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Abstract

Masked Autoencoder (MAE) has demonstrated superb
pre-training efficiency for vision Transformer, thanks to its
partial input paradigm and high mask ratio (0.75). How-
ever, MAE often suffers from severe performance drop un-
der higher mask ratios, which hinders its potential to-
ward larger-scale vision Transformers. In this work, we
identify that the performance drop is largely attributed to
the over-dominance of difficult reconstruction targets, as
higher mask ratios lead to more sparse visible patches
and fewer visual clues for reconstruction. To mitigate this
issue, we design Efficient MAE that introduces a novel
Difficulty-Flatten Loss and a decoder masking strategy, en-
abling a higher mask ratio for more efficient pre-training.
The Difficulty-Flatten Loss provides balanced supervision
on reconstruction targets of different difficulties, mitigat-
ing the performance drop under higher mask ratios ef-
fectively. Additionally, the decoder masking strategy dis-
cards the most difficult reconstruction targets, which fur-
ther alleviates the optimization difficulty and accelerates
the pre-training clearly. Our proposed Efficient MAE in-
troduces 27% and 30% pre-training runtime accelerations
for the ViT-Large and ViT-Huge models, provides valuable
insights into MAE’s optimization, and paves the way for
larger-scale vision Transformer pre-training. Code and
pre-trained models will be released.

1. Introduction
Vision Transformers [6, 7, 18, 32, 41] have achieved

promising performance and emerged as generic models in
various computer vision tasks. However, empirical stud-
ies [5, 6, 18, 21, 48, 51] reveal that vision Transformers tend
to require much more training data than convolutional neu-
ral networks (CNNs) [22,33,38] due to the lack of inductive
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Figure 1. Left: Comparison of pre-training performance between
MAE and our Efficient MAE under different mask ratios. Our pro-
posed Efficient MAE [21] is more robust against higher mask ra-
tios. Right: Being tolerant to higher mask ratios, Efficient MAE
can significantly reduce the computational costs of pre-training,
enhancing scalability with larger models and datasets. Results are
obtained with ViT-Large on ImageNet-1K. Best viewed in color.

bias. Fortunately, recent masked image modeling (MIM)
methods [2, 3, 5, 21, 44, 47, 53], which first mask out some
patches of the input image and then reconstruct the masked
patches, define a promising paradigm in learning represen-
tations from unlabeled images and have shown superb per-
formance for vision Transformers.

Among these MIM approaches, Masked Autoencoder
(MAE) [21] has become prevalent due to its superb pre-
training efficiency and good performance. The high pre-
training efficiency primarily comes from an asymmetric
encoder-decoder pipeline and a high mask ratio (i.e., 0.75),
which relieves the heavy encoder from the computation of
masked image patches, leading to significant speedups (es-
pecially on large models such as 2.8× for ViT-Large and
3.5× for ViT-Huge). The high mask ratio in MAE enables
efficient pre-training and plays a key role for scaling up the
model size and leveraging large-scale data.

In this work, we investigate how to lift the mask ratio
in MAE [21] to further reduce pre-training computational
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Figure 2. Motivations of our proposed Efficient MAE. P2Dist is
our proposed metric for measuring the reconstruction difficulty.
Upper: MAE pre-training with a higher mask ratio leads to a
larger number of hard reconstruction targets. Lower: Therefore,
the pre-training of MAE baseline under higher mask ratios will
thus be dominated by the increased hard targets, which hinders the
pre-training optimization. To mitigate this issue, our proposed Ef-
ficient MAE includes a loss factor (d−γ , γ > 0) into the MAE
baseline, which weights down (or up) the losses for hard (or easy)
targets, leading to balanced losses over various reconstruction tar-
gets, and facilitating pre-training optimization. Results are ob-
tained with ViT-Large on ImageNet-1K. Best viewed in color.

costs. We start from a simple observation: MAE’s pre-
training performance drops drastically when the mask ratio
grows to a huge value (e.g., 0.90), as shown in Fig. 1 (left).
We believe such a performance drop is highly correlated
with the optimization difficulty introduced by the extremely
high mask ratio. Specifically, as shown in Fig. 2 (upper),
an extremely high mask ratio increases the average dis-
tances between masked and visible tokens, thus signifi-
cantly increasing the number of tokens that are difficult to
reconstruct. Hence, these challenging reconstruction tar-
gets with high uncertainty will dominate the pre-training
losses (shown by the blue line in Fig. 2 (lower)), resulting
in degraded fine-tuning performance. Based on these ob-
servations, we believe that a simple and intuitive solution
to mitigate the optimization difficulty under a high mask
ratio is to differentiate tokens with different reconstruction
difficulties, and balance their losses during pre-training, as
illustrated by the orange line in Fig. 2 (lower).

With the motivations above, we propose Efficient MAE,
which enables effective MAE pre-training under higher
mask ratios, and paves the way for more efficient and scal-

able MIM methods with larger models and datasets. Specif-
ically, we first define a metric named Patch-wise Average
Nearest Pixel Distance (P2Dist), which computes the dis-
tances between the pixels in the masked patches and the vis-
ible pixels, and accordingly reflect the reconstruction diffi-
culties of masked patches. On top of P2Dist, the proposed
Efficient MAE consists of two novel designs. First, we de-
sign a novel Difficulty-Flatten Loss, which mitigates the im-
balance between hard and easy targets by down-weighting
the loss assigned to abnormally hard targets with high ambi-
guity and focusing on the pre-training with simple targets,
as shown in Fig. 2 (lower). With the proposed Difficulty-
Flatten Loss, MAE pre-training becomes less sensitive to
the mask ratio (shown in Fig. 1 (left)), pushing the appro-
priate limit of mask ratio from 0.75 to 0.85. Second, we
propose a decoder masking strategy to speed up the MAE
decoding procedure during pre-training, which selectively
reconstructs masked tokens and complements the proposed
Difficulty-Flatten Loss in a similar manner. Together with
the two designs, our proposed Efficient MAE introduces
about 27% and 30% run-time acceleration for ViT-Large
and ViT-Huge, respectively.

In summary, the contributions of this work are fourfold.

• We introduce P2Dist to analyze the optimization of
MAE and identify that the pre-training losses over-
dominated by those difficult reconstruction targets are
the root of performance drop under high mask ratios.

• We propose a novel Difficulty-Flatten Loss to down-
weigh the pre-training losses for difficult reconstruc-
tion targets, thus reducing the ambiguity and recon-
struction difficulty in pre-training.

• We propose a decoder masking strategy that selectively
reconstructs masked patches, which complements the
proposed Difficulty-Flatten Loss and introduces fur-
ther speed-up to MAE pre-training.

• Based on the two novel designs above, we propose
Efficient MAE, which achieves about 30 % accelera-
tion on top of the MAE baseline. The proposed Effi-
cient MAE is the pioneering work to investigate MAE
pre-training with higher mask ratios for scaling up to-
ward larger models and datasets.

2. Related Work
Large-scale Vision Transformer. Originating from nat-
ural language processing (NLP), Transformers have been
successfully applied to various computer vision tasks [6,11,
32, 35, 42, 52, 54], and demonstrated extraordinary poten-
tial in scaling model capacity and data size. Numerous vi-
sual benchmarks are successively dominated by large-scale
Transformers. Early efforts [13,37,51] mainly focus on im-
age classification and achieve outstanding performance on
ImageNet [15]. The models in these methods contain over
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a billion parameters and are trained on huge datasets, i.e.,
JFT-3B. Afterwards, multiple structures of vision Trans-
former and multimodal data are explored and prevail in
more vision tasks, such as object detection [7, 31, 40, 50],
semantic segmentation [10, 25, 31, 40], visual question an-
swering [1,43,49,50], etc. The rapidly increasing model ca-
pacity and growing sizes of datasets place higher demands
on pre-training methods with higher efficiency.

Masked Image Modeling. Inspired by the success of
masked language modeling (MLM) (e.g., BERT [16]) in
natural language processing (NLP), masked image mod-
eling (MIM) has become a popular trend for vision self-
supervised learning. BEIT [5] explores MIM by recov-
ering the masked image into visual tokens from discrete
VAE [36]. SimMIM [47], MaskFeat [44], and MAE [21]
further demonstrate that low-level visual signals, such as
RGB pixel value or the feature descriptor HOG [14],
can also be effective reconstruction targets and lead to
rich visual representation. Moreover, MAE [21] adopts
an asymmetric encoder-decoder framework and partial in-
put scheme, which achieves excellent pre-training effi-
ciency, thus becoming a popular MIM paradigm. After
that, the reconstruction target of MAE is widely explored.
Data2vec [3], SdAE [9], BootMAE [17], and SIM [39] in-
troduce the momentum encoder to generate the informative
reconstruction targets for MIM. In addition, AttMask [24]
and SemMAE [26] leverage the attention map or semantic
information to guide the masking strategy in MIM, lead-
ing to a more effective masked learning process. MC-
MAE [20], UM-MAE [27], MixMIM [29], and Green-
MIM [23] explore efficient MIM methods for hierarchical
ViTs [20,32,41]. Different from them, our work focuses on
further improving the efficiency of MIM, enabling to pre-
train larger-scale visual Transformers in an economic and
environmental-friendly way.

Mask Ratio. The mask ratio is a crucial parameter that
controls the performance of MIM methods, as well as the
efficiency in MAE [21] where an asymmetric encoder-
decoder architecture is adopted. Previous studies [19, 21]
suggest that mask ratio is highly correlated to the informa-
tion redundancy of the tasks, thus leading to different mask
ratios in different modalities, such as 0.15 in BERT [16]
for natural texts, 0.75 in MAE [21] for images, and 0.90
in VideoMAE [19] for videos. Different masking strate-
gies (block-wise and patch-wise masking) and patch sizes
also result in different mask ratios (0.40, 0.60, and 0.75 in
BEIT [5], SimMIM [47] and MAE [21]) in different MIM
methods. Furthermore, DMAE [4] introduces distillation
into MAE by aligning the intermediate feature of the stu-
dent model and that of the pre-trained teacher model. The
distillation enables a higher mask ratio than 0.75, but relies
heavily on the pre-trained teacher model. ExtreMA [46] uti-
lizes extremely large patch masking (75%-90%) as a strong

Mask Ratio 0 0.01 0.25 0.50 0.75

Training Gflops 61.6 66.4 51.4 36.0 20.8
Ratio 1 1.07 0.83 0.58 0.34

Memory Usage(G) 38.4 46.0 36.6 27.9 20.7
Ratio 1 1.20 0.94 0.73 0.54

Table 1. GFLOPs and GPU memory usage at different mask ratios.
Increasing mask ratio leads to great speedup and memory saving.
The model is ViT-large with batch size of 128. Only the encoder
is evaluated when mask ratio equals 0. “Ratio” is the rate of com-
putation resources compared to that when mask ratio equals 0.

Mask Ratio 0.75 0.85 0.90

Accuracy 84.6 84.1 83.7
Pre-training Loss 0.407 0.486 0.549

Table 2. Fine-tuning accuracy and pre-training loss under different
mask ratios. Higher mask ratios lead to degraded performance and
larger loss values. The experiments are conducted with ViT-Large
pre-trained for 200 epochs.

data augmentation for contrastive learning. Different from
previous methods, our work explores the choice of mask ra-
tio from a new perspective – the reconstruction difficulty.
By balancing the loss of masked patches with different re-
construction difficulties, we enable MAE pre-training with
a higher mask ratio, thus accelerating the MIM pre-training
and saving computational resources.

3. MAE with Higher Mask Ratios
3.1. Revisiting MAE

MAE [21]. Following ViT [18], MAE [21] first divides
each input image into non-overlapping patches and then
flattens them into a 1D patch sequence with a length of L.
Then, given a mask ratio of r (typically 0.75), L · r patches
are randomly masked out, and only the remaining L ·(1−r)
patches are visible and fed into the ViT encoder. The output
tokens of the encoder are concatenated with L·(1−r) learn-
able [mask] tokens and then processed by a lightweight de-
coder to reconstruct the masked image patches.
MAE’s High Pre-Training Efficiency. MAE [21] is
known for high pre-training efficiency, primarily thanks to
its high mask ratio. Specifically, only a small portion of
visible image patches are used for encoding, which relieves
the heavy encoder from the computation of masked visual
tokens. As shown in Tab. 1, higher mask ratios can lead
to significantly decreased training GFLOPs and GPU mem-
ory usage, which enables the pre-training of large and high-
capacity models with reduced carbon footprints. In this
work, we attempt to increase the mask ratio further to enable
efficient pre-training on larger-scale vision Transformers.
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Figure 3. Loss distribution of MAE pre-training under a mask ratio
of 0.90. The purple and blue boxes denote areas with sufficient
visible patches and vacant areas, respectively. The masked patches
tend to have higher reconstruction losses when they have fewer
visible patches around them.

3.2. Obstacles with Higher Mask Ratios

Based on the above discussion, one straightforward ap-
proach to further advance MAE’s efficiency is to raise the
mask ratio to a higher value (larger than the default value
of 0.75). However, as shown in Tab. 2, raising the mask ra-
tio beyond 0.75 impairs the MAE pre-training performance
consistently. The rising losses from the reconstruction task
also indicate that higher mask ratios will complicate the re-
construction of corrupted images and further impede the op-
timization of the vision Transformer encoder.

To better understand the optimization difficulty under
high mask ratios, we visualize the spatial distribution of re-
construction loss over the masked images in Fig. 3. It can
be observed that, despite the loss distribution being highly
related to image contents, those blank regions without any
visible patches (blue boxes) usually have higher reconstruc-
tion loss compared with regions with visible patches (pur-
ple boxes). This phenomenon is intuitive, as it would be
simpler for the model to reason the masked patches from
the adjacent visible ones, while large blank regions bring
substantial uncertainty considering the intricate real-world
scenario. We argue that forcing the model to overfit certain
specific content without sufficient visual clues is unreason-
able and might hinder the optimization of MAE.

The above phenomenon inspires our conjecture that
higher mask ratios lead to more challenging targets with
high uncertainty, which increases the optimization difficulty
and results in a performance drop. Therefore, a quantitative
measurement of such reconstruction difficulty and the cor-
responding scheme to balance the difficulty is crucial for
MAE [21] under extremely high mask ratios, which will be
detailed in the following subsections.

Algorithm 1 (Approximate) P2Dist

procedure P2Dist
# pmc : the center of a masked patch.
# pvc : centers of the visible patches.
# P: patch size.
1: Getting S, a set of k nearest visible pixels to pmc , from :

{pvc +∆p,∆p ∈ R}
where R = {(−P

2
,−P

2
), (−P

2
, 0), ..., (P

2
, P

2
)}.

2: Computing average nearest distance d′ between pixels
in the masked patch and pixels of set S.

3: return d′

3.3. Reconstruction Difficulty P2Dist

As the mask ratio increases, the spatial distribution of
visible patches becomes more sparse, leading to greater av-
erage distances among visible patches, as well as among
masked patches and visible patches. Accordingly, it is in-
tuitive that the reconstruction difficulty of a masked patch
should take into account both the density of adjacent visible
patches and the distance to the nearest visible patch.

Inspired by SimMIM [47], we design Patch-wise Aver-
age Nearest Pixel Distance (P2Dist) to measure the recon-
struction difficulty of different masked patches. P2Dist for
a masked patch can be formulated as below:

d =
1

P 2

P∑
i

P∑
j

min
p∈V

(D(pmi,j , p)) (1)

where P indicates the patch size of ViT, V denotes pixels
of visible patches, pm indicates pixel in the masked patch,
and D(·, ·) is the Euclidean distance function.

However, the computational complexity of P2Dist on an
image of H × W is about O(H2W 2), which is unaccept-
able. To speed it up, we adopt an approximate distance
as shown in Algorithm 1. We only calculate the average
nearest distance between pixels in the masked patch and k
boundary pixels of nearby visible patches. The overall com-
putation is reduced to O(kH2W 2/P 4 + kHW ). Given the
image size of 224 and patch size of 16, the complexity is
roughly equivalent to O(2kHW ), thus efficient enough for
real-time computation. k is set as 8 by default.

We visualize a few masked patches with different P2Dist
in Fig. 4. The reconstruction difficulties from easy to hard
are measured by the rising values of P2Dist. For easy tar-
gets, the masked patch is densely surrounded by visible
patches, resulting in small P2Dist. The masked patch can
be easily recovered from the surrounding contents. For dif-
ficult targets, P2Dist becomes larger as the masked patch is
far from visible patches.

Based on reconstruction difficulty metric P2Dist dis-
cussed above, we visualize the number of masked patches
and pre-training losses under different P2Dist in Fig. 2 (up-
per). Two important properties can be observed. First, as
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Figure 4. Visualization of masked patches with different P2Dist.
The blue blocks denote masked patches. ‘+’ denotes the masked
patch which P2Dist is computed on.

the mask ratio increases, patches with lower difficulty lev-
els (P2Dist) decrease, while patches with higher difficulty
levels increase significantly. Specifically, by accumulat-
ing samples along P2Dist, we find 87% masked patches
have at least one visible patch in their 3 × 3 neighborhood
when mask ratio is 0.75. However, this percentage drops to
68%/52% with mask ratios of 0.85/0.9. Second, predictions
of patches with larger P2Dist are more difficult to optimize,
leading to larger loss values. These observations are consis-
tent with our analysis in Sec. 3.2, supporting our claim that
the difficulty of reconstructing a masked patch is highly cor-
related with our proposed P2Dist.

4. Efficient MAE
Based on the above findings, we propose Efficient MAE

that is equipped with a higher mask ratio and accelerated
decoder. We first introduce a Difficulty-Flatten loss that al-
leviates imbalanced reconstruction difficulties and enables
pre-training with a higher mask ratio. Besides, we also in-
troduce a decoder masking strategy as a complement to fur-
ther speed up the decoder.

4.1. Difficulty-Flatten Loss

We propose a Difficulty-Flatten Loss (DFloss) to address
the optimization difficulty with higher mask ratios in which
there exists a severe imbalance between decreasing easy tar-
gets and increasing hard targets. Specifically, we propose to
include a modulating factor d−γ

l on top of the original re-
construction loss. Taking l2 loss used in MAE [21] as an
example, our proposed DFLoss can be formulated as:

L =
1∑

pi∈M d−γ
i

∑
pi∈M

d−γ
i ∥pi − ti∥2 (2)

where pi, ti denote the predicted pixel value and the target
value, respectively; M denotes the set of masked patches;
(γ ≥ 0) is the flatting parameter to control the extent to
which the hard targets are punished.

As shown in Fig. 2, our proposed DFLoss amplifies
losses of easy targets and suppresses losses of hard targets,
producing a flatter loss curve (the green line). This flattened
loss alleviates the imbalance caused by over-dominated

hard targets effectively. By reducing losses of hard targets,
it also mitigates the optimization difficulty from the uncer-
tainty of isolated targets with barely any visual clues.

4.2. Decoder Masking

Inspired by [45], we decouple the mask ratio in MAE
into two parts: corruption ratio in the encoder and predic-
tion ratio in the decoder. The corruption ratio, which depicts
the ratio of masked patches, controls the overall reconstruc-
tion difficulty and is discussed in Sec. 3. In this subsection,
we mainly discuss the influence of prediction ratio (the por-
tion of masked patches to be predicted), and propose a de-
coder masking strategy as a complement to DFLoss.

The prediction ratio is considered to affect the optimiza-
tion of the model [30, 45], since more predictions result
in more supervision signals from the loss gradient. How-
ever, we find that masked patches with different P2Dist (re-
construction difficulty) contribute unequally to the perfor-
mance. As our experiments will demonstrate (Sec. 5.3.4),
reconstructing easy patches is more effective than recon-
structing hard patches. We thus propose a difficulty-based
masking strategy as a complement to DFLoss, which fur-
ther alleviates optimization difficulties at high mask ratios.
The masked patches are discarded based on a difficulty
threshold β before being fed into the decoder. For these
extremely hard patches, most of the surrounding informa-
tion is erased, thus the reconstruction becomes perplexing.
Moreover, when equipped with DFLoss, tiny weights will
be assigned to such hard targets, making their contribu-
tion to the loss much lower (as illustrated by the green line
in Fig. 2(lower)). Consequently, discarding patches with
P2Dist larger than β has a negligible effect on performance.

5. Experiments
5.1. Experiment Setup

Model Setups. We adopt ViT-Large [18] as the default en-
coder in ablation studies. Following MAE [21], the decoder
consists of 8 Transformer blocks with a dimension of 512.
We adopt a patch size of 16 for ViT-Base and ViT-Large,
and 14 for ViT-Huge. The default mask ratio is 0.85 if not
otherwise stated. The γ in Difficulty-Flatten Loss and β in
difficulty-based masking are set to 0.6 and 26 as default.
Training Setups. We follow common pre-training and
fine-tuning procedures on ImageNet [15] as previous meth-
ods [5, 21, 47], with Top-1 validation accuracy for eval-
uation. Specifically, models are pre-trained for 200
epochs (short schedule for ablation experiments) or 800
epochs (long schedule for main results) with a batch size of
1024. We adopt AdamW [34] optimizer and cosine learning
rate scheduler with a base learning rate of 1.5e-4 and weight
decay of 0.05. The learning is linearly increased at the first
40 epochs for warming up. Random resized cropping and
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Methods Partial Input Backbone Params.(M) Mask Ratio P-Epochs Min./Epoch GFLOPs Acc. (%)

• Base-size Model
SimMIM [47] Swin-B 88 0.6 800 10.6 11.3 84.0
BEIT [5] ViT-B/16 88 0.4 800 15.8 18.8(44.9) 83.2
MaskFeat [44] Vit-B/16 88 0.4 1600 13.5 17.6 84.0
CAE [8] ✓ ViT-B/16 88 0.4 800 13.2 - 83.6
MAE [21] ✓ ViT-B/16 88 0.75 1600 7.5 9.8 83.6
Efficient MAE ✓ ViT-B/16 88 0.85 800 6.0 7.6 83.5

• Large-size Model
SimMIM [47] Swin-L 197 0.6 800 19.2 26.0 85.4
BEIT [5] ViT-L/16 304 0.4 800 34.1 63.2(89.3) 85.2
MaskFeat [44] ViT-L/16 304 0.4 1600 - 61.6 85.7
MAE [21] ✓ ViT-L/16 304 0.75 800 12.1 20.8 85.4
MAE [21] ✓ ViT-L/16 304 0.75 1600 12.1 20.8 85.9
Efficient MAE ✓ ViT-L/16 304 0.85 800 8.9 14.1 85.4
Efficient MAE ✓ ViT-L/16 304 0.85 1600 8.9 14.1 85.7

• Huge-size Model
SimMIM [47] SwinV2-H 658 0.6 800 - 86.2 85.7
MAE [21] ✓ ViT-H/14 632 0.75 1600 21.1 48.6 86.9
Efficient MAE ✓ ViT-H/14 632 0.85 800 14.9 31.3 86.5

Table 3. Comparisons with existing MIM approaches on ImageNet-1k. “Partial Input” indicates that an asymmetry encoder-decoder
structure is adopted and only the visible patches are fed into the encoder. “P-Epochs” indicates the pre-training epochs. “Min./Epoch”
denotes the training time (minutes) per epoch. All training times are evaluated on 4x NVIDIA A100 GPUs. For BEIT, the GFLOPs in
parentheses also count the DALL-E tokenizer.

random flipping are used for data augmentation. After pre-
training, models are fine-tuned for 100/50/50 epochs for
ViT-B, ViT-L, and ViT-H. All training time and memory
usage are tested on 4 A100 GPUs. GFLOPs are measured
with a 224×224 image, except SimMIM [47], which adopts
192×192 input. For MAE [21] and BEIT [5], we adopt their
official implementation. Other models are tested based on
MMSelfSup [12]. We adjust batch size of each method to
fit GPU’s memory constraint and evaluate its training time.

5.2. Main Results

In Tab. 3, we compare the efficiency and accuracy of
Efficient MAE with other MIM methods, especially with
large-size and huge-size models to demonstrate our advan-
tages in scaling up the model capacity. It can be observed
from Tab. 3 that Efficient MAE achieves competitive per-
formances on par with the original MAE [21] with vari-
ous model capacities. To demonstrate the efficiency of our
method, we compare the pre-training time per epoch with
different MIM methods. Our proposed Efficient MAE runs
significantly faster than other methods, especially for those
with extra target generators (i.e., BEIT [5], CAE [8]) or
those that process intact input images [44]. Compared to
original MAE [21], we achieve 20%, 27%, and 30% ac-
celeration on running time, and reduce training GFLOPs by
23%, 33%, and 36% for ViT-B, ViT-L, and ViT-H. It is note-
worthy that our method provides more prominent speedups
as the model size becomes larger, which proves its excellent
scalability on larger-scale models.

5.3. Ablation Study

5.3.1 Main Components Ablation

To further demonstrate the effectiveness of Efficient MAE,
we gradually ablate our components and evaluate their ef-
fect on performance and computation resources. As shown
by the first two rows of Tab. 4, increasing the mask ratio
of original MAE [21] from 0.75 to 0.85 brings superior
training efficiency and memory usage but leads to a non-
trivial performance drop. Our proposed Difficulty-Flatten
Loss and difficulty-based masking strategy mitigate the se-
vere optimization difficulty under high mask ratios, achieve
0.5% gain at a mask ratio of 0.85, and reduces ∼30% of
both GFLOPs and GPU memory usage, enabling more ef-
ficient MIM pre-training. When mask ratio is increased to
0.90, Efficient MAE achieves 84.3%, a competitive perfor-
mance, by just using approximately half the computational
costs of original MAE [21]. It should be noted that our im-
provement increases with the mask ratio. Under an extreme
mask ratio of 0.95, our Efficient MAE outperforms the orig-
inal MAE by 1.3% accuracy.

5.3.2 Difficulty Measurement

As discussed in Sec. 3.3, the reconstruction difficulty of a
masked patch should take into account the density of its sur-
rounding visible patches as well as its distance to the nearest
visible patch. Tab. 5 shows the impact of different difficulty
metrics on our method. Three extra metrics are studied.
The first one, “Number of Patches in 3×3”, only measures
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DF DM MR GFLOPs Mem.(G) Acc(%)

0.75 20.8 38.4 84.6
0.85 14.6 32.8 84.1

✓ 0.85 14.2 28.2 84.3
✓ 0.85 14.6 32.8 84.5

✓ ✓ 0.85 14.2 28.2 84.6

0.90 11.6 26.9 83.7
✓ ✓ 0.90 10.3 22.3 84.3

0.95 8.5 24.6 81.6
✓ ✓ 0.95 5.9 15.6 82.9

Table 4. Ablation studies on training efficiency and Top-1 accu-
racy with Difficulty-Flatten Loss (“DF”) and Difficulty-based De-
coder Masking (“DM”). “MR” denotes mask ratio. “Mem.” de-
notes memory usage (G) per GPU. The results without “DF” and
“DM” are conducted on original MAE with different mask ratios.

Difficulty Metric Num. Patches Acc(%)

Baseline 167 84.1

(a) Number of Patches in 3×3 114 84.3
(b) Sum of Patch Distance in 5×5 159 84.5
(c) Nearest Patch Distance 167 84.4

P2Dist 150 84.6

Table 5. Comparison of different reconstruction difficulty metrics.
“Num. Patches.” indicates the number of patches to be recon-
structed in the decoder. (a) denotes the number of visible patches
in a 3 × 3 region around a masked patch. (b) denotes the sum of
the inverses of the distances between a masked patch and visible
patches in a 5×5 region around the masked patch. (c) denotes the
distance between a masked patch and its nearest visible patch.

the density of visible patches in the neighborhood and it
assigns zero weight to a masked patch if it has no surround-
ing patches. This metric improves the baseline MAE with a
mask ratio of 0.85 by 0.2%, but is 0.3% lower than our pro-
posed P2Dist. We conjecture that this metric successfully
reduces the overall reconstruction difficulty but fails in eval-
uating the hard targets. The second metric considers both
the distance and density of nearby visible patches, while the
range 5 × 5 is also similar to our difficulty threshold β of
26. However, the easy targets might be over-weighted con-
sidering the accumulation in this metric and exponent loss
weight in DFLoss, resulting in slightly lower performance.
The third metric “Nearest Patch Distance” also fails to dif-
ferentiate the easy targets (the density of visible patches).
Our proposed P2Dist outperforms other metrics by better
measuring both the easy and hard reconstruction targets.

5.3.3 Difficulty Adjustment

Difficulty Schedulers. In Tab. 6, we study four differ-
ent schedulers for adjusting reconstruction difficulty. “Dif-

Method Acc(%)

Baseline 84.1

(a) Difficulty Thresholding 84.3
(b) Difficulty Scheduling 84.4
(c) Difficulty-based Normalization 84.3

Difficulty-Flatten Loss 84.6

Table 6. Comparison of different schedulers to adjust reconstruc-
tion difficulty. (a) The hard targets with P2Dist larger than a cer-
tain threshold are directly discarded. (b) A curriculum learning
schedule is adopted by expanding the range of difficulty and grad-
ually introducing more reconstruction patches from easy to hard
during pre-training. (c) the numbers of masked patches in dif-
ferent difficult intervals are counted, and the loss is re-weighted
compared to the distribution at a mask ratio of 0.75.

γ 0.0 0.4 0.6 0.8 1.0 2.0

Acc(%) 84.3 84.5 84.6 84.6 84.5 84.3

Table 7. Ablation on parameter γ in Difficulty-Flatten loss.

β 9 13 26 None

(a) Accuracy(%) w/o DFLoss 84.2 84.3 84.3 84.1
(b) Accuracy(%) w/ DFLoss 84.2 84.3 84.6 84.5

Number of Patches 82 114 150 167
Decoder Pred. Ratio 0.42 0.58 0.75 0.85

Table 8. Ablation on threshold β of P2Dist for difficulty-based
decoder masking. “None” indicates there is no threshold on
difficulty and all masked patches are reconstructed. “Decoder
Pred. Ratio” is the prediction ratio of decoder. “DFLoss” denotes
Difficulty-Flatten Loss. For “w/o DFLoss”, masked patches are
directly discarded based on threshold β, and no modulation is ap-
plied to the reconstruction loss.

ficulty Thresholding” is first adopted so that the reconstruc-
tion targets with P2Dist higher than a certain threshold are
discarded. The performance is slightly improved by only
0.2%, limited by inadequate reconstruction patches. To al-
leviate this issue, we further investigate “Difficulty Schedul-
ing”, where a curriculum scheduler is applied to gradu-
ally increase the task difficulty by expanding the thresh-
old. The performance is further improved by 0.1% but
still suffers from the overwhelming hard targets as no addi-
tional restriction is imposed. We also evaluate “Difficulty-
based Normalization” with a dynamic loss weight as shown
in Tab. 6(c). We split the masked patches into different dif-
ficulty intervals and normalize the reconstruction loss by
comparing the numbers of patches with mask ratios of 0.85
and 0.75 in each interval. Our Difficulty-Flatten Loss out-
performs all these schedulers by 0.2% - 0.3% with simpler
formation, indicating our method can better balance the su-
pervision from targets with different levels of difficulty.
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Decoder Depth 8 4 1

Accuracy(%) 84.6 84.3 84.2

Table 9. Ablation on decoder depth of Efficient MAE.

Loss Parameter γ. Tab. 7 shows the impact of parameter
γ in the Difficulty-Flatten Loss. As shown, the fine-tuning
performance is robust to a wide range of γ. Note that either
a small or a large γ leads to performance drops. When γ
equals 0, no regulation is performed on the loss function.
While with a large γ, the supervision might focus on ex-
tremely easy targets and result in an over-simplified recon-
struction task for pre-training.

5.3.4 Decoder Masking Strategy

Difficulty Threshold β. As illustrated in Sec. 4.2, the dif-
ficulty threshold β controls the upper limit of reconstruc-
tion difficulty in the decoder. Larger β means more masked
patches to be reconstructed. Tab. 8 shows impact of vary-
ing difficulty threshold β. We first conduct decoder mask-
ing without DFLoss as shown by Tab. 8 (a). We observe
that the performance hardly changes for different β, indi-
cating that not all patches contribute equally to pre-training.
Specifically, those easy targets contribute the majority of the
gain. Discarding patches with P2Dist larger than 9 and only
reconstructing half of the masked patches achieves 84.2%,
surprisingly 0.1% higher than MAE baseline (mask ratio
0.85). Introducing more patches with moderate difficulties
slightly improves the performance. However, a small por-
tion of the hardest patches is detrimental to performance,
resulting in a 0.2% drop if no threshold is applied.

After applying DFLoss, the impact of beta on the perfor-
mance changes. When β < 26, the performance is the same
as that without DFLoss. This indicates that DFLoss has lit-
tle effect on performance with small β, since the difficul-
ties of masked patches are indistinguishable in such cases.
However, as β increases, DFLoss enables the model to ben-
efit from reconstructing difficult targets. Raising the thresh-
old from 9 to 26 improves the performance by 0.4%.
Decoder Depth. Tab. 9 shows how the depth of decoder
affects our method. Different from MAE [21], a shallow de-
coder leads to a 0.3% performance drop. We speculate that
the appropriate depth of the decoder is highly related to the
reconstruction difficulty. The increased mask ratio (from
0.75 to 0.85) leads to more hard patches and severe opti-
mization difficulty. A shallow decoder might hinder the de-
coder’s capacity to reconstruct the hard targets, thereby lim-
iting the improvement of our method which benefits from
handling the hard targets. We highlight that our Efficient
MAE with just one layer of decoder still surpasses the orig-
inal MAE under a mask ratio of 0.85.

ADE20K COCO
Methods Model mIoU mAcc APbox APmask

MAE ViT-B 48.1 58.8 50.1 44.7
Efficient MAE ViT-B 48.0 58.7 50.0 44.5

Table 10. Accuracy on ADE20K semantic segmentation and
COCO object detection and segmentation.

5.4. Transfer Learning Experiments

Object detection and segmentation We evaluate the trans-
fer learning capacity of our method on the COCO Dataset
following ViTDet [28]. Limited by computation resources,
we reran the experiments of the original ViTDet-MAE with
a smaller batch size and fewer training epochs (refer to sup-
plementary materials for detailed settings). As shown in
Tab. 10, our method achieves comparable results with the
original MAE, but with less pre-training cost.
Semantic Segmentation We also experiment on ADE20K
using UperNet following MAE. Tab. 10 show that our
method performs comparably to the original MAE. Both
experiments demonstrate the transfer capability of Efficient
MAE on downstream tasks.

6. Conclusion

In this work, we propose Efficient MAE, a new MIM
method that is compatible with extremely high mask ra-
tios for efficient pre-training of the large-scale vision Trans-
former. Our method stems from investigating the perfor-
mance drop of MAE [21] under higher mask ratios. We
identify that the optimization difficulty deriving from the
imbalance between easy-hard reconstruction targets is the
primary reason for the degradation. To mitigate this is-
sue, we propose a metric P2Dist to measure the reconstruc-
tion difficulty of each masked patch. The losses of patches
with different P2Dist are thus balanced by our proposed
Difficulty-Flatten Loss. Besides, we also propose a de-
coder masking strategy to discard the hardest targets, further
easing the reconstruction difficulty and accelerating the de-
coder. With the above designs, Efficient MAE significantly
accelerates the pre-training of the large model and lessens
the burden on computing resources. We hope our study will
advance the development of larger visual models, and pro-
vide insights into the design of mask ratio for other masked
data modeling methods.
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