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Figure 1. Shape Representation and Shape Generation. Left half presents the diffeomorphic deformation from the learned template
(t=0) to instance shapes (t=1), with color highlighting the dense correspondence captured by triplane features. Right half presents the
denoising process for shape generation. The shapes are generated as deformed templates and the 3D deformation is controlled by the
generated triplane features from diffusion.

Abstract

Deep Implicit Functions (DIFs) have gained popularity
in 3D computer vision due to their compactness and con-
tinuous representation capabilities. However, addressing
dense correspondences and semantic relationships across
DIF-encoded shapes remains a critical challenge, limit-
ing their applications in texture transfer and shape anal-
ysis. Moreover, recent endeavors in 3D shape genera-
tion using DIFs often neglect correspondence and topology
preservation. This paper presents HNDF (Hybrid Neural
Diffeomorphic Flow), a method that implicitly learns the
underlying representation and decomposes intricate dense
correspondences into explicitly axis-aligned triplane fea-
tures. To avoid suboptimal representations trapped in local
minima, we propose hybrid supervision that captures both
local and global correspondences. Unlike conventional ap-
proaches that directly generate new 3D shapes, we further
explore the idea of shape generation with deformed tem-
plate shape via diffeomorphic flows, where the deformation
is encoded by the generated triplane features. Leveraging
a pre-existing 2D diffusion model, we produce high-quality

and diverse 3D diffeomorphic flows through generated tri-
planes features, ensuring topological consistency with the
template shape. Extensive experiments on medical image
organ segmentation datasets evaluate the effectiveness of
HNDF in 3D shape representation and generation.

1. Introduction

3D geometry representation is critical for numerous
computer vision tasks, including 3D model reconstruction,
matching and manipulation. Deep implicit functions (DIFs)
have emerged as promising alternatives to traditional rep-
resentation methods such as voxel grids, point clouds and
polygon meshes. DIFs offer several advantages such as
compactness, continuity, and the ability to capture fine ge-
ometric details. They enable efficient computation while
leveraging deep neural networks for end-to-end training, en-
hancing shape representation and understanding.

However, despite the promising results in direct object
modeling using DIFs, it is important to consider the com-
mon shape features and semantic correspondences shared
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among objects. Conventional DIFs face challenges in estab-
lishing correspondences between different shapes, limiting
their applicability in domains like medical image segmen-
tation [12, 18, 25, 59] and texture transfer [7, 30]. Previous
methods [5,44,61] have proposed shape modeling as condi-
tional deformations of a template DIF to address this limita-
tion. However, these methods still have limitations, such as
being topology-agnostic or lacking the capability to capture
correspondences for local details.

Recent researches have also explored the integration of
DIFs for the 3D shape generation [33, 36, 42, 60]. Com-
pared to point clouds and polygon meshes, DIF-based gen-
eration offers continuous representations with high quality
and resolution. However, existing approaches primarily fo-
cus on direct shape generation without considering under-
lying point correspondence and topology preservation.

To overcome these challenges, we introduce Hybrid
Neural Diffeomorphic Flow (HNDF) for shape representa-
tion and generation. HNDF models shapes as conditional
deformations of a template DIF, similar to previous work
[5, 44, 48, 61]. However, HNDF encodes diffeomorphic
deformations into axis-aligned triplane features to enhance
representation capability. Local deformations are controlled
through interpolation of triplane features with a shared fea-
ture decoder. Nevertheless, the direct application of tri-
planes may lead to local optimization issues and defective
deformations, resulting in inaccurate representations. To
address this, we propose a hybrid supervision approach that
considers both local and global correspondences, along with
additional modifications and regularization to preserve the
diffeomorphism property of the represented deformations.
This combination of triplane feature exploration and super-
vision enables high representation capabilities and accurate
dense correspondences.

Unlike conventional 3D shape generation works which
primarily focus on direct shape generation, we explore the
idea of deformation-based shape generation, where the tem-
plate shape is deformed based on newly generated dif-
feomorphic deformations. This approach ensures that the
newly generated shapes maintain the same topology as the
template shape, preserving topological consistency while
offering a wide range of diverse shapes. To achieve this,
we represent deformations using optimized per-object tri-
plane features, which encode diffeomorphic deformations
as three axis-aligned 2D feature planes. We concatenate the
triplane features as multi-channel images and leverage the
existing 2D diffusion models to generate new triplane fea-
tures. By applying the new diffeomorphic deformations en-
coded in the triplane features, we deform the template shape
to generate novel 3D shapes while preserving their topolog-
ical characteristics.

The contributions of this paper are as follows:

1. We propose HNDF, which leverages axis-aligned tri-

plane features to provide high representation capability
and capture dense correspondences accurately.

2. We demonstrate that hybrid supervision and regular-
ization are essential for ensuring correct deformation
representation and preventing the representation from
local optima.

3. Rather than directly generating 3D shapes, we explore
the concept of shape generation through diffeomorphic
deformations and provide a baseline method utilizing
2D diffusion model. The topology and correspon-
dences are preserved in newly generated 3D shapes.

2. Related Works
Deep Implicit Function Deep implicit functions, or neural
fields, have enabled the parameterization of physical prop-
erties and dynamics through simple neural networks [4, 31,
32,37,43,47,52]. DeepSDF [37] serves as an auto-decoder
model, commonly used as a baseline for shape representa-
tion [1, 16, 45]. NeRF [37] presents a novel approach for
synthesizing photorealistic 3D scenes from 2D images. Oc-
cupancy Network [31] constructs solid meshes through the
classification of 3D points, while Occupancy Flow [35] ex-
tends this idea to 4D with a continuous vector field in time
and space. Recent trends incorporate locally conditioned
representations [1, 4, 16, 39, 45], utilizing small MLPs that
are computationally and memory-efficient while capturing
local details effectively. One such representation is the hy-
brid triplane [2, 6, 21, 28, 38], which represents features on
axis-aligned planes and aggregates them using a lightweight
implicit feature decoder. In our work, we adopt the expres-
sive triplane representation. However, instead of decoding
the 3D object itself, we utilize triplane features to decode
complex diffeomorphic deformations, allowing us to repre-
sent new 3D objects by deforming the template shape using
the encoded deformation.
Point Correspondence and Topology preservation Cap-
turing dense correspondences between shapes remains a
significant challenge and a critical area of interest in the
3D vision community [10, 16, 19, 20, 44, 49–53, 55, 56,
58]. Various approaches have been proposed to address
point correspondence, including template learning, elemen-
tary representation, and deformation field-based methods.
Among them, mesh-based methods [19,20] face difficulties
in handling topological changes, sensitivity to mesh con-
nectivity, and challenges in capturing fine-grained details.
Elementary-based methods [10,16], on the other hand, may
struggle with capturing high-level structural features due to
the simplicity of the elements used. DIT [61] and NDF [44]
exemplify deformation field-based methods, with DIT ex-
hibiting smoother deformations using LSTM [15] and NDF
employing NODE [3] for achieving diffeomorphic defor-
mation. ImplicitAtlas [48] integrates multiple templates
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to improve the shape representation capacity at a negligi-
ble computational cost. In our work, we follow the NDF
framework but enhance the representation’s capacity to cap-
ture accurate correspondences by leveraging more power-
ful triplane representation. Experimental results highlight
the importance of incorporating triplane features with hy-
brid supervision, which prevents local optimization issues,
provides significantly more accurate correspondences, and
ensures the preservation of topology.
3D Shape Generation Generative models, such as GANs,
autoregressive models, score matching models, and denois-
ing diffusion probabilistic models, have been extensively
studied for 3D shape generation. However, GAN-based
methods [2,8,9,11,29,34,36,54,57] still outperform alterna-
tive approaches. Voxel-based GANs [8,13,46], for example,
directly extend the use of CNN generators from 2D to 3D
settings with high memory requirement and computational
burden. In recent years, there has been a shift towards lever-
aging expressive 2D generator backbones, such as Style-
GAN2 [17]. EG3D [2] combines a hybrid explicit-implicit
triplane representation to improve computational efficiency
while maintaining expressiveness. Get3D [9] incorporates
the deformable tetrahedral grid for explicit surface extrac-
tion and triplane representation for differentiable rendering
to generate textured 3D shapes.

Compared to the existing GAN-based approaches for
3D generation, the development of 3D diffusion models
is still in its early stages. Several notable works have ex-
plored the application of diffusion models in generating 3D
shapes. PVD [62] proposed the use of a point-voxel rep-
resentation combined with PVConv [23] to generate 3D
shapes through diffusion. DPM [26] introduced a shape
latent code to guide the Markov chain in the reverse dif-
fusion process. MeshDiffusion [22] utilized the deformable
tetrahedral grid parametrization for unconditionally gener-
ating 3D meshes. 3D-LDM [33] integrated DeepSDF [37]
into diffusion-based shape generation, leveraging diffusion
to generate a global latent code and improve the condition-
ing of the neural field. NFD [42] extended the use of 2D
diffusion into 3D shape generation, exploring the potential
of diffusion models in capturing and generating complex
3D shapes with Occupancy Network [31].

While existing approaches in shape generation focus on
directly generating 3D shapes, they often neglect the preser-
vation of underlying topology. This oversight can lead to
artifacts in the generated shapes and limit their applicability
in scenarios where topology is important. In our work, we
introduce a baseline diffusion-based method that deforms a
template to generate new shape. The diffeomorphic defor-
mation is encoded by the generated triplane features. Our
approach focuses on producing visually coherent and real-
istic shapes while preserving point correspondence and un-
derlying topology.

3. Preliminaries
Diffeomorphic Flow is a continuous and smooth mapping
that transforms a given manifold or space while preserv-
ing its differentiable structure. In the context of 3D geom-
etry, diffeomorphic flow plays a crucial role in establishing
dense point correspondences between 3D shapes and ensur-
ing the preservation of their underlying topology during de-
formation. Mathematically, the forward diffeomorphic flow
Φ(p, t) : R3 × [0, 1] → R3 describes the trajectory of a 3D
point p over the interval [0, 1], where the starting point p
is located in the space of instance shape S and the destina-
tion point corresponds to the target shape T . The velocity
field v(p, t) : R3 × [0, 1] → R3 represents the derivative
of deformation of 3D points. The diffeomorphic flow Φ is
obtained by solving the initial value problem (IVP) of an
ordinary differential equation (ODE),

∂Φ

∂t
(p, t) = v (Φ(p, t), t) s.t. Φ(p, 0) = p (1)

Similarly, the inverse flow Ψ can be calculated by solv-
ing a corresponding ODE with negative velocity field −v,
allowing for the transformation from the template space to
the instance space

∂Ψ

∂t
(p, t) = −v (Ψ(p, t), t) s.t. Ψ(p, 0) = p (2)

where p is the starting point on the target shape. The prop-
erty of topology preservation is achieved through the Lips-
chitz continuity of the velocity field. The forward and back-
ward diffeomorphic deformation can be calculated by the
integration of the velocity field by solving the equation 1 2,
respectively.

Diffusion Probabilistic Model (DPM) [14] is a parame-
terized Markov chain designed to learn the underlying data
distribution p(X).

During the Forward Diffusion Process (FDP), the dif-
fused data point Xt is obtained at each time step t by sam-
pling from the conditional distribution:

q (Xt | Xt−1) = N
(
Xt;

√
1− βtXt−1, βtI

)
(3)

where X0 is sampled from the initial distribution q(X0),
and XT follows a Gaussian distribution N(XT ; 0, I). The
parameter βt ∈ (0, 1) represents a variance schedule
that gradually introduces Gaussian noise to the data. By
defining αt = 1 − βt and ᾱt =

∏t
s=1 (1− βt), Xt

can be sampled conditionally on X0 as q (Xt | X0) =
N (Xt;

√
ᾱtX0, (1− ᾱt) I), providing a distribution for

sampling Xt from the initial data X0.
In contrast, the Reverse Diffusion Process aims to ap-

proximate the posterior distribution p(Xt−1|Xt) to recreate
a realistic X0 starting from random noise XT . The Reverse
Diffusion Process is formulated as a trajectory of posterior
distributions starting from XT :

p (X0:T ) = p (XT )

T∏
t=1

pθ (Xt−1 | Xt) (4)
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The conditional distribution pθ(Xt−1|Xt) is approximated
by a neural network with parameters θ:

pθ (Xt−1 | Xt) = N (Xt;µθ (Xt, t) ,Σθ (Xt, t)) (5)

4. Method
In this section, we present our Hybrid Neural Diffeomor-

phic Flow (HNDF) for shape representation and generation.
Section 4.1 reviews our baseline method [44]. In Section
4.2, we introduce the utilization of triplane features, and the
hybrid supervision for capturing local and global correspon-
dences. Finally, in Section 4.3, we describe our proposed
method for generating topology-preserving shapes.

4.1. Review of NDF

NDF [44], similar to DeepSDF [37], represents a 3D
shape Si using a continuous signed distance field (SDF) F .
Given a random 3D point p and a latent code ci of length k,
F outputs the distance from the point p to the closest surface
of shape Si. However, unlike DeepSDF, which directly rep-
resents 3D shapes, NDF uses a deform code ci to control
the deformation of each instance shape from the template
shape. As a result, the conditional continuous SDF F can
be decomposed into T ◦ D, where D : R3 × Rk 7→ R3

provides the deformation mapping from the coordinates of
p in the instance space of Si to a canonical position p′ in the
template space. The function T represents a single shape
DeepSDF that models the implicit template shape.

4.2. Hybrid Shape Representation via Triplane

Figure 2. Shape Representation framework consists of a defor-
mation module D, a template module T , and per-object triplane
features Xi. Given a point p in the instance space, we compute
its corresponding destination point p′ in the template space using
Eq. 1. The template module then provides the sign distance value
s′ for this point. During training, we optimize the framework by
minimizing the L1 loss between the represented s′ and the ground
truth s, while incorporating regularization terms.

As shown in [1, 4, 16, 38, 39, 45], previous methods
[37, 44, 48, 61] utilizing a single latent vector to control the
entire shape or deformation space could not capture the de-
tails of the complex 3D shape or the deformation. Moti-
vated by recent advancements in hybrid representation [2],
we propose to encode complex diffeomorphic deformations
as a set of three axis-aligned 2D feature planes, as shown in
Fig. 2. This enables us to capture fine-grained details and
variations in the shape space more effectively.

The triplane representation is a hybrid architecture for
neural fields that combines explicit and implicit compo-
nents [2]. For each instance shape Si, it employs three axis-
aligned orthogonal feature planes (Xi = [F i

xy, F
i
xz, F

i
yz]),

each with a resolution of L×L×C. These planes serve as
the encoded representations of the deformation. To query
a deformation, the position of given point pi is projected
onto each of the feature planes, and the corresponding fea-
ture vectors are retrieved using bilinear interpolation. Sub-
sequently, a lightweight multilayer perceptron (MLP) de-
coder is employed to interpret the aggregated features as
corresponding velocity vector vi. The diffeomorphic defor-
mation di for point pi can be calculated by integrating the
velocity vector using an explicit Runge-Kutta solver [3], as
defined in Eq. 1. In contrast to the approach in [2], where
feature aggregation is performed through summation, we
have found that concatenating the interpolated features from
the triplane yields better results.

4.2.1 Training

In our method, we represent the instance shape Si as a de-
formed template shape (T ◦ Di). To capture the continuous
shape of Si, we employ two modules: a continuous diffeo-
morphic deformation module D and a template shape rep-
resentation T . As discussed in Sec. 4.2, the diffeomorphic
deformation di of a point pi is obtained by integrating the
velocity field. The signed distance field (SDF) value of pi is
determined by evaluating the implicit template shape mod-
ule T at the transformed point p′i, where p′i = pi + di.

During training, our method jointly optimizes the defor-
mation module D, template DeepSDF shape T , and per-
object triplane features Xi to represent a training set of S
objects. The triplane representation provides an expressive
representation power, allowing us to achieve accurate de-
formation and correspondence. Unlike NDF [44], which
requires multiple deformation modules, our method only
requires one deformation module. This not only enables
more accurate deformation representation but also reduces
the memory and computation requirements.

The training objective function includes a reconstruction
loss and a regularization loss:

Ltrain = Lrec + λreg Lreg (6)
where Lrec shows the reconstruction loss between the
ground truth SDF value si and the represented SDF value s′i,
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and Lreg includes a series of regularization terms. Specifi-
cally, reconstruction loss Lrec can be written as

Lrec =

S∑
i=1

N∑
j=1

L1(T ◦ Di(pi,j), si,j) (7)

where S is the number of instance shapes in the training set,
N is the number of sampling points for each shape, pi,j is
the j-th point on the i-th shape and si,j is the corresponding
ground truth SDF value.

In addition to the point-wise deformation regularization
(
∑

i,j ∥T ◦ Di(pi,j)− si,j∥2) and the L2 norm feature reg-
ularization (

∥∥F i
xy

∥∥
2
+

∥∥F i
yz

∥∥
2
+

∥∥F i
xz

∥∥
2
), the inclusion of

total variation (TV) regularization [40] is crucial for simpli-
fying the triplane representation and ensuring smooth de-
formations. The overall regularization term in the training
objective is defined as:

Lreg = λPW LPW + λL2 LL2 + λTV LTV (8)

4.2.2 Hybrid Supervision for Inference Time Recon-
struction

In contrast to previous methods [37, 44] that utilize a single
latent vector for shape reconstruction, the incorporation of
triplane representation in our work introduces specific chal-
lenges when reconstructing new shapes. Specifically, dur-
ing the optimization process, the features interpolated from
the triplane representation for different positions pi are opti-
mized locally. Since the final diffeomorphic deformation is
the integration of velocity vectors along the trajectory in the
entire space, the optimized deformation can become trapped
in local optima, leading to incorrect global correspondence,
as shown in Fig. 3. As a consequence, the reconstructed
shape and deformation may exhibit artifacts, and the over-
all correspondence may be compromised.

Figure 3. Left is the reconstruction results with proposed hybrid
supervision. Middle is the ground truth. Right is the result from
purely local supervision, which failed to capture the global corre-
spondence.

Therefore, we introduce a hybrid supervision strategy
that incorporates both global and local correspondence. In
addition to randomly sampled points that provide local su-
pervision, we downsample the entire N×N×N coordinate
grid with predefined step size and include these regularly
sampled points for global supervision during optimization.

The reconstruction loss during inference is defined as:

Lrec = Lgrid
rec + λrandom Lrandom

rec (9)

where λrandom is initialized as 0 and gets increased as the
optimization continues.

After we get the grid-structure deformation Φ, we utilize
two additional regularization terms to ensure the diffeomor-
phism of the deformation field and maintain structural in-
tegrity. The first term, selective Jacobian determinant regu-
larization (LJdet), enforces local orientation consistency.

LJdet =
1

N

∑
p

relu (− |JΦ(p)|) (10)

where the Jacobian matrix JΦ is defined as:

JΦ(p) =


∂Φx(p)

∂x
∂Φx(p)

∂y
∂Φx(p)

∂z
∂Φy(p)

∂x
∂Φy(p)

∂y
∂Φy(p)

∂z
∂Φz(p)

∂x
∂Φz(p)

∂y
∂Φz(p)

∂z

 (11)

The second term, deformation regularization (Ldef), dis-
courages excessively skewed deformations that may lead to
unnatural shapes.

Ldef =
∑
p

∥∇Φ(p)∥2 (12)

The combination of global and local supervision pro-
vides comprehensive guidance during optimization, en-
abling the model to capture both fine-grained details and
global structural consistency.

4.2.3 Point Correspondence and Shape Registration

During inference, our method utilizes the learned template
shape from training and the diffeomorphic deformation en-
coded by the triplane feature to establish point correspon-
dence and shape registration between different instance
shapes. For each point pt on the template shape, we apply
the inverse diffeomorphic flow Ψ, as defined in Eq. 2, to ob-
tain the corresponding points pi and pj on instance shapes
Si and Sj respectively, based on their respective triplane
features Xi and Xj . This process allows us to accurately
capture point correspondence and establish registration be-
tween the instances, facilitating tasks such as shape com-
parison, shape synthesis, and texture transfer.

4.3. Topology-preserving Shape Generation

In this section, we present our proposed method for
topology-preserving shape generation. Rather than directly
generating shapes from scratch, our approach focuses on
generating new shapes by deforming a template shape us-
ing synthesized diffeomorphic deformations.

4.3.1 Training a Diffusion Model

After the training of the diffeomorphic deformation module
D and the template shape representation T , as described in
Section 4.2.1, we can leverage the hybrid supervision in-
troduced in Section 4.2.2 to obtain the corresponding per-
shape triplane features for the dataset. These optimized sets
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of triplane features, denoted as X ∈ RN×(L×L×3C), will
be utilized to train our generative model, where N denotes
the number of shapes in the dataset, L is the dimension of
triplane features and C is the number of channels for each
2D plane (F i

xy, F
i
xz, F

i
yz).

Figure 4. The triplane feature can be represented as multi-channel
images. In our work, we adopt the 2D diffusion model as our shape
generation model. The generated triplane feature encodes the dif-
feomorphic deformation that deforms the template to produce the
new shapes.

In our framework, the triplane feature is composed of
three 2D plane features. We concatenate these feature
planes and takes advantage of the strong generative capabil-
ity of existing 2D diffusion models. Following Sec. 3, we
train a diffusion model to learn the reverse diffusion process
and predict the added noise from its noisy input by minimiz-
ing the following loss function:

Loss(θ) =EX0∼q(X),ϵ∼N (0,I),t[∥∥ϵ− ϵθ
(√

ᾱtX0 +
√
1− ᾱtϵ, t

)∥∥2] (13)

where ϵθ is predicted noise and θ represents the model pa-
rameters.

4.3.2 New Shape Generation

During the inference phase, the generation of a new shape
involves deforming the template shape based on the diffeo-
morphic deformation encoded by the sampled triplane fea-
tures. Following [14], we initiate the process by sampling a
random Gaussian noise XT ∼ N (0, I) ∈ RL×L×3C . Sub-
sequently, we perform iterative denoising for a total of T
steps as:

Xt−1 =
1

√
αt

(
Xt −

1− αt√
1− ᾱt

ϵθ (Xt, t)

)
+ σtϵ (14)

where ϵ ∼ N (0, I) if t > 1, else, ϵ = 0.
After sampling, the concatenated triplane feature is split

into three axis-aligned 2D planes (F i
xy, F

i
xz, F

i
yz). This gen-

erated triplane feature can be interpreted as the diffeomor-
phic deformation. By following the trajectory defined by
the ODE function in Eq. 2, each point on the template shape
is displaced towards its corresponding destination point in
the instance space. Consequently, the new generated shape,
known as the deformed template, retains the same under-
lying topology as the template shape, ensuring consistent
connectivity.

5. Experiments
In this section, we present the experiments conducted to

evaluate our proposed Hybrid Neural Diffeomorphic Flow
(HNDF) for shape representation and generation tasks.
Datasets: To assess the effectiveness of our shape represen-
tation, we utilize the same medical datasets as [44]: Pan-
creas CT, Inhouse Liver, Inhouse Lung and MultiModal-
ity Whole Heart Segmentation, as these datasets exhibit
clear common topology while demonstrating shape varia-
tion, making them suitable for our evaluation. For shape
generation evaluation, we employ liver and pancreas from
the Abdomen1k dataset [27], and heart and lung from [44].
Please refer to the supplementary material for detailed data
sources and preprocessing information.
Shape Representation Evaluation: We evaluate HNDF
for shape representation through two experiments. First, we
demonstrate the expressive power of triplane representation
and the importance of our hybrid supervision. Evaluation
metrics include Chamfer distance (CD) and normal consis-
tency (NC). Second, we evaluate point correspondence and
shape registration accuracy, incorporating self-intersection
(SI) as an additional metric for geometrical fidelity.
Shape Generation Evaluation: For shape generation eval-
uation, following [42], we adopt an adapted version of
Frechet inception distance (FID). This metric considers ren-
dered shading images of our generated meshes, taking hu-
man perception into account. As discussed in [60], shading-
image FID overcomes limitations of other mesh-based eval-
uation metrics. FID is computed across 20 views and aver-
aged to obtain a final score

FID =
1

20

[
20∑
i=1

∥∥µi
g − µi

r

∥∥2 +Tr
(
Σi

g +Σi
r − 2

(
Σi

rΣ
i
g

) 1
2

)]
(15)

Additionally, precision and recall scores are reported using
the method proposed by [41]. Precision reflects the quality
of the rendered images, while recall measures the diversity
of the generative model.
Baseline Methods We compare our proposed Hybrid Neu-
ral Diffeomorphic Flow (HNDF) with several baselines for
the shape representation task. This includes DIT [61], DIF-
Net [5], and NDF [44], which share the same representa-
tion formula as ours, where the shape is represented as a
deformed template. We also include AtlasNet [10], which
uses explicit mesh parameterization for shape reconstruc-
tion. Additionally, we compare with DeepSDF [37] and
NFD [42], which directly represent 3D shapes from scratch.

For the shape generation task, we explore different sam-
pling strategies and generative models. We compare against
DeepSDF [37] and NDF [44], which assume a Gaussian
distribution for the global latent vector. We sample new
shapes by randomly sampling global vectors from a Gaus-
sian distribution or performing PCA analysis on optimized
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Reconstruction Registration
CD Mean(↓) NC Mean(↑) CD Mean(↓) NC Mean(↑) SI Mean(↓)

Model/Data Pancreas Liver Heart Lung Pancreas Liver Heart Lung Pancreas Liver Heart Lung Pancreas Liver Heart Lung Pancreas Liver Heart Lung

DeepSDF [37] 0.711 0.539 0.951 0.669 0.898 0.866 0.913 0.928 - - - - - - - - - - - -
NFD [42] 0.080 0.118 0.287 0.255 0.982 0.898 0.947 0.947 - - - - - - - - - - - -

AtlasNet [10] 8.08 3.46 7.55 5.01 0.703 0.823 0.808 0.824 8.08 3.46 7.55 5.01 0.703 0.823 0.808 0.824 5860 29.5 0 13.8
DIT [61] 0.63 0.509 1.05 0.712 0.903 0.87 0.919 0.934 0.677 0.528 1.07 0.736 0.893 0.868 0.918 0.931 346 11.8 0 2.06
DIF-Net [5] 4.18 1.58 2.23 1.86 0.756 0.832 0.838 0.882 10.5 2.06 2.42 1.94 0.694 0.832 0.838 0.881 2560 4.61 1090 786
NDF [44] 0.512 0.476 0.993 0.643 0.917 0.873 0.923 0.937 0.518 0.49 1.02 0.67 0.916 0.873 0.923 0.936 0 2 0 0

Ours 0.082 0.116 0.277 0.255 0.961 0.885 0.948 0.945 0.099 0.125 0.306 0.304 0.946 0.882 0.936 0.939 15 8 6 0

Table 1. Shape Reconstruction and Shape Registration results on Unseen Shapes. The chamfer distance results shown above are
multiplied by 103. DeepSDF and NFD cannot model the deformation between shapes, therefore, they are unable to conduct the shape
registration task.
global latent vectors. We also compare with recent gen-
erative models such as point-cloud-based PVD [62], and
neural-field-based 3D-LDM [33] and NFD [42]. However,
it’s important to note that these models do not consider the
preservation of underlying topology.

5.1. Shape Representation

We evaluate our shape representation through two eval-
uations: representation on training data and reconstruc-
tion on unseen data, following the setting of [44]. For each
point p in the instance space, according to Eq. 1, we can get
the corresponding destination point p′ in the template space,
and the trained template module will return the sign distance
value for this point. After retrieving the sign distance value
for all the grid points, we can then utilize the marching cube
algorithm [24] to extract the mesh for each instance. In the
representation comparison, we utilize the trained per-object
latent feature to assess the effectiveness of different repre-
sentation methods. In the reconstruction comparison, we
independently optimize the per-object latent feature while
keeping the network parameters fixed to evaluate the gener-
ability of the methods in shape reconstruction. Fig. 5 shows
the reconstruction results of different methods. Due to the
space limitation, we put the shape representation result on
the supplementary.

Figure 5. Reconstruction Result on unseen data.

DIF-Net achieves the best results on the training data
representation but worse results on the shape reconstruction
tasks, indicating the overfitting on the training data. Our
method and NFD achieve similar overall performance, ben-

efiting from the enhanced representation power of the tri-
plane feature. Comparing with NDF, our method achieves
superior performance even with a single deformation mod-
ule, outperforming NDF with 4 consecutive deformation
modules. The ablation study conducted on regularization,
as shown in Tab. 3, demonstrates the significance of our
proposed hybrid supervision in achieving accurate recon-
struction for new shapes reconstruction.

5.2. Point Correspondence and Shape Registration

As the methods DeepSDF and NFD can only represent
the shape without capturing point correspondence, we com-
pare the remaining methods in Table 1 for shape registra-
tion evaluation and the instance shape is represented by de-
forming the template, as described in Sec. 4.2.3. Follow-
ing the trajectory defined by the ODE function in Eq. 2,
each point on the template shape moves towards the corre-
sponding destination point on the instance space. As a re-
sult, the instance shape, defined as the deformed template,
shares the same underlying topology as the template shape,
ensuring consistent connectivity. The diffeomorphic defor-
mation from the template towards instance shapes is shown
in the left half of Fig. 1.

To evaluate the point correspondence and shape regis-
tration results, we compare the deformed template with the
corresponding ground truth instance shape. We also uti-
lize self-intersection as a metric to assess the preservation of
topology and geometric fidelity during the deformation. To
ensure a fair comparison, we remesh the template meshes
to have the same number of vertices (5000), following the
approach in [44]. Based on the comparison presented in Ta-
ble 1, our proposed method achieves better registration ac-
curacy and correct dense correspondence, with only slight
self-intersection, which can be considered negligible given
the large number of vertices and faces in the template shape.

5.3. Shape Generation

Table 2 presents the evaluation of shape generation
across different methods. For DeepSDF and NDF, we sam-
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FID Mean(↓) Prec. Mean(↑) Recall Mean(↑)

Model/Data Pancreas Liver Heart Lung Pancreas Liver Heart Lung Pancreas Liver Heart Lung

DeepSDF △ 99.46 93.74 85.76 83.63 0.810 0.858 0.773 0.581 0.078 0.089 0.501 0.630
DeepSDF ⋆ 80.03 85.64 72.22 69.46 0.729 0.810 0.771 0.670 0.430 0.534 0.735 0.664
NDF △ 69.66 60.50 65.63 60.28 0.797 0.714 0.762 0.765 0.508 0.593 0.615 0.695
NDF ⋆ 69.66 66.45 64.21 58.27 0.844 0.821 0.804 0.813 0.505 0.571 0.842 0.794

PVD 89.26 86.32 82.44 87.12 0.760 0.821 0.764 0.732 0.420 0.466 0.671 0.712
3D-LDM 78.64 79.58 73.25 76.42 0.782 0.824 0.819 0.803 0.470 0.554 0.813 0.821
NFD 72.83 74.24 61.58 64.34 0.812 0.831 0.832 0.821 0.523 0.560 0.972 0.937
Ours 52.01 48.54 54.5 41.3 0.992 0.994 0.984 0.951 0.661 0.613 0.893 0.914

Table 2. Shape generation results. Our method achieve better performance according to the FID, precision and recall. △ denotes sampling
from Gaussian distribution while ⋆ denotes sampling from PCA.

Figure 6. Visualization of generated 3D shape.

ple global latent vectors from a Gaussian distribution and
perform PCA analysis, where the parameters are deter-
mined by grid search. However, similar to the results in pre-
vious experiments, the shapes sampled from DeepSDF and
NDF tend to be smoother compared to real instance shapes.
PVD is capable of generating variable shapes, but it is lim-
ited by its nature to generate only coarse object shapes. 3D-
LDM attempts to capture the distribution of the global la-
tent vectors of DeepSDF, but still faces the smoothing issue
from the global latent vector. NFD can also generate vari-
able shapes. However, compared to our methods, the shapes
generated by NFD may not preserve topology, resulting in
potentially separated components in the generated shapes,
as shown in Fig. 6. In contrast, our method focuses on
generating diffeomorphic deformations encoded by triplane
features. The new shapes are generated by deforming the
template, allowing us to achieve high fidelity and variabil-
ity while preserving the underlying topology.

5.4. Ablation Study

Supervision Table 3 highlights the significance of our
global supervision in shape reconstruction, mitigating the
risk of local minima. While incorporating additional mesh
supervision improved the results marginally, it also in-
creased computational and memory demands. Thus, we
opted to utilize global supervision in our approach.
Feature Representation We explored the use of 3D voxel-

CD Mean(↓) NC Mean(↑)

Model/Data Pancreas Liver Pancreas Liver

Ours 0.082 0.116 0.961 0.885
Ours - Global Sup. 0.264 0.368 0.932 0.877
Ours + Mesh Sup. 0.082 0.112 0.960 0.886

Table 3. Shape Reconstruction with various supervision.

grid features as an alternative to triplane features, and found
that they yielded similar results as shown in Table 4. How-
ever, voxel-grid features required more computation and
memory resources for representation and generation tasks.
In contrast, triplane feature representation achieved high re-
construction accuracy with improved memory and compu-
tation efficiency.

CD Mean(↓) NC Mean(↑)

Model/Data Pancreas Liver Pancreas Liver

Vector 0.512 0.476 0.917 0.873
Triplane 0.082 0.116 0.961 0.885
Voxel 0.146 0.112 0.957 0.885

Table 4. Shape Reconstruction with various feature representa-
tions.

6. Conclusion
In this paper, we introduce Hybrid Neural Diffeomorphic

Flow (HNDF) as a novel approach for topology-preserving
shape representation and generation. Our method leverages
the expressive power of triplane representation, enabling ac-
curate dense correspondence and high representation accu-
racy. The proposed hybrid supervision plays a crucial role
in capturing both local and global correspondence. Unlike
existing methods that primarily focus on directly generat-
ing shapes, we explore the concept of generating shapes us-
ing deformed templates to preserve the underpying topol-
ogy. We present a baseline method for topology-preserving
shape generation and will continue our exploration for more
complex shapes and scenarios. By presenting our research,
we aim to contribute to the 3D vision community and pro-
vide insights into the potential of topology-preserving shape
representation and generation.
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