considerably narrower PSF. In the first scenario, Boost-
Rad detects all objects, whereas ’U-Net’ misses ’car 4’ and
the ’person’. This discrepancy might be due to differences
between the boosting DNN image (b) and the reflection in-
tensity image (a). Specifically, in scenario 1 (a), ’Car 4’ is
masked by the side-lobe of a pole at a similar range, and
the person’s reflection is relatively weak in comparison to
nearby clutter arising from side-lobes of adjacent reflec-
tions. Moving to scenario 2, BoostRad successfully detects
all objects, while ’U-Net’ miss-detects ’car 3’ and falsely
detects a ’car’ on the right side of ’car 2’. Such errors could
stem from the higher side-lobes of the spreading function in
(a) as opposed to (b).

4.3. Ablation Study

The effective training of the boosting DNN can be at-
tributed to its distinct loss function and ground truth refer-
ence, as examined in the ablation study outlined below. The

boosting DNN loss function expressed in (2) comprises two
key components. The first component involves mapping the
ground truth ’super-radar’ reference intensity to probabili-
ties using (1), facilitating pixel-wise cross-entropy compu-
tation between it and the boosting DNN’s output. The sec-
ond component involves segmenting the pixel-wise cross-
entropy into three sets of pixels (Ωr,Ωs,Ωn), each assigned
distinct weights (ρr, ρs, ρn). This segmentation mechanism
empowers the enforcement of PSF narrowing by amplifying
the loss weight associated with the PSF’s pixels.

Table 2 presents a comparison of object detection aver-
age precision for IOU 0.3 on the RADDet dataset, evaluat-
ing the impact of training the boosting DNN with alterna-
tive loss functions from those employed in BoostRad. The
table examines L1 loss instead of cross entropy, as indi-
cated in the first column. Additionally, it investigates the
use of cross entropy with binary mapping of the ground
truth ’super-radar’ reference intensity image via an opti-
mized noise level threshold, instead of the probability map-
ping in (1), as indicated in the second column. The table
also compares results when partitioning cross-entropy pix-
els into sets Ωr,Ωs,Ωn as in (2), separating side-lobe pixels
from noise pixels, versus when partitioning only to signal
and noise pixels, including side-lobe pixels in the noise cat-
egory. The former case is indicated by ✓ and the later by ✗
in the third column of the table, and a hyphen indicates the
case of no segmentation to different pixel sets. The final row
showcases performance with all proposed loss components
of BoostRad. This configuration significantly outperforms
alternative loss functions, underlining the significance of
each component within the boosting DNN’s loss function
for achieving maximal object detection accuracy.

Next, we investigate the importance of selecting an ap-
propriate resolution enhancement factor κ for the ’super-
radar’ ground truth reference. Fig. 7 depicts the AP results
for class ’car’ at distance greater than 40m as a function of
κ. The analysis reveals that κ = 12 achieves optimal per-
formance. A lower κ fails to fully exploit the network’s res-
olution enhancement capabilities. Conversely, selecting an
excessively high κ value leads to performance degradation,
possibly due to attempting to surpass the physical limita-
tions of resolution. Thus, the choice of κ significantly af-
fects performance, and its optimization was made possible
through radar simulation, enabling the generation of ground
truth references with various angular resolutions.

Additional analysis of the boosting DNN image en-
hancement can be found in the supplementary material.

5. Conclusion
We present a novel method to enhance radar image qual-

ity using a DNN that narrows the radar PSF, resulting in
improved object detection. Our approach integrates domain
knowledge, utilizing a high-resolution radar image with op-
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Table 1. Object Detection Average Precision on RADDet and CARRADA Datasets

RADDet Dataset CARRADA Dataset

Car Person Car Person

R ≥ 0 R ≥ 40 R ≥ 0 R ≥ 0 R ≥ 40 R ≥ 0

Method Boost. @ 0.1 @ 0.3 @ 0.1 @ 0.3 @ 0.1 @ 0.3 @ 0.1 @ 0.3 @ 0.1 @ 0.3 @ 0.1 @ 0.3

RADDet
✗ 83.69 72.96 42.45 21.27 29.76 15.38 87.59 70.90 76.46 68.74 29.10 10.24
✓ 85.91 78.19 51.65 28.25 31.50 18.90 88.48 73.79 80.10 78.02 35.59 22.39

+2.22 +5.23 +9.20 +6.98 +1.74 +3.52 +0.89 +2.89 +3.64 +9.28 +6.49 +12.15

Probalistic
✗ 83.32 74.80 43.28 28.50 21.30 17.10 84.72 67.56 69.40 63.92 22.23 10.99
✓ 89.17 79.74 68.19 45.85 41.07 31.23 86.12 78.19 81.55 73.29 32.29 22.30

+5.85 +4.94 +24.91 +17.35 +19.77 +14.13 +1.40 +10.63 +12.15 +9.37 +10.06 +11.31

U-Net ✗ 88.90 81.36 71.90 47.90 25.50 19.60 87.86 81.05 75.56 64.35 25.50 23.74

BoostRad ✓
90.00 83.55 79.50 62.10 41.20 33.00 88.86 81.43 82.23 75.87 40.45 35.46
+1.10 +2.19 +7.60 +14.20 +15.70 +13.40 +1.00 +0.38 +6.67 +11.52 +14.95 +11.72
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Figure 6. Qualitative examples from RADDet dataset. Each row is a different scenario. (a) original radar reflection image with the ’U-Net’
reference detections, (b) boosting DNN output image with BoostRad detections, (c) camera image of the scene with ground truth bounding
boxes. Detections in (a) and (b) are purple, while ground truth bounding boxes are white.

Table 2. Boosting Ablation Study (RADDet, AP @0.3)

GT
Map.

Car Person

Loss Ωs R ≥ 0 R ≥ 40 R ≥ 0

L1 ✓ - 79.46 43.26 23.43
✓ ✓ 78.20 43.98 26.55

CE
✓ ✗ 81.54 50.64 25.98
✗ ✓ 68.14 19.43 5.18
✓ ✓ 83.55 62.10 33.00

timized resolution enhancement (κ), a unique intensity-to-
probability mapping, and a tailored cross entropy loss that
enforces the attenuation of the PSF side-lobes. An abla-
tion study confirms the importance of these components.
Addressing the lack of narrow PSF radar hardware, we de-
velop a simulation to generate synthetic data for the boost-
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Figure 7. Effect of κ on object detection. Raddet cars at R > 40

ing DNN training. In testing on real data from RADDet
and CARRADA datasets, BoostRad outperforms reference
methods in object detection.

Our work challenges prevailing ’end-to-end’ object de-
tection trends, encouraging exploration of multistage ap-
proaches. The PSF narrowing technique holds potential be-
yond radar, benefiting sensors with wide PSFs. Successful
synthetic radar image utilization prompts further investiga-
tion of synthetic data for similar challenges in computer vi-
sion tasks involving radar and other sensors.
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