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Figure 1. Illustration of image synthesis models under different perturbations. Compared to previous work [101], our results express
more natural textures and details, even under anomalies or shifts in the input distribution.

Abstract

Semantic segmentation methods have advanced signifi-
cantly. Still, their robustness to real-world perturbations and
object types not seen during training remains a challenge,
particularly in safety-critical applications. We propose a
novel approach to improve the robustness of semantic seg-
mentation techniques by leveraging the synergy between
label-to-image generators and image-to-label segmentation
models. Specifically, we design Robusta, a novel robust con-
ditional generative adversarial network to generate realistic
and plausible perturbed images that can be used to train re-
liable segmentation models. We conduct in-depth studies of
the proposed generative model, assess the performance and
robustness of the downstream segmentation network, and
demonstrate that our approach can significantly enhance the
robustness in the face of real-world perturbations, distribu-
tion shifts, and out-of-distribution samples. Our results sug-
gest that this approach could be valuable in safety-critical
applications, where the reliability of perception modules
such as semantic segmentation is of utmost importance and
comes with a limited computational budget in inference. We
release our code at github.com/ENSTA-U21S/robusta.

“equal contribution, f gianni.franchi@ensta-paris.fr

1. Introduction

Semantic segmentation is an essential perception task
that is commonly used in safety-critical applications such
as autonomous driving [68, 74] or medical imaging [73, 78].
To fulfill safety requirements [62], it is crucial to not only
produce accurate segments but even more so make reliable
predictions in the face of perturbations [46], distribution
shifts [52, 96, 105], uncommon situations [ | 15] and out-of-
distribution (OOD) objects [ |,44]. Modern Deep Neural
Networks (DNNs) achieve impressive performance in seg-
mentation tasks [2,22,40,79,91]; however, they struggle
to generalize to data samples not seen during training, e.g.,
image corruptions [46, 85], adversarial attacks [21, 102], or
change of style [31]. In the face of such events, they often
produce overconfident probability estimates [38,43,77] even
when they are wrong, which can impede the detection of
failure modes and thus their adoption in the industry.

Technically, modern high-capacity DNNs trained with
uncertainty and calibration awareness could effectively learn
to deal with such situations if they were seen during training.
However, such samples from the long tail are extremely nu-
merous, difficult, and expensive to acquire in the real world.
In the absence of such data, new data augmentation tech-
niques have been devised towards mitigating this problem:
generating perturbations on the input data [1 14, 116], the
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latent space [20], or the output space [67]. They may slightly
relieve this problem by increasing the size of the training
set with richer samples. Still, they may not always yield
realistic images and are often architecture-dependent or un-
suitable for semantic segmentation. Meanwhile, generative
models are making steady progress towards the ambitious
goal of generating abundant and high-quality data for train-
ing data-hungry DNNs [9, 59, 88, 93]. Despite the realism
reflected by excellent FID scores [50], training on such syn-
thetic images is non-trivial and less effective than with real
images [0, 89,99]. Very recent methods based on the latest
generative models [42,97] are starting to show encouraging
results for image classification. However, such approaches
have not shown yet that they can improve the performance
and robustness of semantic segmentation models dealing
with high-resolution images and complex scenes.

In this paper, we pave the way for improving the robust-
ness of semantic segmentation models against input pertur-
bations as well as their ability to detect outliers, i.e., objects
with no associated labels in the train set. To this end, we pro-
pose leveraging the symmetry between label-to-image con-
ditional generative adversarial networks (cGANSs) [34,55]
and image-to-label models to train robust segmentation net-
works [17,70]. We argue that it is possible to use label-
to-image cGANSs at training time to enrich datasets with
perturbations and outliers and improve segmentation models.
The generated data must be of sufficient quality and diversity
to enable the classifier - trained on it - to generalize to new
and unseen real-world situations and to prevent overfitting
to the specific anomalies of the training set.

A significant difficulty we face is that cGANs are not
robust to variations in the input labels. They may generate
images with artifacts when given label maps with anomalies,
hindering their utility for semantic segmentation training. To
address this challenge, we advance Robusta, a novel cGAN
architecture that leverages attention layers [106] and sub-
networks [109]. Robusta can produce high-quality images
even from label maps with corruptions and anomalies. We
exploit Robusta synthetic images to construct a dataset for
training an observer network [5] to detect anomalies and
failures of the segmentation model.

Contributions. (1) We propose a new strategy to improve
the robustness and OOD detection performance of semantic
segmentation models by leveraging the symmetry of label-
to-image cGANs and image-to-label segmentation networks:
we use cGAN images with outliers to train a robust segmen-
tation model; (2) We design the first framework to evaluate
the robustness of label-to-image cGANSs against perturba-
tions and uncommon inputs, and we use it to investigate
the robustness of multiple cGAN methods against three new
dataset generation techniques; (3) We propose Robusta, a
new cascaded cGAN with improved robustness compared
to state-of-the-art cGANs on the proposed framework. Our

approach is expected to enhance the reliability and safety
of autonomous driving systems by enabling more accurate
OOD and failure detection in real-world situations.

2. Related Work

Conditional GANs for label-to-image translation: Var-
ious label-to-image translation techniques have been pro-
posed [81] with two main categories: paired strategies [55,

,84,108,118], where images and labels are aligned, and un-
paired strategies [58, ]. In this work, we focus on paired
label-to-image translation models that synthesize RGB im-
ages from semantic inputs. Most approaches in this area are
based on cGANSs [55, 84].

Pix2Pix [55] is a strong baseline and was one of the first
cGAN-based techniques applied to label-to-image transla-
tion, but it often fails to generate high-quality images using
a single GAN. Pix2PixHD [109] upgrades the quality of
the generated images by incorporating enhanced multi-scale
generators and discriminators.

SPADE (SPatially ADaptive DEnormalization) [84] ad-
vances spatially-adaptive normalization layers that lever-
age semantic label maps to modulate the activations in the
normalization layers, resulting in significant improvements
for datasets with strong global redundancy. Rather, DP-
GAN [98] shares the spatially adaptive normalization pa-
rameters, learned at each scale of the down-sampling part,
with the up-sampling layers. More recently, OASIS [101]
incorporates an adversarial component and pixel-level dis-
criminators, and PITI [108] pre-trains a diffusion model on
a large dataset of various images while leveraging the latent
space for the downstream tasks.

Anomaly detection for semantic segmentation: Anomaly
segmentation is challenging as it requires precise anomaly
localization and can be tackled by cGAN-based methods.
Various cGAN methods [17,70,107,111] have been proposed
to detect anomalies. These methods utilize cGANS at test
time, leading to significant runtime costs [104]. In contrast,
our approach only uses cGANSs in the offline stage to gener-
ate synthetic images for training an efficient anomaly-aware
segmentation network, avoiding the runtime costs associated
with cGAN-based approaches.

Other techniques employ uncertainty quantification meth-
ods such as ensembles [60], their efficient derivatives [24,

,39,53,61, ], and Monte-Carlo Dropout [27, 28, 76].
Some approaches, such as DNP [29], compute distances be-
tween feature representations produced by the segmentation
encoder network [90] using nearest-neighbors. Others, like
PEBAL [104], utilize abstention learning [72] at the pixel
level through energy-based models [65].

Some methods [7, 12,37] involve using auxiliary data in
the wake of Outlier Exposure [49] for classification. Going
further, Obsnet [5] generates failures with local adversarial
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Figure 2. Illustration of the pipeline. The pipeline diagram depicts three steps. Firstly, we train the new Robusta model. Secondly, we
utilize Robusta to create a diverse and high-quality dataset that includes various objects of interest. Finally, we train a segmentation model

on this augmented dataset.

attacks and NflowJS [35, 360], generate a negative dataset
using normalizing flows [18,82,92]. In contrast, our method
employs cGANS to generate additional data with non-typical
content and scene layouts, and generates outliers as a proxy
for out-of-distribution. This generated data is used down-
stream to train robust segmentation models.

Dataset synthesis for semantic segmentation: The lack
or limited amount of anomalous data in real-world datasets
motivates the synthesis of datasets for semantic segmentation.
StreetHazards [45] and MUAD [26] are recent works that
propose solving this problem with fully synthetic datasets
generated with computer graphics simulators.

To increase the volume of data of a given dataset and test
the robustness of segmentation models, some researchers
propose using GANs to modify images with challenging
conditions of interest. For instance, Rainy [105] and Foggy
Cityscapes [96] respectively add rain and fog to Cityscapes’
urban scenes, and CoMoGAN [86] allows changing the pic-
ture’s time of the day with continuous transformations.

An alternative to these methods consists in directly gen-
erating complete scene layouts. SB-GAN [1] and PGAN-
CGAN [51] are recent methods proposed for this task, se-
quentially generating semantic label maps and converting
them into images using classical conditional GANs. Seman-
ticPalette [64] improves upon these methods with a pipeline
that controls the relative importance of the different classes
in the images.

3. Problem setup and method overview

Our objective is to improve the ability of semantic seg-
mentation models to handle unexpected and uncommon situ-
ations and objects that arise due to aleatoric and epistemic
uncertainty sources. For the scope of this paper, we define a
robust semantic segmentation model as one that can produce
accurate predictions even when confronted with uncommon
samples coming from a distribution with strong uncertainties,
shifted from the original training distribution of the model.
To consolidate the robustness of this segmentation model,

we introduce a three-step pipeline, which we outline below
as well as in Figure 2.

Step 1: We train a new cGAN called Robusta to generate
additional data from the original segmentation training set
(see section 4.1). Step 2: We leverage Robusta to create a
new high-quality dataset by conditioning it on label maps
with different objects, such as road signs placed in uncon-
ventional locations, aiming to expand the diversity of the
training set (see section 4.2). Step 3: We boost the general-
ization ability of the segmentation model by training it on
this new augmented dataset (see section 5).

To the best of our knowledge, we are the first to explore
the robustness of generative models in the context of seman-
tic segmentation for autonomous driving scenes. To this
extent, we introduce a novel architecture that enhances the
reliability of generated images. Our primary goal is, indeed,
to develop a robust label-to-image generative model capable
of producing realistic corner-case images to improve the
robustness of segmentation networks. To assess the effec-
tiveness of these models and our pipeline (see Figure 2), we
employ three benchmarks: first, we quantify the quality of
the generated images under non-perturbed conditions (purple
block) in Appendix C; then we measure the robustness of the
generative model with perturbed label-maps (yellow block)
in sections 4.2 and 6.2; finally, we evaluate the efficiency of
synthetic images in enhancing the robustness of semantic
segmentation (blue block) in section 6.3.

4. Enhancing data generation to robustify seg-
mentation

The efficient training and robustification of the semantic
segmentation network rely on generating high-quality data
(see Appendix F.1 for more details). This requires generat-
ing both in-distribution data with perturbations and different
textures, as well as high-quality out-of-distribution data. As
outlined in section 3, it is essential to enhance the robustness
of the generating models. Specifically, the quality of the out-
put must remain satisfactory even when given inputs outside
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Figure 3. Illustration of Robusta’s generation process. First, we train the networks Geoarse, producing low-resolution images. We add
another generator, Gfine, to improve the image quality from the output of Goarse. The + operation corresponds to a concatenation.

of its training distribution (corrupted label maps). In section
4.1, we propose a novel cGAN-cascade called Robusta to
improve the robustness of label-to-image translation. We
test the usefulness of our method thanks to the first protocol
to evaluate the robustness of generative processes that we
detail in section 4.2. To enhance the robustness of the cGAN,
we have integrated attention layers [ 106] and decomposed
the GAN into two sub-GAN:s.

4.1. Robusta: a new cGAN cascade for improved
robustness

4.1.1 Architecture

We propose Robusta a novel architecture based on cGANs
designed to address the artifacts presented in Figure 1 that
arise when generating outlying label maps in the context
of label-to-image translation. To overcome these artifacts,
we decompose our translation cascade into two generators
Geoarse and Giipe, as illustrated in Figure 3, that are trained
sequentially. We design G¢oarse for handling artifacts related
to label-to-image translation and Gj, artifacts related to
output image quality.

The architecture of Geoarse 1S based on Pix2PixHD [109]
and includes two encoder-decoders (in blue and green in
Figure 3). These encoder-decoders have the same input di-
mensions, but the output of the blue module has the size
of the latent space of the green module. For better robust-
ness and performance, we choose Segformer [ 12] for the
blue module as encoder-decoder, which has proven effective
in semantic-segmentation tasks. Segformers are based on
ViTs [19] and encode inputs in feature maps, which pro-
motes contextual information learning [32, 69]. Moreover,
ViTs have been shown to be more robust learners [3, 4, 8].
We think that the favorable Transformer’s robustness also ex-
tends to image generation, and support this hypothesis with
the ablation studies conducted in Appendix E.1. We argue
that this approach is particularly relevant for tackling trans-
lation artifacts. Additionally, we incorporate a SPADE [84]
layer after the concatenation of the output of the Segformer

(in blue) and the encoding of the main generator (in green) to
re-inject lost spatial semantic information before decoding.

To further improve the quality of the final image, we add a
generator, Gyne, Which takes as input the images provided by
Gourse and generates high-quality outputs. In Gye, We sub-
stitute all batch normalizations [54] with spatially-adaptive
normalization (SPADE) [84] layers to accurately incorporate
the information present in semantic label maps.

To obtain a better image quality with higher-frequency
textures [83] (see Appendix E.1.3 for more details), we use
U-Net [94,95], a residual convolutional neural network [41].
Gline 1s trained separately from Geore using the loss (3),
Glourse’s Weights being frozen at this time.

Appendix A details the links between Pix2Pix,
Pix2PixHD, SPADE, and Robusta, and Appendix E.1 pro-
vides ablation studies on the architecture.

4.1.2 Training

Standard procedure. Let Fyp(x) denote the application
of a DNN F' of weights 8 to an input image x, Dg(-) a
discriminator and Gg(-) a generator. The weights of the
discriminator and the generator are denoted by 8p and O
respectively and are omitted when obvious. Label-to-image
models consist of cGANSs trained with the following losses:
(a) A GAN loss:

L5k (0c,0p) = Ex[log D(x | y)]+
E.[log(1 - D(G(z | y)))], (1)

where y is the conditional information. In label-to-image
translation, y is the input label, x is the target RGB image,
and z is the sampled latent variable.

(b) An L1 loss between the output of the generator and the
target images, denoted L1,1(0¢).

(c) A feature-matching loss Lry (0, 0p) measuring the
L1 norm between the feature maps of the real and generated
images extracted from the layers of the discriminator D.

(d) A perceptual loss Ly g measuring the L1 norm between

3897



Figure 4. Perturbed label maps. Different label maps from Corrupted-Cityscapes (top) and Outlier-Cityscapes (bottom).

the feature maps of the real and generated images extracted
from the layers of a VGG network [100] pre-trained on
ImageNet [16].

Training Robusta. We train Robusta in two steps begin-
ning with the generator Gyase. To do so, we optimize the
loss Leoarse On a dataset made of the original label maps as
inputs and original images as targets. We minimize the linear
combination of losses (2) of Wang et al. [109].

Leoase = LEAN + ALt + AemLem + AveeLves. (2)

When the training of Goarse is complete, the synthesized
images are used to feed and train the second generator Gype,

which does not use L1 and is based on ElcvéslfN instead of

LBCE, as proposed for SRGAN [66]. This corresponds to:

Liine = LM 4+ AemLem + AveeLvae- 3)

Please refer to the Appendix A for details on the losses
and the definition £}, and to Appendix B for training
details. Furthermore, Appendix E.2 includes ablation studies
on Robusta’s training, and Appendix F.3 details the training
time and the computational cost of Robusta.

4.2. Robustness assessment protocol for label-to-
image translation

To the best of our knowledge, we present the first protocol
to evaluate the robustness of label-to-image generators quan-
titatively. This type of network is susceptible to perturbations
in input data, prompting us to design three novel method-
ologies to gauge the efficacy of label-to-image generators
derived from semantic segmentation datasets. These method-
ologies involve modifying the original dataset to quantify
the robustness of generators against diverse sources of cor-
ruption.

When working on Cityscapes [14] (CS), we can process
the images of the validation set and produce three versions:
Corrupted-CS, Outlier-CS, and Morphological-CS. Note that
the following processes naturally extend any other semantic
segmentation dataset.

Corrupted-CS randomly adds Cityscapes objects, such
as road signs and cyclists, into the label maps. A robust
label-to-image network should be able to properly render the
additional objects that are included in its training set.

Outlier-CS adds objects that do not belong to the distribu-
tion of the original dataset. As Cityscapes is composed of
urban scenes, we add shapes of bears, deer, cows, and rocks.
With this dataset, we evaluate the capacity of the network to
generate renderings from unknown shapes.

Last, Morphological-CS corrupts the segmentation maps
by applying morphological operators on the labels. We detail
the morphological operations in Appendix D. As for CIFAR-
C [46] and Cityscapes-C [75], we study the robustness of the
network to varying intensities of perturbations of the input
images. In our case, this corresponds to increasing the size
of the structuring element of the morphological dilation.

In these three variations, we expect a robust label-to-
image translator to produce reliable and high-quality out-
puts even when perturbed by modified label maps. Hence,
we measure the quality of the generated images using the
Fréchet Inception Distance (FID). We also assess the seman-
tic segmentation performance of a pre-trained model on the
original dataset but inferring on the modified version, with
the mean Intersection over Union (mloU). This value should
remain high if the rendering conveys the semantic meaning
correctly. Corrupted label maps are available in Figure 4.

Our method generates artifacts and out-of-domain object
maps, but we claim that they are relevant to enrich training
data and robustify training. We view these perturbations of
the true label maps distributions as targeting the critical long-
tail anomalies. For instance, flying cars could be related to
car crashes in real-world images. In our training pipeline
(on Figure 2), achieving good quality on these datasets is
crucial for the subsequent training of the segmentation meth-
ods. Therefore, we use these datasets as a benchmark for
evaluating the robustness of our generator models.

The generating process of the conditional GAN is thor-
oughly explained in Appendix A. Additionally, section 5
provides a detailed account of the techniques used for gener-
ating images of the Outlier-CS and Corrupted-CS datasets.
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5. New training sets for robust segmentation

Thanks to Robusta, it is now possible to generate high-
quality data with outliers and perturbations to extend existing
segmentation datasets while limiting artifacts. The primary
goal is to harness this generated data and refine the training
process to obtain more resilient segmentation models.

To train segmentation networks, we begin with a dataset
of training examples D = {x;, yl}lfj1 of |D| pairs of images
x; € ROXHXW and label maps y; € [0, N[ *" modeled
as a realization of a joint distribution P(X,Y"). We denote
C, H, and W as the number of channels, the height, and the
width of the image, respectively, and N¢ is the number of
classes in the dataset.

As described in 3, the generation pipeline G detailed in
Figure 3 is designed to generate realistic images that corre-
spond to the input label maps y;, producing a X; image. In
this section, we aim to use G to generate a synthetic dataset
as depicted in Figure 2. We use Cityscapes as our original
training set for illustration. In section 4.2, we previously
introduced Corrupted-CS and Outlier-CS. Here, we provide
more details about their use and definition. In the following
subsections, we clarify how G generates these two sets.

Improving generalization with Corrupted-CS: To en-
hance robustness, we generate Corrupted-CS using Robusta.
First, we gather multi-dimensional masks of objects belong-
ing to a particular set of classes C. These classes may consist
of various combinations, such as traffic signs and poles, traf-
fic lights and poles, motorcycles and riders, and bicycles
and riders. The collected masks are then sorted into sets
DOl & {4911 | where each 39! is an element of the inter-
val [0, No[H#*W. All pixels of y2! except for the object’s
pixel are set to zero, whereas the object’s pixel is assigned
the label’s object value. Then, we expand D°! by applying
translations to its masks. Next, we use a mixing function to
combine the label maps of the original dataset D, creating a
new label y™* for each element i in the range [1,|D|]. The
definition of this new label is as follows:

yi = [y = 0] xy; + ¥y, with j € [1,[D]] ()

This results in a new set of label maps denoted as D‘;ix.
Finally, we combine G (Dj™) for the images and Dj™ for the

. . D
labels to create the final dataset D™* = {G(y™*), y?”‘}L:ll.

To improve the generalization of the semantic segmenta-
tion model, we enrich the original dataset D with D™, and

we keep the same training procedure.

Improving outlier detection with Outlier-CS: To en-
hance the detection of outliers, we craft Outlier-CS. We
apply the same mixing strategy as before, except that we
no longer extract known objects to construct D!, Instead,
we choose a set of outlier objects from Cityscapes, such as

bears, cows, and rocks. The shape of these instances is de-
rived from the MUAD dataset [26]. Since the outliers do not
possess labels corresponding to the Cityscapes label space,
we value them as "humans” using the aforementioned outlier
shapes.

To improve out-of-distribution detection, we can also use
the outlier labels to train the networks directly with a binary
cross-entropy (BCE) loss [15] and refer to this method as
“Robusta + BCE”. In the following, we test the efficiency of
adding this dataset for Obsnet-like [5] architectures on OOD
detection tasks.

Contrary to previous work by Ghiasi et al. [33], which
requires finely labeled object instances, with Robusta, we can
generate instances even from unknown shapes, eliminating
the need for expensive fine-grained annotations of OOD
instances. These annotations can be more expensive than
segmentation labels, especially in our scenario.

6. Experiments

We conduct various experiments to validate the effective-
ness of Robusta and our methods. One such experiment,
described in section 6.1, demonstrates that the images gener-
ated by Robusta are of comparable quality to those produced
by the state-of-the-art (SOTA) label-to-image translation.
For a more detailed discussion on this topic, please refer to
Appendix C. In addition, we assess the quality of Robusta-
generated images under different input corruptions in section
6.2. We also evaluate the impact of using Robusta-generated
data on the robustness of semantic segmentation algorithms
and OOD detection in section 6.3.

6.1. Quality of Robusta’s images

To evaluate the quality of the images generated by our
cGAN-cascade, we adopt the evaluation protocol used in pre-
vious studies on label-to-image translation [84, 101]. Specifi-
cally, we convert label maps into RGB synthetic images and
measure the FID and mloU, expressed in %. We report ex-
perimental details and exhaustive comparisons with current
SOTA methods and baselines [63,71, 84,87, ], including
OASIS [101], on multiple datasets [10, 14,57, 84, ]in Ap-
pendix C. Our experiments show that we achieve equivalent
or superior performance compared to current methods on
most datasets. We also provide qualitative assessments of the
synthesized images in Appendix G using numerous visual
examples to provide a more comprehensive evaluation.

6.2. Robustness of the cGAN cascade

We evaluate the robustness of our pipeline using the
protocol proposed in Section 4.2 on Cityscapes [14] and
ADE20K [117]. The results are summarized in Table 1 and
show that our GAN-cascade performs at least as well as
other SOTA methods on most datasets. Qualitatively, in
Figure 1, we observe that the SOTA algorithms struggle to
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Method Corrupted-CS Corrupted-ADE20K Outlier-CS Outlier-ADE20K | Morphological-CS  Morphological-ADE20K
FID| mloUT FID] mloU 1 FID| mloUt FID| mloUt | FID] mloUtT FID] mloU 1
SPADE 77.43 42.70 46.25 33.2 91.84 59.21 52.01 37.7 61.75 59.62 40.12 38.5
OASIS 76.88 41.79 45.86 44.1 90.04 62.02 67.29 47.1 51.90 62.89 39.03 48.7
Robusta Geourse 76.48 42.04 40.84 42.7 84.66 60.43 45.08 45.5 53.57 58.09 35.67 46.1
Robusta (Geoarse, Gine) | 75.27 43.31 38.08 44.6 79.48 62.78 43.21 47.3 50.60 63.37 33.91 48.8

Table 1. Comparative results for the robustness tasks presented in 4.2.

generate images when given perturbed label maps, indicat-
ing that these algorithms overfit strongly to their training
dataset and lack robustness to changes in the input data. This
highlights the importance of investigating the robustness of
image-generation algorithms.

6.3. Evaluation of the segmentation robustness

We conduct experiments over five datasets to assess the
network’s robustness to uncertainties. First, we do exper-
iments on StreetHazards [44] and BDD anomaly [44] to
evaluate the network’s ability to detect OOD classes. The
test set includes some object classes absent from the training
set. To perform this task, we trained a deep neural net-
work called Obsnet [5] using the Outlier-StreetHazards and
Outlier-BDD anomaly datasets generated by Robusta. We
provide more information on these datasets in subsection
6.3.1. Furthermore, we investigate the network’s reliability
for the aleatoric uncertainty by training a DNN on Corrupted-
CS, generated by Robusta. We then evaluate the network’s
performance on three datasets used for this task: Rainy [52]
and Foggy Cityscapes [26], and Cityscapes-C [47].

Metrics. We use several criteria to evaluate the perfor-
mance of the segmentation models. The first criterion, the
mloU, measures the predictive performance of the networks
in segmentation accuracy, as introduced by Jaccard [56]. An-
other criterion is the negative log-likelihood (NLL), which
is a proper scoring rule based on the aleatoric uncertainty,
similar to the approach described by Lakshminarayanan et
al. [60]. Additionally, we employ the expected calibration
error (ECE) [38] to evaluate the grounding of the DNN’s top-
class confidence scores. Furthermore, we assess the DNN’s
ability to detect OOD data using the AUPR, AUROC, and
the False Positive Rate at 95% recall (FPR95), as defined by
Hendrycks et al. [48]. By considering multiple metrics, we
obtain a more comprehensive and precise assessment of the
DNN’s performance in accuracy, calibration error, failure
rate, and OOD detection. Although it may be challenging to
achieve top performance on all metrics, we argue that evalu-
ating multiple metrics, as supported by research [23,80], is
more practical and convincing than optimizing for a single
metric at the potential expense of other factors.

6.3.1 Out-of-Distribution detection experiments

Datasets.
ing StreetHazards [

We conduct a study on outlier detection us-
], BDD Anomaly [44] , and Road

Anomaly [11,70]. StreetHazards is a large-scale dataset
comprising various sets of synthetic images of street scenes.
It contains 5, 125 images for training and 1, 500 test images,
with pixel-wise annotations for 13 classes in the training set.
The test set comprises 13 training classes and 250 out-of-
distribution (OOD) classes unseen in the training set. This
enables us to test the algorithm’s robustness when facing
diverse scenarios. The BDD Anomaly dataset is a subset of
the BDD [113] dataset and contains 6,688 street scenes in
the training set and 361 in the testing set. The training set
includes 17 classes, and the test set consists of these 17 train-
ing classes as well as 2 OOD classes. Finally, RoadAnomaly
contains 100 high-resolution test images of unusual dangers
encountered in real life, such as giraffes, cattle, boats, etc.
The images are associated with binary per-pixel labels for
the background and the anomalies.

Architecture. In this experiment, we employ Obsnet [5]
and DeepLabv3+ [13] with a ResNet50 [41] as back-
bone, following the experimental protocol presented in [44].
Specifically, we adopt the evaluation criteria introduced by
Hendrycks et al. [44]. Obsnet is a deep neural network
designed to detect faults, and we train it using the Outlier-
StreetHazards and Outlier-BDD Anomaly datasets generated
by Robusta. To create the new datasets, we introduce addi-
tional OOD objects labeled as “cars” to the original label
maps and use Robusta to generate the corresponding images,
as explained in Section 5. In order to evaluate Robusta’s
performance against other baselines, we also train a Binary
segmentation model (denoted BCE + Robusta) to identify
outliers using Outlier-BDD Anomaly generated by Robusta.
To ensure consistency with the other baselines, we employ
the same DeepLabv3+ segmentation model.

Baselines. For this experiment, we evaluate our algo-
rithm against several SOTA methods, including Deep Ensem-
bles [60], BatchEnsemble [ 1 10], LP-BNN [24], TRADI [25],
MIMO [39], and Obsnet [5], on epistemic uncertainty. In
addition, we include the baseline, Maximum Class Probabil-
ity (MCP), which considers the maximum probability as a
confidence score.

Results. We show in Table 2 that our method outperforms
all other methods on three out of four performance measures,
achieving SOTA results on epistemic uncertainty. Moreover,
our approach is faster than Deep Ensemble and LP-BNN, as
it only requires a single inference pass, while the others need
four. We also include results on RoadAnomaly [11,70] in

3900



StreetHazards

Method mloU+ AUROCT AUPRT FPRYS |
Baseline (MCP) [48] 53.90 86.60 6.91 35.74
TRADI [25] 52.46 87.39 6.93 38.26
Deep Ensembles [60] 55.59 87.94 8.32 30.29
MIMO [39] 55.44 87.38 6.90 32.66
BatchEnsemble [110] 56.16 88.17 7.59 32.85
LP-BNN [24] 54.50 88.33 7.18 32.61
Obsnet [5] 53.90 94.96 10.58 16.74
Obsnet + LA [5] 53.90 95.37 10.91 15.78
BCE + Robusta (Ours) 53.90 95.91 13.58 13.05
Obsnet + Robusta (Ours)  53.90 96.27 15.60 14.81
BDD Anomaly
Baseline (MCP) [48] 47.63 85.15 4.50 28.78
TRADI [25] 44.26 84.80 4.54 36.87
Deep Ensembles [60] 51.07 84.80 5.24 28.55
MIMO [39] 47.20 84.38 4.32 35.24
BatchEnsemble [110] 48.09 84.27 4.49 30.17
LP-BNN [24] 49.01 85.32 4.52 29.47
Obsnet [5] 47.63 87.66 1.01 19.50
Obsnet + LAA [5] 47.63 88.16 1.71 21.71
BCE + Robusta (Ours) 47.63 92.99 2.45 20.06
Obsnet + Robusta (Ours)  47.63 96.86 5.53 14.51

Table 2. Comparative results on the OOD task for semantic seg-
mentation. The architecture is a DeepLabv3+ based on ResNet50.

Method AUPRT FPR95| SloUgtt PPV] mFl71
Baseline (MCP) [48] 28.0 72.1 15.5 15.3 5.4
Deep Ensembles [60] 17.7 91.1 16.4 20.8 3.4
Obsnet + LAA [5] 75.4 26.7 442 52.6 45.1
BCE + Robusta (Ours) 70.3 453 48.2 57.6 48.2

Table 3. Comparative results on RoadAnomaly [70]. These
methods are trained without any OOD data.

Table 3, where we show that Robusta improves over standard
Obsnet on the component-level metrics, all defined in the
benchmark accompanying paper [11].

6.3.2 Aleatoric uncertainty experiments

The objective of our study is to evaluate the ability of DNNs
to handle aleatoric uncertainty in semantic segmentation.
We utilize Rainy [52] and Foggy Cityscapes [96], which
involve the introduction of rain or fog to the Cityscapes
validation dataset. We generate aleatoric uncertainties on the
Cityscapes validation set to create Cityscapes-C [75] with
varying levels of perturbations using different methods such
as Gaussian noise, shot noise, impulse noise, defocus blur,
frosted, glass blur, motion blur, zoom blur, snow, frost, fog,
brightness, contrast, elastic, pixelate, and JPEG. We used the
code of Hendrycks et al. [47] to generate these perturbations.

To assess the reliability of the DNNs in the presence of
aleatoric uncertainty, we measure the ECE, mloU, and NLL
in Table 4. We obtain results comparable to current meth-
ods, with Deep Ensembles performing better than the other
approaches. However, Deep Ensembles require training mul-

Cityscapes Rainy Cityscapes
mloU+ ECE| NLL| mloUt ECE| NLL/

Baseline (MCP) [48] 76.51  0.1303 -0.9456 5898  0.1395 -0.8123

Method

MIMO [39] 77.13  0.1398 -0.9516 5927 0.1436 -0.8135
BatchEnsemble [110] 7799  0.1129 -0.9472  60.29  0.1436 -0.7820
LP-BNN [24] 7739 01105 -0.9464 60.71  0.1338 -0.7891

Deep Ensembles [60] 7748  0.1274 -0.9469 59.52  0.1078 -0.8205
MCP + Robusta (Ours) ~ 78.41  0.1211 -0.9546  62.31  0.1254 -0.8382

Foggy Cityscapes Cityscapes-C
Baseline (MCP) [48] 69.89  0.1493 -0.9001  40.85 0.2242 -0.7389
MIMO [39] 7024 0.1425 -0.9014  40.73  0.2350 -0.7313
BatchEnsemble [110] 7219 0.1425 -09132 4093 02270 -0.7082
LP-BNN [24] 7239 01358 -0.9131 4347 02085 -0.7282

Deep Ensembles [60] 7143 0.1407 -0.9070 43.40 0.1912 -0.7509
MCP + Robusta (Ours) ~ 72.01  0.1438 -0.9110 4349 02497 -0.7578

Table 4. Evaluation of the influence of the quality of the training
dataset. We trained Deeplabs V3+ with ResNet101 backbones on
CS (and CS + Corrupted-CS for MCP + Robusta) and tested the
models on different corrupted variants of the original validation set.

tiple DNNs, which is more time-consuming for both training
and inference.

7. Discussions and details

A comprehensive exposition of Robusta, including its im-
plementation details, can be found in Appendices A and B.
Appendix C evaluates Robusta as a label-to-image transla-
tion model and compares its performance with other state-of-
the-art algorithms. Appendix D provides additional details
on morphology and the morphological dataset derivation
process. Extensive ablation experiments are conducted in
Appendix E to demonstrate the significance of each contribu-
tion of Robusta. Finally, Appendix F highlights the trade-off
between computational cost and performance.

8. Conclusion

In this work, we propose a novel approach to enhancing
the robustness of deep semantic segmentation networks by
generating new textures and outlier objects from existing
label maps. For best performance, we propose a new robust
label-to-image model called Robusta, which incorporates
transformers and two conditional GANs. We verify that
it is able to produce high-quality images even when asked
to generate outliers, thanks to a new robustness evaluation
framework for generative models, on which Robusta per-
forms better than current methods.

Furthermore, we demonstrate that using the datasets gen-
erated with Robusta during training helps improve the ro-
bustness of semantic segmentation algorithms. We show
significant improvements in the performance of segmen-
tation models when given perturbed inputs as well as for
out-of-distribution detection.
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