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Abstract

We present a novel diffusion-based approach to gener-

ate synthetic histopathological Whole Slide Images (WSIs)

at an unprecedented gigapixel scale. Synthetic WSIs have

many potential applications: They can augment training

datasets to enhance the performance of many computa-

tional pathology applications. They allow the creation of

synthesized copies of datasets that can be shared without

violating privacy regulations. Or they can facilitate learn-

ing representations of WSIs without requiring data anno-

tations. Despite this variety of applications, no existing

deep-learning-based method generates WSIs at their typi-

cally high resolutions. Mainly due to the high computa-

tional complexity. Therefore, we propose a novel coarse-

to-fine sampling scheme to tackle image generation of high-

resolution WSIs. In this scheme, we increase the resolu-

tion of an initial low-resolution image to a high-resolution

WSI. Particularly, a diffusion model sequentially adds fine

details to images and increases their resolution. In our ex-

periments, we train our method with WSIs from the TCGA-

BRCA dataset. Additionally to quantitative evaluations, we

also performed a user study with pathologists. The study

results suggest that our generated WSIs resemble the struc-

ture of real WSIs.

1. Introduction

Histopathology is the study of diseases through the in-

spection of tissue samples. It plays a vital role in clini-

cal practice by providing information for accurate diagno-

sis. Furthermore, it is also essential in medical research for

studying disease processes and contributing to developing

new therapeutic strategies.

Histopathological analysis is preceded by a few prepara-

tory steps. One first collects tissue samples, e.g. via biop-

sies, excisions, or endoscopies. Then, the samples are fixed,

encased in paraffin, and thinly sliced. The resulting tissue

Figure 1. We sample a low-resolution image from noise using a

diffusion-based generative image model. This low-resolution im-

age is then sequentially upsampled in a coarse-to-fine scheme to

generate a high-resolution Whole Slide Image.

slices are then mounted on glass slides. Followed by stain-

ing, e.g. using hematoxylin and eosin (H&E), to enhance

the visibility of cellular components and highlight specific

tissue features. After staining, slides can be scanned, result-

ing in high-resolution images, so-called Whole Slide Im-

ages (WSIs). Notably, a typical WSI has resolutions in the

gigapixel range.

A major challenge when developing algorithms that

analyse WSIs is their high resolution. Many established

methods are unsuitable since they are designed for much

smaller resolutions. This also applies in the field of syn-

thetic image generation with deep-learning. Although some

methods exist, they all generated only small excerpts of

WSIs, i.e. patches. However, such low-resolution patches

contain far less detail than entire WSIs. Their high res-

olution offers a spectrum of detail, from a macroscopic

overview of the tissue sample to fine details like individ-

ual cells at the highest magnification. Having this breadth

of information is essential for many pathological applica-

tions. Consequently, to fully harness the potential of syn-

thetic data in histopathology, generating WSIs at their full

resolution is crucial.

There are many applications that could benefit from syn-

thetic WSIs. For instance, using synthetic data to augment
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Figure 2. A synthetic WSI generated by our method with a resolution of 65 536å65 361 pixels. Our synthesized WSI covers the whole

magnification spectrum of a WSI, starting from a macroscopic overview of tissue, down to structures at the cellular level. For visualization,

we extracted patches at different magnifications, the black rectangle shows the location of the patch in the subsequent column.

datasets is common to improve the performance of deep-

learning models, e.g., in segmentation or classification [28].

Both of these tasks are essential in computational pathology.

For example, to find new Biomarkers [47], make survival

predictions [8], or for tumor segmentation [41].

Moreover, synthetic WSIs could unlock access to cur-

rently inaccessible datasets for broad audiences. Despite

institutions like biobanks or hospitals collect vast amounts

of human tissue samples, data protection laws often prevent

publishing this data without restrictions. This limits the ac-

cessibility for research, hindering potential advancements in

the field. One approach to circumvent this issue is to publish

synthesised versions of real datasets [17]. Such synthesised

datasets could maintain patient privacy while preserving the

diagnostically relevant attributes of the original data.

Besides generating data, generative models can also be

leveraged to learn data representations without requiring

annotations [12, 30, 43]. This is of particular interest in

histopathology. Annotating WSIs is time-consuming due to

their high resolutions and can often only be done by pathol-

ogists that have the necessary domain knowledge.

Motivated by the multitude of potential applications, this

work presents a novel diffusion-based method to generate

synthetic WSIs. Most significantly, we generate WSIs at

remarkably high resolutions up to 65 536å65 536 pixels.

Fig. 2 shows such a high-resolution image generated by our

approach.

The major challenge of our method is the computa-

tional infeasibility of training diffusion models for the high-

resolution of WSIs. Instead, we are limited to a model that

processes much lower-resolution images. We tackle this

limitation through a novel coarse-to-fine diffusion-based

sampling scheme. In this scheme, as illustrated in Fig. 1,

we sample a low-resolution image and step-wise increase

its resolution. Each step gradually adds finer details to an

image while preserving its coarse structure. While the ini-

tial image entirely fits into our model, we do the refinement

patch-wise at later steps. Even though patching limits the

models’ image context at later steps, the scheme has shown

to be effective. This is because the coarse image structure is

established in the first steps, where the context is still large.

The refinement at later steps preserves this structure while

gradually adding fine details that do not always require full-

image context.

We describe our method in detail in Sec. 4. The main

contributions of our work are as follows:

• To the best of our knowledge, we propose the

first deep-learning-based method that creates syn-

thetic histopathological WSIs at high resolutions up to

65 536å65 536 pixels.

• To this end, we propose a novel diffusion-based

coarse-to-fine sampling scheme, where we guide the

diffusion process with a relaxed super-resolution con-

straint.

• Even though our method involves patch-wise process-

ing, we generate images without visible stitching arte-

facts. We achieve this through grid-shift, a novel tech-

nique where we interleave patching with diffusion it-

erations. In comparison with a related method, mask-

shifting, grid-shift is computationally more efficient

and simple to parallelize.

• We perform a user study with pathologists that sug-

gests that our generated WSIs are not consistently dis-

tinguishable from real WSIs.

2. Related Work

In the following, we review related work in the areas of

generating histopathological images and scaling diffusion

models to high-resolutions.

Generation of Histopathology images. Several previ-

ously published methods tackle the generation of synthetic

histopathological images. However, our approach stands

out as the only one that is able to generate WSIs at gigapixel

scale and is at the same time based on state-of-the-art gen-

erative deep-learning approaches.

A few methods were published before deep-learning-

based image generation methods were widely adopted. In-

stead, these methods [1, 46] are based on texture-based im-

age synthesis [9, 11, 29, 44], where the synthesis process is
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based on the composition and modification of a small num-

ber of input patches. However, this approach lacks general-

izability and, instead of producing diverse content, mainly

replicates the features of the few provided input patches.

Contrarily to texture-based image synthesis, deep

learning-based image generation methods can learn com-

plex patterns from large training datasets that allow them

to generate diverse and realistic images. This was demon-

strated by several works [7, 21, 48] through the usage of

Generative Adversarial Nets (GANs) [10]. However, all of

them only generated low-resolution patches and not high-

resolution WSIs.

Though GANs have been the dominant approach to gen-

erate histopathological images, diffusion models are be-

coming increasingly popular in other domains [5]. Mainly

because GANs tend to be unstable at training [24], and suf-

fer from mode collapse [23]. Moreover, in many domains

diffusion models have shown to outperform GANs [6], in-

cluding medical images [26]. Consequently, Moghadam et

al. [25] used diffusion for histopathology image generation.

However, in contrast to our work, only for small patches not

for entire WSIs.

Diffusion for high-resolution images. Training diffusion

models [35] is expensive, and the computational complex-

ity grows with the image resolution. Consequently, early

works operated on low-resolution images up to 256å256
pixels [13]. Since then, various approaches have been pro-

posed to enable generation of images with higher resolu-

tions. However, to the best of our knowledge, we are the

first to demonstrate image generation with diffusion models

at a gigapixel scale.

A common approach to scale diffusion models for higher

resolutions are latent diffusion models (LDMs) [31]. In

LDMs, the diffusion is not done directly in pixel space but

in a lower-dimensional latent space, which reduces com-

putational complexity. Despite LDMs provide remarkable

results, demonstrated resolutions [3,31] go only up to about

1024å1024 pixels. Even though the latent space is more

compact than the pixel space, increasing the resolution still

requires a corresponding enlargement of the latent space.

Therefore, LDMs cannot be scaled up arbitrarily.

Another line of methods [14, 32, 33] generates high-

resolution images by passing an initial low-resolution im-

age through a cascade of upscaling diffusion models. These

methods train multiple diffusion models, one for each up-

scaling stage. Each of these models takes the full input

image of the previous stage as input and predicts an up-

scaled output. However, this requires training multiple up-

scale models, one for each stage. Also, the last upscaling

model must still process the full-resolution image, which is

unfeasible for our gigapixel case.

3. Image generation with diffusion

Before describing our method in detail, we give the nec-

essary preliminaries about image generation with diffusion.

Diffusion models [35] generate novel images by pushing

noise through a series of denoising steps. In particular, first,

a noise image x0 is sampled from the Gaussian distribution

N
�

0,σ2
maxI

�

with variance σ2
max. Then, x0 is sequentially

denoised for N steps, producing the sequence {xi}i∈[0,N ],

where the noise level σi of each xi decreases with each step

σ0 = σmax > σ1 > · · · > σmin > σN = 0, (1)

where σmin is the minimum noise level. The last image xN

of this sequential denoising process is noise-free, and fol-

lows the data distribution pdata that was used to train the

model.

The denoising process of diffusion models can be mod-

elled with stochastic differential equations (SDEs). Ad-

ditionally, Song et al. [38] proposed that every denoising

SDE has a correspoding probability flow ordinary differen-

tial equation (ODE) with the same marginals. While SDEs

typically converge to higher quality results after numerous

steps, ODEs can still gives competitive results with signifi-

cantly fewer steps [18, 38]. Since our method runs multiple

diffusion processes to generate a single WSI, we use ODE-

based denoising to keep the overall sampling time within a

reasonable scope.

While various variations of the probability flow ODE ex-

ist, many of them can be expressed with one general equa-

tion [18]:

dx =

ÿ

ṡ(t)

s(t)
x� s(t)2σ̇(t)σ(t)rx log p

7

x

s(t)
;σ(t)

ç�

dt,

(2)

where for time t the function σ(t) controls the amount of

noise, s(t) scales the image, and σ̇(t) and ṡ(t) are the re-

spective time derivatives. Setting σ(t) and s(t) accordingly,

recovers various ODEs, e.g., variance preserving (VP) [38],

variance exploding (VE) [38], DDIM [36], iDDPM [27]

or EDM [18]. We use the EDM formulation, since it has

shown to be favourable in terms of sampling speed and im-

age quality [18]. The EDM ODE is obtained by setting

s(t) = 1 and the noise-level as σ(t) = t in Eq. (2). For clar-

ity, we continue to denote the noise level as σ(t), a function

parametrized by time t, instead of replacing it directly with

t, leading to the following EDM ODE

dx = [�σ(t)rx log p (x;σ(t))] dt. (3)

Following the empirical results and theoretical justifications

of Karras et al. [18], we set time steps ti∈[0,N ] as

ti =

7

σmax
1

ρ +
i

N � 1

ã

σmin
1

ρ � σmax
1

ρ

;

çρ

, (4)

5133



Downsample constraint

Figure 3. Overview of our method. (a) Shows how we upscale an initial low-resolution image z0 to a WSI zL through L upscaling stages.

(b) Shows how one stage upscales the image zl�1 to the image zl using our diffusion-based approach. We split the image zl�1 into

patches, each having a lower resolution than our diffusion model. We then provide each patch as a low-resolution guide y to a diffusion

process. Throughout denoising, diffusion is pushed in a direction that satisfies a downsampling constraint with the guide y. However, we

stop enforcing this constraint after r iterations, which relaxes the constraint. Hence, the resulting images xN follow the coarse structure of

the guide y, with increased resolution and added details. Finally, we stitch patches to the image zL.

where ρ adjusts between shortening steps near σmin and

lengthening those near σmax.

To solve the ODE given in Eq. (3), one expresses the

gradient of the log-likelihood w.r.t. input x, i.e. the score

function, as

rx log pθ(x;σ) =
Dθ(x;σ)� x

σ2
, (5)

where the function Dθ(x;σ) parametrized by θ, takes a

noisy image x and its noise level σ as input, and outputs a

denoised image. After training the denoiser Dθ(x;σ), any

numerical ODE solver can be used to solve the ODE given

by putting Eq. (5) into Eq. (3). Consequently, images can

be generated by sampling noise, followed by sequential de-

noising using the ODE.

4. Method

Our method uses a diffusion model trained on

histopathological images of size MåM to generate high-

resolution WSIs of size HåH , where H�M . To generate

images of much larger resolution than the resolution of the

diffusion model, we use a coarse-to-fine scheme. In this

scheme, we first sample with the diffusion model an ini-

tial image z0 2 R
M×M . Then, we sequentially upscale it

in L stages, producing the sequence {zl}l∈[0,L], where each

image zl has a k-times larger resolution compared to its pre-

decessor zl−1, and the last image zL 2 R
M×M resembles a

high-resolution WSI. Fig. 3 (a) illustrates this coarse-to-fine

upscaling.

At each stage l of our coarse-to-fine scheme, we com-

pute the higher-resolution image zl through a diffusion pro-

cess that is guided by the preceding lower-resolution image

zl−1. Through this guidance, the image zl is generated such

that it follows the coarse structure of zl−1 while introduc-

ing novel details and having increased resolution. Due to

the limited resolution of the diffusion model, we generate

zl patch-wise. Importantly, to prevent stitching artefacts in

the image zl, despite patch-wise processing, we introduce a

novel technique: grid-shift. Fig. 3 (b) summarizes the up-

scaling from zl−1 to zl.

In the following, we describe our method in detail. We

start with the design of our diffusion denoising function in

Sec. 4.1 and its training in Sec. 4.2. Followed by our guided

denoising step for diffusion in Sec. 4.3 and the description

of grid-shift in Sec. 4.4.

4.1. Diffusion denoiser

As discussed in Sec. 3, for diffusion, we need a denoiser

function Dθ(x;σ) that denoises images at each timestep.

We propose to condition the denoiser Dθ(x;σ) not only

with noise level σ but also with the spatial image resolution

s in µm/px. While in many applications the spatial resolu-

tion is unknown, it is consistently available in our case, as

slide scanners usually save it in the metadata of WSIs. Con-

ditioning allows us to control the spatial resolution of gen-

erated images. This is crucial for our coarse-to-fine scheme.

Setting a high spatial resolution for the initial image ensures

it depicts a macroscopic overview of a tissue sample. While

decreasing spatial resolution accordingly at later refinement

stages, conditions the network to introduce small details like

cellular structures.

For denoising, we introduce a network Fθ(x;σ, s),
where we implement the conditioning on noise σ and spa-

tial resolution s with a sinusoidal positional encoding [40].

However, we do not use the network Fθ(x;σ, s) to directly

denoise images, i.e. Dθ(x;σ, s) = Fθ(·). Instead, we use

the network preconditioning of Karras et al. [18]

Dθ(x;σ, s) = cskip (σ)x+cout (σ)Fθ

�

cin (σ)x;σ, s
�

, (6)

where the functions cin(σ) and cout (σ) scale the inputs and
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outputs of the network Fθ(x;σ, s), and cskip (σ) is a σ-

dependent skip connection. These three functions scale net-

work input and training targets to unit variance across all

noise levels σ, which is beneficial for neural network train-

ing [15]. Additionally, cskip (σ) controls, if for denoising,

the network has to predict the denoised image directly, only

the noise component or a mixture of both. Empirically, it

has been demonstrated that it depends on the noise level σ

which of these cases is easier to learn, and cskip (σ) is set

to adapt accordingly. We provide the full expressions of

cin(σ), cout(σ) and cskip (σ) in the appendix.

4.2. Training

Using our denoiser function Dθ(x;σ, s) given in Eq. (6),

we can define the training loss for the diffusion model. In

particular, we minimize the expected L2 denoising error

Es,x̃,σ,n

å

λ(σ)kDθ(x̃+ n;σ, s)� x̃k22
å

, (7)

where the function λ(σ) weights loss terms equally across

all noise levels σ. At first, we sample the spatial resolu-

tion uniformly s á U(smin, smax), where smin and smax re-

fer to the smallest respectively largest spatial resolution

of image patches in the training dataset. Then, we sam-

ple images from the distribution of training patches having

spatial resolution s, i.e. x̃ á ptrain|s. Finally, we sample

noise levels σ from a log-normal distribution, and noise as

n á N
�

0,σ2I
�

.

4.3. Guided denoising step

Like a conventional diffusion denoising step, our guided

denoising step removes noise from a noisy input image xi

with noise level σ(ti) such that the result xi+1 has noise

level σ(ti+1) < σ(ti). Additionally, we guide the denois-

ing step with a low-resolution guidance patch y 2 R
d×1

from the preceding layer zl−1. The goal of guidance is that

the fully denoised image x0 follows the coarse structure of

the guidance patch y while having additional details and a

higher resolution. We implement this guidance through a

relaxed super-resolution constraint.

For further derivations, we denote u 2 R
D×1 as the out-

put of the denoiser function Dθ(xi;σ(ti), s) at step ti. No-

tably, u gives at each denoising step an estimate of the fully

denoised image x0. In our guided denoising step, we re-

place the initial estimation u of the denoised image with a

guided estimate ū, which is computed to be close to u while

additionally satisfying a guidance constraint. This basically

resembles the concept of projected gradient descent.

For guidance, we introduce the downsampling constraint

Au = y, where A 2 R
d×D is a known linear downsam-

pling operator. Therefore, downsampling the estimate u

should equal the low-resolution guide y. We can compute

the guided estimate ū through the following optimization

problem

ū = argmin
ū

1

2
ku� ūk2 s.t. Aū = y, (8)

that can solved using the method of Lagrangian multipliers.

We provide a full derivation in the appendix and continue

here with the solution

ū = (I�A†A)u+A†y, (9)

where A† is the pseudoinverse for full row rank matrices

A† = AT (AAT )−1. (10)

Notably, Eq. (9) resembles the proposed rectification equa-

tion of DDNM [42], a method to solve linear inverse prob-

lems with diffusion models. However, DDNM presents a

different derivation based on a range-space null-space de-

composition. Also, DDNM uses SDE-based diffusion pro-

cesses, contrary to our ODE-based setting, leading to a dif-

ferent application of Eq. (9).

So far, our guidance resembles unrelaxed super-

resolution. However, we do not strictly enforce the down-

sampling constraint, but relax it. Hence, we allow slight

differences, between the downsampled fully denoised im-

age x0 and the low-resolution guide y. For relaxation, we

stop replacing the estimate u with the guided estimate ū at

iterations i where i > r. Consequently, in the last denoising

steps, changes to the image are allowed that do not satisfy

the downsample constraint. The strength of relaxation is

controlled through r. If r = 0, the guidance constraint is

enforced at all iterations, leading to no relaxation. Contrar-

ily, if r = N , the constraint is never applied, leading to full

relaxation. By setting r to values in between controls the

amount of relaxation accordingly.

There are multiple reasons why we relax the downsam-

ple constraint. In our coarse-to-fine scheme, we do not pur-

sue strict upsampling; instead, the diffusion model should

add new details at every stage. Adhering strictly to the

downsample constraint would restrict the flexibility to add

new details. Furthermore, without relaxation, the down-

sampling constraint would be enforced across all upscaling

stages. This is unreasonable due to the vast upscaling fac-

tors we face. For instance, if we have a diffusion model with

input size 512å512 and generate a WSI with a resolution of

65 536å65 536, we have an upscaling factor of 128. Con-

sequently, for a 512å512 area in the full-resolution WSI,

the downsampling constraint would be enforced with a 4å4
patch in the lowest-resolution image. Clearly, this does not

introduce any meaningful information. Moreover, without

relaxation, even single-pixel errors at the lowest-resolution

can distort large areas in the full-resolution image.

Finally, with Eq. (5) the score function, Eq. (3) the EDM

ODE, and our guided estimation ū, inplace of the denoiser
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Algorithm 1 Guided denoising step

Input: Noisy image xi, guide y, step i, spatial-resolution s
Output: Denoised image xi+1

1: u Dθ(xi;�(ti), s)
2: if i < r then

3: ū 
�

I�A†A
�

u+A†y

4: di  (xi � ū) /�(ti)
5: else

6: di  (xi � u) /�(ti)
7: xi+1  xi + (ti+1 � ti)di

8: if ti+1 6= 0 then . Skip 2nd order correction at last step

9: u0  Dθ(xi+1;�(ti+1), s)
10: if i < r then

11: ū0  
�

I�A†A
�

u0 +A†y

12: d0

i  (xi+1 � ū0) /�(ti+1)
13: else

14: d0

i  (xi+1 � u0) /�(ti+1)
15: xi+1  xi + (ti+1 � ti)

�

1

2
di +

1

2
d0

i

�

16: return xi+1

function Dθ(x;σ, s), we get

dx =
x� ū

σ(t)
dt. (11)

In principle, we can solve Eq. (11) with any black-box

ODE solver. Here, we use Heun’s 2nd order solver [2], a

predictor-corrector method, which has shown a good trade-

off between truncation error and number of function evalu-

ations in the context of diffusion models [16]. Algorithm 1

summarizes our guided denoising step. Note that skipping

lines 8 to 15 simplifies Heun’s 2nd order method to a simple

Euler step.

4.4. Grid-shift

To avoid stitching artefacts in our patch-wise refinement

scheme, we propose grid-shift. If we simply do patch-wise

refinement and then stitch the refined patches back to a

high-resolution image, the result could suffer from stitch-

ing artefacts. This is because there is no guarantee that the

areas at the edges of neighbouring patches align such that

they can be stitched seamlessly.

A recently proposed method to avoid stitching artefacts

at patch-wise image processing with diffusion models is

mask-shifting [42]. The idea of mask-shifting is to use over-

lapping patches. For each patch, areas that overlap with pre-

viously computed neighbouring patches are held constant

during diffusion. This incorporates the content of a previ-

ously computed patch into the computation of its following

patches. And consequently leads to smooth transitions be-

tween neighbouring patches.

We argue that mask-shifting has two drawbacks. At first,

patches must be processed sequentially, which is not triv-

ial to parallelize. And second, using overlapping patches

Algorithm 2 Coarse-to-fine scheme with grid-shift

Input: Low-resolution image z0, and its spatial-resolution s
Output: High-resolution WSI zL

1: for Stage l in [1, L] do

2: s s/k . Adapt spatial-resolution to current stage

3: x0 á N
�

0|�2
maxI

�

4: for i in [1, . . . , N ] do

5: shift patch grid()

6: for x, y in patch(xi�1), patch(zl�1) do

7: xi,p  Algorithm 1(x,y, i, s)
8: xi  stitch patches([xi,0, . . . ,xi,P ])
9: zl  xN

10: return zL

Diffusion steps

...
...

Figure 4. Visualization of grid-shift. After each diffusion step, we

shift the patch grid that is used to extract guidance patches from

the preceding image zl�1.

increases the amount of total patches to process, increasing

the computation time significantly depending on the amount

of overlap between patches.

With grid-shift, we address both discussed drawbacks

of mask-shifting by interleaving diffusion iterations with

patching. Instead of using a fixed grid to extract patches,

we shift the patch grid after each diffusion step. This makes

patch boundaries temporary since they change after each

diffusion step. Consequently, information between neigh-

bouring patches is continuously transferred, resulting in a

more coherent result without visible seams. Fig. 4 illus-

trates grid-shift. In our experiments, we shifted the patch-

grid with random translations and padded boundary patches

with the background colour.

Grid-shift has two computational advantages over mask-

shifting. First, it does not increase the total amount of

patches to process. And second, during one diffusion step,

all patches are processed independently. Therefore, grid-

shift is trivial to parallelize, e.g., for a multi-GPU im-

plementation. Algorithm 2 shows our full coarse-to-fine

scheme with grid-shift.

5. Experiments

To evaluate our method, we performed a user study

with pathologists, and quantitative evaluations. Particularly,

quantitative evaluation is challenging due to the lack of a
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suitable standardized metric. Common metrics for genera-

tive models, such as FID [39], or improved precision (IP)

and improved recall (IR) [19] require features from pre-

trained networks. These standardized networks have a fixed

input size of 224å224. Downscaling WSIs to this reso-

lution would discard most information, making the metrics

inconclusive. Also, these metrics require large sample sizes

of 50 000 images to provide consistent results. Generating

that many WSIs is infeasible, considering that we need á40
minutes for a single WSI. Moreover, the metrics utilize fea-

ture spaces strongly influenced by ImageNet classes [20].

Using these feature spaces to evaluate images from entirely

different domains than ImageNet, such as histopathology

images might be problematic.

Due to the discussed limitations, our quantitative evalu-

ations are restricted to isolated evaluations of our diffusion

model without the coarse-to-fine scheme. In terms of met-

rics, we use IP and IR, following Moghadam et al. [25].

However, we add that these metrics should be taken with

reservations due to their ImageNet-related feature spaces.

Additionally, to the experiments presented in this sec-

tion, we compare our method with multiple super-resolution

methods in the appendix.

Data. For all experiments, we used the The Cancer

Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA)

dataset [45]. The dataset contains 1 978 high-resolution

WSIs stained using various protocols showing diverse tis-

sue types, e.g., epithelium, muscle, and connective tis-

sue. For training, we extract patches from the dataset

with spatial resolutions ranging from smin = 0.3 µm/px to

smax = 150 µm/px.

Setup. We generate WSIs at a resolution of

65 536å65 536 pixels. For the diffusion model, we

use a resolution of 512å512 pixels. In our coarse-to-fine

scheme, we use an upscaling factor of k = 2 at each stage,

resulting in L = 7 stages in total. Initial images z0 are

generated with a spatial-resolution randomly between 80

µm/px and 150 µm/px. We set the number of diffusion

denoising steps to N = 40 based on the results of Sec. 5.1.

The relaxation parameter of our relaxed super-resolution

constraint is set to r = 28, which was manually tuned

towards a good tradeoff between consistency and novelty.

For the downsampling operator A we use average-pooling.

We train for five days on four NVIDIA Quadro RTX

8000 GPUs with 48 GB of memory each. It took on average

á40 minutes on one GPU to sample a single WSIs with a

resolution of 65 536å65 536 pixels. For the diffusion-related

hyperparameters, we use, if not otherwise stated, the pro-

posed settings of Karras et al. [18]. Likely, an extensive hy-

perparameter search could further improve our results, but

1 20 40 60 8090

Iterations

0.00

0.20

0.40

IR

1 20 40 60 8090

Iterations

0.00

0.40

0.80

IP

Heun Euler

Figure 5. IR and IP values for 512å512 patches with 1µm/px for

different numbers of denoising iterations using Heun and Euler as

ODE solver.

Spatial Resolution [µm / px]

0.3 1.0 25 50 100 150 U(0.3, 150)

IP 0.81 0.82 0.82 0.85 0.82 0.84 0.86

IR 0.32 0.33 0.36 0.38 0.37 0.36 0.34

Table 1. IP and IR for 512å512 patches at varying spatial resolu-

tions. The last column shows results for uniformly sampled spatial

resolutions between 0.3 and 150.

given the extensive training cost, it is beyond our computa-

tional capacities.

5.1. Number of diffusion iterations

An important hyperparameter we must choose is the

number of diffusion iterations N . Too few iterations de-

grade image quality, while too many might increase run-

time unnecessarily. Finding the right balance is crucial for

us since we have to run many diffusion processes to sam-

ple a single WSI. To this end, we compute IR and IP scores

for generating 512å512 patches with a spatial resolution of

1µm/px across different iteration numbers N . We also val-

idated if using Heun’s 2nd order method is beneficial over

a plain Euler solver. Fig. 5 shows the results. According

to the metrics, the Heun solver showed preferable perfor-

mance. After an additional manual inspection, we chose

N = 40 as a good tradeoff between image quality and run-

time for further experiments.

5.2. Image quality across spatial resolutions

To evalute our spatial resolution conditioning of the

model, we compute IP and IR metrics across a variety of

different spatial resolutions. We obtained all results from a

single model trained with uniformly sampled spatial reso-

lutions as described in our training setup. We then condi-

tionally sampled 50 000 images for each spatial resolution,

and compared them with images of identical spatial reso-

lution from the training dataset. Tab. 1 shows the result.

According to the metrics, performance is relatively consis-

tent across the full range of spatial resolutions without any

major outliers.
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Figure 6. WSIs with a resolution of 65 536å65 536 pixels gen-

erated by our method. We show 512å512 patches extracted at

different magnifications, the blue rectangle shows the location of

the patch in the subsequent row. The top row shows for each WSI

the nearest neighbor in the training data. To find neighbors, we re-

sized WSIs to 512å512 and compared WSIs in the feature space

of Inception-v3.

Initial image r = 20 r = 16 r = 12

Figure 7. Decreasing the parameter r relaxes the super-resolution

constraint.

5.3. Relaxation parameter

To evaluate the influence of our super-resolution relax-

ation parameter r, we perform a simple experiment. We

sample a 512å512 sized image with our diffusion model,

Image ID

Real

Synthetic
Real WSIs

Image ID

Synthetic WSIs

Pathologist 1 Pathologist 2 Pathologist 3

Figure 8. Result of our user-study. The plots show how three

pathologists rated the realness of 20 real versus 20 synthetic WSIs.

downsample it to 256å256, and provide it as a guide y to

a diffusion process guided by our relaxed super-resolution

constraint. We repeat this for multiple values of the relax-

ation parameter r. Fig. 7 shows the result, it can be clearly

seen how consistency with the initial images decreases with

decreasing relaxation parameter r.

5.4. User study

To evaluate the quality of our synthetic WSIs, we con-

ducted a user study with three pathologists. For the study,

we used 20 synthetic WSIs, and 20 real WSIs randomly

chosen from the training data. We presented the WSIs to

the pathologists in random order and asked them to identify

whether each WSI was synthetic or real. To this end, they

were given a slider to select values between 0 = ”I believe

the slide is real.” and 100 = ”I believe the slide is synthetic.”.

Values in between represented corresponding gradations be-

tween the two extremes. Fig. 6 shows three WSIs that were

part of the study.

Fig. 8 shows the ratings for all individual images. De-

spite our study’s limited sample size, our primary goal was

to assess whether our method could generate plausible-

looking WSIs. The results of our study indicate that this is

the case, as pathologists could not consistently distinguish

our synthetic WSIs from real ones.

6. Conclusion

We presented a method that generates synthetic

histopathological WSIs at resolutions up to 65 536å65 536.

We evaluated parts of our method quantitatively and also

performed a user study with pathologists. Our study’s re-

sults showed that pathologists could not consistently differ-

entiate the WSIs generated by our method from real ones. In

the future, the duration of WSI generation could be further

reduced by incorporating distillation-based diffusion mod-

els [34, 37].
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[5] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu,

and Mubarak Shah. Diffusion models in vision: A survey.

IEEE TPAMI, 2023.

[6] Prafulla Dhariwal and Alexander Nichol. Diffusion mod-

els beat gans on image synthesis. NeurIPS, 34:8780–8794,

2021.

[7] James M Dolezal, Rachelle Wolk, Hanna M Hieromnimon,

Frederick M Howard, Andrew Srisuwananukorn, Dmitry

Karpeyev, Siddhi Ramesh, Sara Kochanny, Jung Woo Kwon,

Meghana Agni, et al. Deep learning generates synthetic can-

cer histology for explainability and education. NPJ Precision

Oncology, 2023.

[8] Amelie Echle, Niklas Timon Rindtorff, Titus Josef Brinker,

Tom Luedde, Alexander Thomas Pearson, and Jakob Niko-

las Kather. Deep learning in cancer pathology: a new gen-

eration of clinical biomarkers. British journal of cancer,

124(4):686–696, 2021.

[9] Alexei A Efros and Thomas K Leung. Texture synthesis by

non-parametric sampling. In ICCV, 1999.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. NeurIPS, 2014.

[11] David J Heeger and James R Bergen. Pyramid-based texture

analysis/synthesis. 1995.

[12] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A

fast learning algorithm for deep belief nets. Neural compu-

tation, 18(7):1527–1554, 2006.

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-

sion probabilistic models. NeurIPS, 2020.

[14] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet,

Mohammad Norouzi, and Tim Salimans. Cascaded diffusion

models for high fidelity image generation. The Journal of

Machine Learning Research, 2022.

[15] Lei Huang, Jie Qin, Yi Zhou, Fan Zhu, Li Liu, and Ling

Shao. Normalization techniques in training dnns: Methodol-

ogy, analysis and application. IEEE TPAMI, 2023.

[16] Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer,
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