
FinderNet: A Data Augmentation Free Canonicalization aided Loop Detection
and Closure technique for Point clouds in 6-DOF separation.

Sudarshan S Harithas∗1 Gurkirat Singh∗1 Aneesh Chavan1 Sarthak Sharma1 Suraj Patni2

Chetan Arora2 Madhava Krishna1
1Robotics Research Center, IIIT Hyderabad 2IIT Delhi

Abstract
We focus on the problem of LiDAR point cloud based

loop detection (or Finding) and closure (LDC) for mobile
robots. State-of-the-art (SOTA) methods directly generate
learned embeddings from a given point cloud, require large
data augmentation, and are not robust to wide viewpoint
variations in 6 Degrees-of-Freedom (DOF). Moreover, the
absence of strong priors in an unstructured point cloud
leads to highly inaccurate LDC. In this original approach,
we propose independent roll and pitch canonicalization of
point clouds using a common dominant ground plane. We
discretize the canonicalized point clouds along the axis
perpendicular to the ground plane leads to images simi-
lar to digital elevation maps (DEMs), which expose strong
spatial priors in the scene. Our experiments show that
LDC based on learnt embeddings from such DEMs is not
only data efficient but also significantly more robust, and
generalizable than the current SOTA. We report an (aver-
age precision for loop detection, mean absolute transla-
tion/rotation error) improvement of (8.4, 16.7/5.43)% on
the KITTI08 sequence, and (11.0, 34.0/25.4)% on GPR10
sequence, over the current SOTA. To further test the ro-
bustness of our technique on point clouds in 6-DOF motion
we create and opensource a custom dataset called Lidar-
UrbanFly Dataset (LUF) which consists of point clouds ob-
tained from a LiDARmounted on a quadrotor. More details
on our website https://gsc2001.github.io/FinderNet/

1. INTRODUCTION
Loop detection and closure is a critical module in the

SLAM (Simultaneous Localization And Mapping) pipeline
to reduce accumulated drift in the estimation process. Re-
covering the closest possible match between a given query
point cloud and a pre-built database is known as loop de-
tection (or place recognition), whereas the process of es-

*Equal Contribution
This work was funded in part by grants made available to The Robotics
Research Center, IIIT Hyderabad from MathWorks India (Hyderabad).

Roll and Pitch Canonicalizer

DEM Generator

Figure 1: We observe that raw LiDAR point clouds (first row) lack
spatial structure for robust loop detection and closure (LDC). We perform
local roll and pitch canonicalization (second row), followed by discretiza-
tion along the z-axis (third row), which leads to output similar to digital
elevation maps (DEMs) and exposes rich scene structure in the input. Our
model performs LDC on such DEMs, leading to high data efficiency, ro-
bustness, and generalizability to 6-DOF viewpoint variations.

timating the relative transform between the query and the
retrieved sample is known as loop closure. Although most
components of our pipeline apply to generic point clouds,
we assume LiDAR is the primary sensing modality.

The techniques are broadly split into two styles [31] :
(1) Loop Detection These approaches typically use place
recognition methods [23, 26, 28, 33] to detect loops and
employ traditional point cloud registration algorithms such
as [30, 34] to estimate the relative pose between the query
and retrieved point clouds. (2) Loop Detection and Closure

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8399

https://gsc2001.github.io/FinderNet/

Methods such as [3, 4, 20] perform place recognition and
estimate the relative pose between the query and retrieved
point cloud in an end-to-end pipeline without an external
method to register point clouds . Our approach belongs to
second category, where we detect and close loops as a part
of a single pipeline without employing external point cloud
registration.

Typically, these methods [3, 23, 26, 28, 33] either depend
upon a combination of feature aggregation and data aug-
mentation where they apply randomly sampled rigid trans-
forms to the input point clouds to achieve viewpoint invari-
ance or perform LDC through overlap estimation. Such a
training procedure does not generalize to wide viewpoint
variations. We take an original approach where a combi-
nation of canonical representations and differentiable latent
space alignment is used to geometrically constrain view in-
variance into the system. Such a technique leads to SOTA
performance on multiple datasets.

The cornerstone of our efforts is a Roll and Pitch (RP)
canonicalizer and a Differentiable Yaw Transformer (DYT).
The RP Canonicalizer makes use of the dominant ground
plane hypothesis (commonly encountered in autonomous
driving and drone applications) [4, 13, 15, 16, 20] to com-
pensate for the roll and pitch between two point clouds. The
roll and pitch canonicalized point clouds are converted into
a Digital Elevation Map (DEM), a visual explanation of the
process is given in Fig. 1. We further develop a Differ-
entiable Yaw Transformer (DYT) that operates on the latent
feature embeddings of the DEM to achieve yaw invariance,
and provide viewpoint invariant loop detection with 6-DOF
(SE(3)) relative motion. This is in contrast to existing
techniques focusing only on yaw rotation [4, 12, 13, 29].
Contributions: (1) Novel Pipeline: Instead of directly op-
erating on the raw point clouds that inherently lack struc-
ture, we convert the point clouds into a regularly spaced
DEM via a roll and pitch canonicalizer (Section 3.1) with
only the yaw to further deal with. The canonicalized DEM
representation provides a structure that CNN backbones can
readily process, bypassing equivariance issues that typically
plague point cloud representations. The proposed frame-
work goes beyond SOTA on a number of public datasets
such as KITTI [9], and GPR [32] on established perfor-
mance metrics for LDC. Specifically, the proposed frame-
work is the best performing on 6-DOF pose recovery and it
outperforms most prior art on the SE(2) LDC task [4, 13].
(2) Achieving view-invariance through Canonicaliza-
tion & Differentiable Alignment Unlike previous methods
that approach LDC through feature aggregation [3,23,28,33]
or overlap estimation [4, 17], we approach LDC through a
canonicalization and differentiable alignment procedure ,
that enables us to geometrically constrain view invariance
into the network and enables training with no data aug-
mentation, and achieves SOTA results on multiple datasets.

Method Venue VI NDA LD LDC

OverlapNet [4] RSS’20 ✗ ✗ ✓ ✓(Yaw)
ScanContext [13] IROS’18 ✗ NA ✓ ✓(Yaw)
Dcpcr [25] RAL’22 ✓ NA ✗ ✗
Retriever [26] ICRA’22 ✓ ✗ ✓ ✗
Deep compression [27] RAL’21 ✓ ✗ ✗ ✗
LCDNet [3] TRO’22 ✓ ✗ ✓ ✓
Oreos [20] IROS’19 ✗ ✗ ✓ ✓(Yaw)
PointnetVLAD [23] CVPR’18 ✓ ✗ ✓ ✗
PCAN [33] CVPR’19 ✓ ✗ ✓ ✗
SOE-Net [28] CVPR’21 ✓ ✗ ✓ ✗
DH3D [6] ECCV’20 ✓ ✗ ✓ ✓

Ours ****’23 ✓ ✓ ✓ ✓

Table 1: Acronyms: VI: 6-DOF View Invariance, NDA: No large Data
Augmentation requirement, LD: Loop Detection, LDC: Joint Loop Detec-
tion and Closure, NA: Not Applicable.

Our latent space alignment is driven by the DYT which is
a novel parameter estimation module which is used for dif-
ferentiable grid sampling. In contrast to methods such as
[4,17,20] the DYT allows us to estimates the relative yaw in
a self-supervised manner, i.e. it does not require explicit su-
pervision of the relative yaw between the two point clouds.
The DYT demonstrates a decrease of 13.33% in yaw estima-
tion error in the Kitti00 sequence and against [4]. (3) 6-DOF
recovery: Unlike previous approaches that show loop clo-
sure only as a SE(2) alignment, the proposed method re-
covers 6-DOF pose between the two candidate point clouds,
even as it precludes the need for data augmentation, exploit-
ing the inherent viewpoint invariance of the pipeline. On
LUF dataset FinderNet shows a 10% improvement in aver-
age-precision in loop detection on , 2.91% and 9.54% de-
crease in the Avergae translation error and Average rotation
error in the loop closure task against LCDNet [3] the SOTA
LDC method. Table 1 gives a conceptual comparison of our
method with contemporary techniques, where LD are meth-
ods that perform the task of loop detection and employ an
external point cloud registration method [30,34] to estimate
the relative pose. LDC are methods that jointly estimates
the loop and the relative pose through a single pipeline.
NDA is set to true (or ✓) when a method can learn with-
out data augmentation and VI are methods that can handle
SE(3) motion.

2. Related works

Handcrafted Feature Descriptors: [13, 16, 24] rely on
handcrafted feature descriptors to extract local geometric
information and aggregate it to obtain a global descrip-
tor suitable for loop detection and closure. [13, 16] as-
sume presence of a dominant ground plane to detect and
close loops. [13] follows a polar representation, where the
ground is discretized into bins by splitting in both radial
and azimuthal directions, and each bin storing the maxi-
mum height present in the vertical volume. [16] discretizes
the ground plane into rectangular cells in a Cartesian form,

8400

Figure 2: The figure demonstrates the overview of our pipeline; the two point clouds in the extreme left are the input query and database sample; the DEM
Generator (section 3.1) generates a discredited top view of the point cloud; and the DEM are further passed through the autoencoder structure (section 3.2).
The Differentiable Yaw Transformer (DYT) (section 3.3) is used for the yaw alignment, the operations within the DYT include CPC, Horizontal padding of
polar embedding, and Correlation; each of these are explained in section 3.3. The complete set of operations is shown as a single orange hexagon; the result
of these operations is a scalar yaw value, which is fed into the rotation sampler. The designed network performs loop detection (section 3.4) and closure
(section 3.5).

and each cell storing it’s point cloud density. Our repre-
sentation of DEM is a discrete Cartesian representation of
the ground plane, where each grid cell stores the maximum
height of the points present in it. However, unlike [13, 16],
we perform a complete 6-DOF estimation and loop closure.

Learning Based Approaches for Loop Detection: Point-
Net [18] proposes a neural network model that directly con-
sumes point clouds while maintaining permutation invari-
ance. PointNetVLAD [23] uses [18] and NetVLAD [1] to
generate global descriptors for place recognition. PCAN
[33] uses [18] as the backbone architecture to extract local
features and the corresponding attention maps along with
[1] for feature aggregation. However, both [23, 33] uses
PointNet as a backbone architecture, which processes each
point separately via a MLP, not capturing local neighbour-
hood information. Recently, Retriever [26] detects loops
directly in the compressed feature representation using Per-
ceiver [11] based mechanism to aggregate the local features.
All the above methods use aggregated local features, to
compute a global descriptor that is viewpoint invariant, such
methods require expensive data augmentation. We propose
a canonicalization procedure in order to explicitly enforce
viewpoint invariance and in contrast to [23, 26, 33] which
only perform loop detection, our method performs LDC.
Learning Based Approaches for LDC: LCDNet [3] pro-
poses an end-to-end trainable system, with a Unbalanced
Optimal Transport algorithm to estimate 6-DOF relative
transform between two point clouds. DH3D [6] aggregates
local features using hierarchical network to obtain global
features for loop detection. Both [3, 6] rely on an expen-
sive 6-DOF data augmentation of the input point cloud in or-
der to achieve orientation invariance. The proposed frame-
work bypasses data augmentation through explicit roll-pich
canonicalization followed by yaw alignment. Overlap-
based approaches such as OverlapNet [4] and Overlap-

Transformer [17] are trained using explicit overlap infor-
mation on range images [2]. OREOS [20] proposes two
separate branches: one for loop closure and other for loop
detection. Unlike [4, 17, 20] that only estimate the relative
yaw between the input point clouds, we estimate the full
6-DOF relative pose.

3. Methodology

Our goal is to develop a 6-DOF viewpoint invariant place
recognition framework for 3D point clouds for LDC. The
overview of our method is shown in Fig. 2. We first canon-
icalize the point cloud, and then discretize it to get a DEM
representation (Section 3.1). We use an autoencoder style
encoder-decoder network to learn the latent representation
for the DEM (Section 3.2).

To achieve yaw invariance for loop detection in the latent
space, we have designed a Differentiable Yaw Transformer
(DYT), it transforms the latent query embedding to rotation-
ally align with the latent embedding of the database sample
(Section 3.3).The output of the DYT is used for loop detec-
tion (Section 3.4). Once a loop is detected, the DEM from
the query and retrieved point clouds can be used to estimate
the relative 6-DOF relative pose for the loop closure (Sec-
tion 3.5).

3.1. DEM Generation

DEMs are digital representations of an input point cloud,
capturing the elevation of the terrain or overlaying objects.
DEMs have rich representation power, preserving the fea-
ture rich regions like edges and corners, and at the same
time can be assimilated by CNN architectures. Moreover,
unlike range images that preserve only yaw [4], DEMs pre-
serve both yaw and planar translation, making them a useful
representation for 6-DOF point cloud registration.

8401

Figure 3: The image to the extreme left shows a sample DEM latent
space in Cartesian form. The image in the center depicts the same embed-
ding in a polar form; the image to the right is the result of flipping and
concatenation operation.

Anchor Embedding Positive Sample Embedding Anchor Embedding post DYT

Figure 4: Visualization of the yaw alignment using DYT. Note that the
anchor and the positive sample are not yaw aligned initially, however post
the DYT operation the two embeddings are aligned. We show the first
channel of the feature volume as binary image for ease of visualization.

Plane Parameterization: Consider an input point cloud
Pc with its corresponding ground plane rc, and the world
ground-plane rw. We aim to align the planes rc and rw
by estimating the relative roll and pitch (RP) between them.
We center the input point cloud (Pc) and extract the ground
plane rc using RANSAC. The ground plane is parameter-
ized by (nc, Cc), where nc ∈ R3 is a unit vector per-
pendicular to the plane and Cc = {cci | i = {1...n}} ∈
Rn×3 is the set of points cci ∈ R3, s.t. cci lies on rc
and ∥cci∥ = 1. The world ground plane rw is parame-
terized similarly as (nw, Cw), where nw = [0, 0, 1] and
Cw = {cwi | i = {1...n}} ∈ Rn×3 is the set of points
cwi ∈ R3, s.t. cwi lies on rw and ∥cwi ∥ = 1. Note that the
world ground plane is not estimated through data, instead
is a constructed canonical plane of reference. The canon-
icalization for roll (α), and pitch (β) involves two steps.
First we obtain a coarse estimate of (α) and (β) by aligning
the normals nc and nw. Post that, we do a finer estimate
through Iterative Closest Point (ICP).

Coarse RP Canonicalization: Given the normals nc =
[nc,x, nc,y, nc,z] from RANSAC, and nw = [0, 0, 1], we es-
timate the relative roll α and pitch β by solving:00
1

 =

 cos(α) 0 sin(α)
sin(β) sin(α) cos(β) − cos(α) sin(β)

− cos(β) sin(α) sin(β) cos(α) cos(β)

nc,x

nc,y

nc,z

 .

The obtained closed-form solution is given as:

α = arctan

(
−nc,x

nc,z

)
,β = arctan

(
nc,y

nc,z cos(α)− nc,x sin(α)

)
Fine Grained Canonicalization with ICP: We use the
coarse estimates of α and β as described above, and refine

them using ICP (initialized with coarse estimates) as:

R(α, β) = argmin
(α,β)

||Cw −R(α, β)Cc||2

Top-view Discretization: After performing the roll and
pitch canonicalization, the top-view of the point cloud is
discretized into uniform 2D grid cells to obtain the DEM
Dc of point cloud Pc. We define a grid G of dimension
Gw × Gh, and resolution dg . Each grid cell gi ∈ G is
assigned a set of points P gi based on the resolution dg , and
given a height value hgi = max(h(p) | p ∈ P gi), where h(p)
is the height of the point p, thus converting a point cloud to
a DEM. Such a grid representation can be readily assimilated
by Deep Networks ideally suited to exploit such structural
information.
3.2. Learning The Latent Representation

We intend to use the DEMs to perform the LDC task,
and an autoencoder-decoder with bottleneck architecture is
used, where the encoder part reduces the dimensionality of
the input DEM to a lower-dimensional latent space, and the
decoder part reconstructs the original input from this latent
representation. By constraining the dimensionality of the
latent space, the model forces the encoded representation
to capture the most salient features of the input data. The
autoencoder-decoder structure further enforces the struc-
tural consistency within the latent space. We use ϕ to de-
note the embedding, and ϕ ∈ R4×125×125 and the detailed
description of our encoder-decoder architecture is given in
the supplementary.

3.3. Differentiable Yaw Transformer (DYT) for Pa-
rameterized Grid Sampling

Viewpoint invariance is an important property for robust
place recognition/loop detection. Previous methods [3, 20]
try to achieve this through data augmentation, where they
rotate an input point cloud through randomly selected ro-
tation angles. However, such methods do not generalize to
complex sequences or large changes in viewpoint. [3] ac-
knowledges that data augmentation by itself need not be
sufficient for viewpoint invariance. Therefore, we propose a
Differentiable Yaw Transformer (DYT) module that achieves
viewpoint invariance without the need for explicit data aug-
mentation. It achieves this by receiving the latent embed-
ding of anchor and positive (or negative) DEM (denoted as
ϕA, ϕp, and ϕn respectively) as its input and returning the
relative yaw denoted by ψ ∈ R at the output. Then, it ro-
tates the anchor DEM so that the relative yaw between the
anchor and positive is zero. The operations within the DYT
are detailed below.

Cartesian to Polar Conversion (CPC): Let G be a group
of rotation transformations (in SO(2)) parameterized by ψ
s.t. Tψ : Rd → Rd,∀Tψ ∈ SO(2). The canonical coor-
dinate for G are defined such that a rotation by Tψ in the

8402

Cartesian coordinates appears as a translation by ψ in the
canonical coordinates. The polar coordinate system forms
such canonical coordinates for the group of rotation trans-
formations [8, 22], and can be obtained from Cartesian co-
ordinates x : (x1, x2) as:

ρ(x) =

(
arctan

x2
x1
,
√
x21 + x22

)
. (1)

CPC is performed for each channel of the embedding tensor
ϕ, that results in an output tensor of the same size. The CPC
process is shown in the first two columns of Fig. 3

Horizontally Padding Polar Embedding: As described
above two embeddings related by a yaw rotation in the
Cartesian coordinates are related by a translation after con-
version to polar coordinates. However, if we try to estimate
translation directly, the estimation process can only corre-
late between the overlapping regions. We observe that the
horizontal axis of the polar latent embedding lies within the
range [−π, π] and is cyclic. The cyclic property allows us
to pad the embedding by copying the embedding, flipping
it (the flipped embedding will be within the range [π,−π]
), and then use the flipped version to horizontally pad the
embedding. The resulting embedding is shown in Fig. 3
(extreme right). The operation doubles the size of the la-
tent embedding to 4× 125× 250, and allows us to use full
embedding for translation estimation.

Correlation Layer: After padding the polar embedding
from the positive (negative) embedding, we try to locate an-
chor embedding in it using correlation. We implement the
layer as a convolutional layer with polar latent embedding
of the anchor as a kernel, and perform cross-correlation over
the horizontally padded polar feature volume of the posi-
tive/negative sample. This results in a 1D output of size
1 × 1 × 126. The output of the correlation layer divides
the 360 degrees of rotation into 126 bins, each of resolution
2.85 degrees (approximately). We apply softmax over the
correlation score output to convert the score vector to the
probability vector for various candidate translations. The
predicted translation is multiplied by 2.85 to convert to pre-
dicted rotation angle. Modules similar to correlation layer
have been previously used in [4], however, their setting re-
quired explicit yaw supervision, one of our contribution is
to relax this requirement by formulating a soft yaw esti-
mation as a part of the self-supervised DYT. This results
in improved performance for large view-point changes as
demonstrated by the Kitti-08 and LUF sequences in Section
5.1.

Rotation Sampler: We construct a rotation matrix Rψ ∈
SO(2) from the predicted yaw angle (ψ) as determined
from the previous step. Similar to [10], we useRψ to differ-
entiably sample from the input feature volume and produce
a warped output feature map, denoted as ϕ̂. The operation

is denoted as ⊗ in Fig. 2. Note that the operation is per-
formed on 4× 125× 125 dimensional embedding tensor in
Cartesian coordinates. Fig. 4 depicts the result of the DYT
module, it may be seen that the anchor and positive sam-
ple do not share the same orientation at the input of DYT.
However, post-DYT, they have same orientation. For sim-
plicity of illustration, we only show the first channel of the
4 × 125 × 125 tensor. The warped anchor tensor is sent to
the next module for loop detection.

3.4. Loop Detection

Our pipeline achieves rotation invariance using the RP
canonicalizer and DYT. Additionally, the difference layer
within the loop detection module provides translation in-
variance and measures the similarity between the two yaw-
aligned DEMs. A fully convolutional network (CNN) is
translation-equivariant. Our loop detection module consists
of shared CNN layers to extract features Fa ∈ RH×W×C

from the anchor and Fp/n ∈ RH×W×C features from
the positive or negative sample DEM. The difference layer
takes the two feature volumes as input and computes all
pairs absolute differences between the pixels. To implement
all pairs absolute difference we first construct a tile tensor
Ta ∈ RHW×HW×C by first reshaping Fa to aHW ×1×C
tensor, and then repeating first column in each channel by
HW times. Mathematically: ∀i ∈ {0, 1, 2, ..,H − 1} and
j ∈ {0, 1, 2, ..,W − 1}.

Ta(iW + j, k, c) = Fa(i, j, c), ∀k ∈ [0, HW − 1].

We compute Tp and Tn similarly, but additionally transpose
each channel of the tensor at the end. This is equivalent to:

Tp/n(k, iW + j, c) = Fp/n(i, j, c), ∀k ∈ [0, HW − 1].

Ta and Tp/n allow us to compute all pair difference as:
Fdiff = |Ta − Tp/n|.

The difference layer results in a feature volume Fdiff that
quantifies the shared information between the two DEMs.
Fdiff is passed through proposed CNN architecture (details
in the supplementary material), resulting in a single scalar
value indicating the distance between the two DEMs. A low
value indicates loop detection. We train the proposed loop
detection module using triplet based contrastive loss:

Ltriplet = max
(
0, d

(
ϕ̂a, ϕp

)
− d

(
ϕ̂a, ϕn

)
+ ξ

)
, (2)

where ϕ is the DEM encoding, ϕ̂ is the yaw aligned DEM
encoding, d is the distance between the two encoding com-
puted by the loop detection module, and ξ is the margin for
the triplet loss. Note that during back-propagation, the DEM
encoder receives gradient both from the MSE loss of the au-
toencoder, as well as from the above triplet loss. Whereas
the decoder is trained only using the MSE loss.

8403

3.5. Loop Closure

After performing the loop detection process, we estimate
the SE(3) rigid body transform to align the query and re-
trieved point cloud. This process is known as loop closure
(or point cloud registration). Let Pq be the query point
cloud, with pose Tw

q , centered at Oq . Let Pr be the re-
trieved point cloud, centered at origin Or with a pose Tw

r .
Refer to the loop closure block in the extreme right of Fig. 2.
Both Tw

q and Tw
r (denoted in dotted blue) are in the world

frame of reference, and are unknown. We aim to find the
relative transformation Tq

r (in solid yellow) that aligns Pq

and Pr. To estimate the relative SE(3) pose, we first es-
timate the relative SE(2) transform between Pq and Pr.
Post that, its combined with the initially estimated roll and
pitch canonicalization to obtain the SE(3) pose estimation.

To estimate the relative SE(2) transform we decode the
query and retrieved DEMs from their respective encoding.
By performing loop closure on the decoded DEM it becomes
possible to utilize FinderNet in bandwidth-constrained sce-
narios, such as collaborative SLAM, in this context, only the
compressed latent embeddings would need to be transmit-
ted and decoded at the receiver to estimate the relative pose.
Then, key-points and correspondences between the query
and retrieved DEMs is obtained using [5, 19]. The SE(2)
pose is obtained from the following optimization problem

argmin
ψ,tcqcr

∥ (R(ψ)cqcrai + tcqcr)− bi∥2. (3)

Here, ai, and bi are the corresponding points on the
query and target DEM respectively. The rotation matrix
R(ψ)cqcr ∈ SO(2) is parameterized by the yaw angle ψ
and the translation vector is denoted by tcqcr ∈ R2. The
translation vector is scaled to the metric scale using the
grid resolution dg (c.f. Top-view Discretization within Sec-
tion 3.1). The yaw angle ψ for the optimization is initial-
ized using the yaw estimates from the DYT module. Let
R(αq, βq)

q
cq and R(αr, βr)

r
cr (shown in pink in Loop Clo-

sure module of Fig. 2) be the rotation matrices that align the
query (Pq) and retrieved point cloud (Pr) to their respec-
tive roll-pitch compensated frames Oq and Or. To estimate
the SO(3) rotation matrix, we combine Rq

cq,R
cq
cr and Rq

cr:
Rq
r = Rq

cqR
cq
cr(R

r
cr)

−1.
We obtain the translation tqr by combining tcqcr and dr −

dq: where dr and dq are the distance of the LiDAR from
the estimated ground plane obtained (it is esimated along
with the ground plane parameters through RANSAC). tqr =
[tcqcr(0), t

cq
cr(1), dr − dq .

4. Datasets and Implementation Details
We use PyTorch, and train on a single NVIDIA GeForce

GTX 1080 GPU, using a batch size of 12 and ADAM [14]
as optimizer for 200 epochs for 8 hours. The learning rate

Sequence 1 Sequence 2 Sequence 3 Sequence 4

Figure 5: A glimpse of the Lidar-UrbanFly Dataset (LUF) Environment
that we created. Train Data: Sequence (1,2, 3) and Test Data Sequence 4

is initialized to 4 × 10−4 and halved every 50 epochs. A
50m×50m point cloud is converted to a linearly scaled DEM
representation of size 500× 500 pixels. The triplet margin,
k, in Eq. (2) is set to 0.75. Unlike [3, 4, 23, 28, 33], we do
not perform any augmentation on the input point clouds.

To demonstrate the ability of the DEM to expose the un-
derlying spatial structure and show the generalization of
our method across point clouds with varying densities we
choose three publicly available LiDAR datasets [?, 9, 32].
To further test the robustness of the method to 6-DOF mo-
tions we generate a synthetic dataset from a quadrotor.

(1) KITTI [9]: It consists of 11 sequences, similar to [3]
we train on 05, 06, 07, 09 and test on 00 and 08. (2) Li-
dar UrbanFly Dataset (LUF) : Using the Unreal Edi-
tor [7] we create a custom environment consisting of a
buildings, trees and uneven roads to evaluate LDC meth-
ods. The environment is scanned by a 64 channel LiDAR
mounted on a quadrotor in 6-DOF motion. We create
four such environments as shown in Fig. 5, Sequence
(1, 2, 3) are used for training and 4 for testing. (3) GPR
[32]: This dataset consists a total of 15, we use sequence
1, 2, 3, 4, 5, 6, 8, 9, 11, 12 for training and report evaluation
results on sequence 10 and 15. Similar to [3] we consider
two point clouds to form a loop when the ground truth dis-
tance between them is less than 4m. This rule allows us to
sample triplets for training, an anchor and positive pair is
formed when the distance between their poses is less than
4m, anchor and negative pair is formed when distance is
between 4m to 10m.

5. Experiments and Results

We quantitatively and qualitatively demonstrate the abil-
ity of our method in performing 6-DOF LDC in this section.
We tested our algorithm’s robustness through challenging
scenarios such as Loop Detection with a 6-DOF change in
viewpoint and Loop Closure without any initial guess. Ad-
ditionally, we integrate our pipeline with LIO-SAM [21] to
measure its real-time efficacy. Finally, we conducted a de-
tailed ablation study to test the efficacy of individual com-
ponents. For more information and demonstration please
check the supplementary.

8404

(a) GPR 15 (b) Kitti 08 (c) Kitti 00 (d) GPR 10

Figure 6: The figure depicts the recall of our method on various sequences. For each of the four sequences, the point cloud in the orange box (top left) is
the query point cloud, and the one within the green box (top right) is the top retrieved one. The point clouds in the red box (second row) are the second and
third retrieved point clouds (left to right). This results demonstrates the ability of FinderNet to learn spatial priors. Note that the top-retrieved results are
correct in all cases.

5.1. Loop Detection Results

We benchmark against LCDNet [3], PointNetVLAD [23],
PCAN [33] and OverlapNet [4] which are the SOTA deep
learning based methods for loop detection, however they
lack robustness to large view-point changes. Moreover,
they are trained with significant augmentation which lim-
its generalization. We use the official code and pre-trained
models released by the respective authors. For fairness in
comparison we retrain the model on datasets for which the
pretrained model was not available i.e the retrained models
are [3, 4, 17, 23, 28, 33] for GPR, [23, 28, 33] for Kitti, and
we retrain all models for the LUF environment. Addition-
ally, we benchmark against ScanContext [13], a handcrafted
feature based LDC method.

We employ Average Precision (AP) which is an effective
metric for evaluating loop detection [3, 4]. To measure the
Average Precision (AP), we follow Protocol 2 suggested
by [3], which is proven to be an effective benchmarking
metric. Here is a brief overview of the procedure: given a
query point cloud A, we compare it to all the point clouds
in the database B . For each pair of scans (A,Bi), we cal-
culate their distance (lower distance implies greater simi-
larity) using the method described in Section 3.4. If the
distance is less than a fixed threshold, it is considered a
loop. We then check the Euclidean distance between the
ground truth poses of the LiDAR scans; if the poses are less
than 4m apart, they are considered a true positive, while
if the distance is greater than 4m, they are considered as
false positive.By varying this fixed threshold, we obtain
multiple values of precision-recall, and its correponding re-
sults are presented in Table 2. LCDNet [3] is the SOTA
LDC method on the KITTI dataset. We observe that on
KITTI08, a challenging sequence which involves opposite
views, our performance is better than LCDNet by approx-
imately 8.4%. On the KITTI00 sequence we are second
best to SOTA (lower by approximately 1%). Similarly on
both the GPR sequences (10, 15) our method has the high-

est AP beating the closest LCDNet by approximately 11%
and 4.5% respectively. On the LUF dataset, which con-
sists of 6-DOF viewpoint changes our method outperforms
LCDNet by 10%.

Fig. 6 presents the top 3 point clouds recalled by the DEM
for a specific query to demonstrate its capability to learn
the underlying spatial structure of point clouds.This demon-
strates the ability of network to identify similar spatial struc-
tures. For example, In the GPR15 sequence, the presence of
common structural elements like trees in both the input and
recalled point clouds suggests that the underlying geometry
of point clouds has been exposed by the DEM.

5.2. Loop Closure Evaluation

In this section we compare the proposed point cloud
registration method against three categories of algorithms:
(1) Loop Detection and only yaw estmation approaches
such as ScanContext [13], OverlapNet [4] only estimate the
yaw and not the complete 6-DOF pose. (2) Loop Detec-
tion and 6-DOF Pose Estimation: LCDNet [3] is a SOTA
method in the 6-DOF LDC task and we choose to compare
against it. (3) Only 6-DOF relative pose estimation: We
compare with the SOTA point cloud registration technique
(they do not perform loop detection), TEASER++ [30]. We
also benchmark against classical method, ICP [34].

The official code open-sourced by the authors is used
to benchmark [3, 4, 13, 30] and we implement ICP using
Open3d [35]. Our experimental results are shown in Ta-
ble 3, we evaluate our method based on Average translation
error (ATE) in meters and Average Rotation Error (ARE)
in degrees. Our method has the lowest ATE on the KITTI
dataset (both the sequences), GPR10 sequence and the LUF
dataset. It also has the lowest rotation error on KITTI08,
GPR10, LUF and GPR15. On KITTI00 sequence, the error
of FinderNet is higher than LCDNet by 0.910. To improve
results, we may use outlier-resilient robust ICP formulation

Integration with LIO-SAM: We tested our pipeline’s ef-

8405

Method
KITTI GPR LUF

KITTI-00 KITTI-08 GPR-10 GPR-15 Seq-4
LCDNet [3] 0.89 0.76 0.82 0.88 0.69
OverlapNet [4] 0.61 0.22 0.75 0.57 NA
PointNetVLAD [23] 0.40 0.39 0.50 0.54 0.67
PCAN [33] 0.46 0.20 0.39 0.20 0.58
ScanContext [13] 0.49 0.20 0.66 0.62 NA
SOE-Net [28] 0.52 0.47 0.74 0.73 0.60
OverlapTransformer [17] 0.68 0.27 0.76 0.69 NA
Ours 0.88 0.84 0.91 0.92 0.76

Table 2: AP Comparison for loop detection. NA: Not applicable as [4]
and [13] are only for SE(2) motions.

Method
KITTI GPR LUF

KITTI-00 KITTI-08 GPR-10 GPR-15 Seq-4
LCDNet [3] 0.77/1.07 1.62/3.13 1.44/1.14 0.50/4.81 1.82/38.86
OverlapNet* [4] −/3.6 −/65.29 −/7.85 −/6.25 -
Teaser++ [30] 2.93/16.13 3.24/28.98 2.68/16.87 2.47/20.34 2.05/44.12
ScanContext* [13] −/1.89 −/3.20 −/4.37 −/4.26 -
ICP [34] 2.23/9.12 2.31/161.16 2.32/7.81 2.87/8.36 2.15/85.24
Ours 0.72/1.98 1.35/2.96 0.95/0.85 0.82/1.14 1.78/35.15

Table 3: Point Cloud Registration Comparison with SOTA. Result for-
mat: TE(meters)/RE(degrees). “*” are algorithms that only estimate yaw,
and not directly comparable with our 6-DOF method. “-” indicates not
applicable as [4] and [13] are only for SE(2) motions.

ficacy by integrating it with LIO-SAM, a state-of-the-art
LiDAR Inertial SLAM method. LIO-SAM is a method that
utilizes a factor graph based backend optimization, and has
been proven to provide reliable state estimates. The inte-
gration of Lio-SAM and FinderNet has been tested on the
challenging Kitti08 sequence. This sequence presents sig-
nificant view-point changes, including opposite side (1800)
and 900 shifts. The results, depicted in Figure 7, demon-
strate that employing FinderNet results in a 16% reduction
in RMSE compared to the LIO-SAM’s LDC (L2 distance
based) [21]. Refer to the supplementary mate- rial for the
implementation details and additional statistics.

Similar to OverlapNet [4] ScanContext [13] we utilize
the geometry of the factor graph for the LDC task, for ev-
ery new state xi+1 added to the factor graph a local area of
15m is searched and the closest subset of possible matches
is recovered. Our pipeline robustly estimates a viewpoint
invariant loop from these initial set of matches. We mea-
sure the distance (as explained in Section 3.5) between the
query all the point clouds in the subset, if the sample with
the closest distance is lesser than a fixed threshold it is con-
sidered as a loop and a new link would be added into the
graph for optimization. The results are depicted in Figure 7,
it demonstrates that employing FinderNet results in a 16%
reduction in RMSE compared to the LIO-SAM’s LDC (L2
distance-based) [21]. Refer to the supplementary material
for the details of experiments.

Ablation Study: To evaluate the performance of RP
Canonicalizer and DYT, we conducted ablation studies. The
presence of the RP-Canonicalizer provided two critical ad-
vantages. Firstly, it allowed our method to operate on point
clouds in 6-DOF motion, as demonstrated in the LDC results
on LUF dataset (Tab. 2 and Tab. 3). Secondly, in the ab-

Figure 7: The figure depicts the translation error obtained by integrat-
ing multiple LDC methods with LIO-SAM [21] on kitti-08 sequences. The
RMSE of translation error for the total trajectory without LDC (right) is
48.79m, if Euclidean Distance based LDC is used (full LIO-SAM center
image) an RMSE of 35.69m is observed. However, integrating Finder-
Net (left) the RMSE reduces to 29.96m. The dashed line represents the
ground truth trajectory. Note: This plot depcits the top view of the trajec-
tory where the drift in the z-axis (perpendicular to the ground plane) is not
visible. However, the translation error is a function of all the three axis (x,
y and z) and is shown as an intensity plot.

sence of the canonicalizer, we had to rely on methods such
as [30, 34] to estimate the 6-DOF relative pose. However,
we observed from Tab. 3 our loop closure pipeline provided
improved accuracy over [30, 34]. Furthermore, we inde-
pendently study the performance of the RP-Canonicalizer,
we record that the Coarse RP Canonicalizer had an error of
3.249/4.1582 (R/P) degrees, while the fine alignment had an
error of 1.2598/1.352 (R/P) degrees.

To analyze the importance of the DYT, we replaced it
with the Spatial Transformer [10], which predicts the pa-
rameters for an affine transform. However, we observed
that such a network led to poor performance and an AP
of 0.0551, 0.0136, and 0.0818 for the Kitti-00 [9], LUF,
and GPR [32] datasets, respectively (the AP values for DYT
based pipeline is shown in Table. 2). The DYT was able to
estimates yaw with an error of 3.12 degrees.

A detailed explanation of the experimental procedure,
and additional results related to the entire ablation study is
available in the supplementary material.

6. Conclusion and Future Work

We develop a novel method for 6-DOF LDC for point
clouds . Our approach utilizes canonicalization and DYT to
achieve viewpoint invariance for large rotation angles. Fur-
thermore, unlike the previous works our method does not
require data-augmentation for training. FinderNet demon-
strates significant improvement over SOTA on both real-
world and simulated datasets. In future, we would like to
perform resilient LDC on dynamic scenes.

8406

References
[1] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pa-

jdla, and Josef Sivic. Netvlad: Cnn architecture for weakly
supervised place recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 5297–5307, 2016.

[2] Igor Bogoslavskyi and Cyrill Stachniss. Fast range image-
based segmentation of sparse 3d laser scans for online op-
eration. In 2016 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 163–169. IEEE,
2016.

[3] Daniele Cattaneo, Matteo Vaghi, and Abhinav Valada. Lcd-
net: Deep loop closure detection and point cloud registration
for lidar slam. IEEE Transactions on Robotics, 2022.

[4] X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A.
Haag, J. Behley, and C. Stachniss. OverlapNet: Loop Clos-
ing for LiDAR-based SLAM. In Proceedings of Robotics:
Science and Systems (RSS), 2020.

[5] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pages
224–236, 2018.

[6] Juan Du, Rui Wang, and Daniel Cremers. Dh3d: Deep hi-
erarchical 3d descriptors for robust large-scale 6dof relocal-
ization. In European Conference on Computer Vision, pages
744–762. Springer, 2020.

[7] Epic Games. Unreal engine.
[8] Carlos Esteves, Christine Allen-Blanchette, Xiaowei Zhou,

and Kostas Daniilidis. Polar transformer networks. arXiv
preprint arXiv:1709.01889, 2017.

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE conference on computer vision and pat-
tern recognition, pages 3354–3361. IEEE, 2012.

[10] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.
Spatial transformer networks. Advances in neural informa-
tion processing systems, 28, 2015.

[11] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals,
Andrew Zisserman, and Joao Carreira. Perceiver: General
perception with iterative attention. In International confer-
ence on machine learning, pages 4651–4664. PMLR, 2021.

[12] Giseop Kim, Sunwook Choi, and Ayoung Kim. Scan con-
text++: Structural place recognition robust to rotation and
lateral variations in urban environments. IEEE Transactions
on Robotics, 2021.

[13] Giseop Kim and Ayoung Kim. Scan context: Egocentric
spatial descriptor for place recognition within 3d point cloud
map. In 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 4802–4809. IEEE,
2018.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[15] Kok-Lim Low. Linear least-squares optimization for point-
to-plane icp surface registration. Chapel Hill, University of
North Carolina, 4(10):1–3, 2004.

[16] Lun Luo, Si-Yuan Cao, Bin Han, Hui-Liang Shen, and
Junwei Li. Bvmatch: Lidar-based place recognition using
bird’s-eye view images. IEEE Robotics and Automation Let-
ters, 6(3):6076–6083, 2021.

[17] Junyi Ma, Jun Zhang, Jintao Xu, Rui Ai, Weihao Gu, and
Xieyuanli Chen. Overlaptransformer: An efficient and yaw-
angle-invariant transformer network for lidar-based place
recognition. IEEE Robotics and Automation Letters, 2022.

[18] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017.

[19] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature
matching with graph neural networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 4938–4947, 2020.

[20] Lukas Schaupp, Mathias Bürki, Renaud Dubé, Roland Sieg-
wart, and Cesar Cadena. Oreos: Oriented recognition of 3d
point clouds in outdoor scenarios. In 2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), pages 3255–3261. IEEE, 2019.

[21] Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang,
Carlo Ratti, and Daniela Rus. Lio-sam: Tightly-coupled li-
dar inertial odometry via smoothing and mapping. In 2020
IEEE/RSJ international conference on intelligent robots and
systems (IROS), pages 5135–5142. IEEE, 2020.

[22] Kai Sheng Tai, Peter Bailis, and Gregory Valiant. Equivari-
ant transformer networks. In International Conference on
Machine Learning, pages 6086–6095. PMLR, 2019.

[23] Mikaela Angelina Uy and Gim Hee Lee. Pointnetvlad: Deep
point cloud based retrieval for large-scale place recognition.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4470–4479, 2018.

[24] Ying Wang, Zezhou Sun, Cheng-Zhong Xu, Sanjay E Sarma,
Jian Yang, and Hui Kong. Lidar iris for loop-closure detec-
tion. In 2020 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 5769–5775. IEEE,
2020.

[25] Louis Wiesmann, Tiziano Guadagnino, Ignacio Vizzo, Gior-
gio Grisetti, Jens Behley, and Cyrill Stachniss. Dcpcr:
Deep compressed point cloud registration in large-scale out-
door environments. IEEE Robotics and Automation Letters,
7(3):6327–6334, 2022.

[26] Louis Wiesmann, Rodrigo Marcuzzi, Cyrill Stachniss, and
Jens Behley. Retriever: Point cloud retrieval in compressed
3d maps. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2022.

[27] Louis Wiesmann, Andres Milioto, Xieyuanli Chen, Cyrill
Stachniss, and Jens Behley. Deep compression for dense
point cloud maps. IEEE Robotics and Automation Letters,
6(2):2060–2067, 2021.

[28] Yan Xia, Yusheng Xu, Shuang Li, Rui Wang, Juan Du,
Daniel Cremers, and Uwe Stilla. Soe-net: A self-attention
and orientation encoding network for point cloud based place
recognition. In Proceedings of the IEEE/CVF Conference

8407

on computer vision and pattern recognition, pages 11348–
11357, 2021.

[29] Xuecheng Xu, Huan Yin, Zexi Chen, Yuehua Li, Yue
Wang, and Rong Xiong. Disco: Differentiable scan con-
text with orientation. IEEE Robotics and Automation Letters,
6(2):2791–2798, 2021.

[30] H. Yang, J. Shi, and L. Carlone. TEASER: Fast and Certifi-
able Point Cloud Registration. IEEE Trans. Robotics, 2020.

[31] Huan Yin, Xuecheng Xu, Sha Lu, Xieyuanli Chen, Rong
Xiong, Shaojie Shen, Cyrill Stachniss, and Yue Wang.
A survey on global lidar localization. arXiv preprint
arXiv:2302.07433, 2023.

[32] Peng Yin, Shiqi Zhao, Ruohai Ge, Ivan Cisneros, Ruijie
Fu, Ji Zhang, Howie Choset, and Sebastian Scherer. Alita:
A large-scale incremental dataset for long-term autonomy.
arXiv preprint arXiv:2205.10737, 2022.

[33] Wenxiao Zhang and Chunxia Xiao. Pcan: 3d attention map
learning using contextual information for point cloud based
retrieval. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12436–
12445, 2019.

[34] Zhengyou Zhang. Iterative point matching for registration
of free-form curves and surfaces. International journal of
computer vision, 13(2):119–152, 1994.

[35] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d:
A modern library for 3d data processing. arXiv preprint
arXiv:1801.09847, 2018.

8408

