
Improving Graph Networks through Selection-based Convolution

David Hart
East Carolina University

hartda23@ecu.edu

Bryan Morse
Brigham Young University

morse@cs.byu.edu

Abstract

Graph Convolutional Networks (GCNs) provide a gen-
eral framework that can learn in a variety of data domains,
such as 3D geometry, social networks, and chemical struc-
tures. GCNs, however, often ignore intrinsic relationships
among nodes in the graph, and these relationships need to
be learned indirectly during the training process through
mechanisms such as attention or local-kernel approxima-
tion. This paper introduces selection-based graph convolu-
tion, a method for preserving these intrinsic relationships
within the graph convolution operator which provides im-
proved performance over attention-based counterparts on
various tasks. We demonstrate the effectiveness of selec-
tion to improve the performance of many types of GCNs
on tasks such as spatial graph classification. Furthermore,
we demonstrate the ability to improve state-of-the-art graph
networks for road traffic estimation and molecular property
prediction.

1. Introduction
Graph Neural Networks (GNNs) have shown incredible

power to learn with irregular data that can be represented
with graph structures. Early on, spectral methods were used
to learn with these graphs [6,9]. Later, Graph Convolutional
Networks (GCNs) were introduced, which employ simple
neighborhood aggregation functions [19, 23, 31]. These al-
lowed for building multi-layer networks similar to preva-
lent 2D image convolutional networks. Common meth-
ods use attention or other metrics to determine how much
to weight incoming node features during an aggregation
step [5, 43, 44]. Some even use multi-layer perceptrons
within the aggregation steps themselves [8, 45, 51].

Because of the generality of GCNs, they are used for a
large variety of data domains, including 3D geometry, social
networks, and chemical structures. This generality, how-
ever, makes it difficult to represent certain kinds of infor-
mation intrinsically in the graph. For example, points in 3D
data have natural spatial relationships relative to each other
(above, below, in front of, etc.), but this spatiality cannot be

Learned Weight

3

2

1

Learned Weights

GCN SelectionGCN

Figure 1. In Graph Convolutional Networks (left), a single learned
weight matrix or function is applied to all nodes during the aggre-
gation step, using fixed or learned edge weights between 0 and 1.
In contrast, Selection-based Graph Convolutional Networks (right)
partition the graph edges into multiple groups to allow different
weights to be applied to different kinds of edges at each channel
of the node features.

represented in the graph structure itself. Instead, this infor-
mation is represented with positional encodings that could
be included with the node features, and the network has
to learn the spatial relationships indirectly. Alternatively,
a specially designed graph network must be used to approx-
imate local kernels around nodes in 3D space [4,12,32]. As
another example, many graphs contain data where it would
be beneficial to have different kinds of edges for connec-
tions to different kinds of data, such as distinguishing spa-
tial dimensions from the temporal features [24] or repre-
senting different bond types in molecules [50].

This paper explores the possibility of maintaining these
intrinsic relationships through the process of selection-
based convolution, which was introduced for images
in [20]. In a regular graph convolution, a single learned
weight matrix or function is applied to all nodes during the
aggregation step. Fixed or learned edge weights may deter-
mine the amount of influence a node has during the aggre-
gation, but this is limited to a single value in the range [0, 1]
for each target node. In contrast, in selection-based convo-
lution, the graph edges are partitioned into multiple groups
to allow different weights to be applied to different kinds of
edges without breaking the permutation-invariant constraint

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1794

of graph aggregation operations. Unlike traditional edge
weights, these weights are applied per channel on node fea-
tures and can have any real-numbered value, including neg-
ative ones. This gives the network more expressive power
in solving graph tasks. The differences between regular and
selection-based graph convolution are illustrated in Fig. 1.

In [20], it was shown that graphs could maintain spatial-
relationship information by use of a particular selection
function, which is used for preprocessing the graph and par-
titioning edges into multiple adjacency matrices. This se-
lection function matched each edge to the closest cardinal
or ordinal direction, thus maintaining a structure similar to
a 3× 3 convolution for images. This approach was used to
perform convolution in the 2D domain for irregular image
types, such as those with discontinuities caused by projec-
tion or arbitrary domain limitations. In this work, by com-
parison, we generalize that approach to different kinds of
spatial graph data, as well as explore other graph-based rep-
resentations that benefit from selection-based convolution.

Previous research has proposed adding relationship in-
formation to graph convolutional networks, specifically for
knowledge graphs [7,38], but partitioning edges into groups
using a selection function is specific to the data, not to
the network architecture that is used. Thus, we show that
selection can improve the performance of specific tasks re-
gardless of the kind of graph network. Those tasks include
situations where spatial or other attribute information may
be available, and we present possible selection functions for
each kind of data. Additionally, we demonstrate how to in-
corporate selection into common network designs. We com-
pare our results to common attention-based methods and
show that selection can have superior performance while
using fewer parameters. Finally, we show the effectiveness
of our results by improving the performance of state-of-the-
art graph convolutional networks. Specifically, we incor-
porate selection into TGCN [54], a recurrent network de-
signed for traffic prediction, and DimeNet [16], a GCN de-
signed specifically for analyzing molecules and predicting
their quantum properties.

In summary, our contributions are as follows:

• We demonstrate how to incorporate selection into
many common graph network designs.

• We propose selection functions that incorporate direc-
tional, distance, and other attribute information into
graph convolutions.

• We demonstrate the ability of selection to improve the
performance of many graph networks and outperform
attention-based counterparts on various tasks.

• We show that selection improves the performance of
state-of-the-art GCNs on tasks such as road traffic es-
timation and molecular property prediction.

2. Related Work
2.1. Graph Convolutional Networks

Graph Convolutional Networks using deep learning were
first introduced by Kipf et al. [23] with a basic learned
weight multiplier during the aggregation step. Many meth-
ods build on this technique through improving the mes-
sage passing system. These techniques incorporate higher-
order aggregations [19, 31], use attention-based approaches
[5, 43, 44], and utilize MLPs within the aggregation func-
tion [8, 45, 51]. For a survey and overview of Graph Neural
Network techniques, see [47].

Of particular interest to our work are Relational and
Selection-based Networks. Relational Graph Convolu-
tion [38] incorporated known node relationships into the
aggregation step of the convolution for knowledge-graph
tasks. This allowed the network to assign different weights
to each relation type. Other methods have improved this
aggregation [7] and used it for various applications [11,24].
SelectionConv [20, 21] used a formulation similar to [38],
but specifically applied the graph networks to image and
surface data by determining relationships (i.e., directions)
using a selection function as described further in Sec. 3.

2.2. Common Graph Network Tasks

In this work we demonstrate our method applied to a va-
riety of graph-based problems. We summarize here relevant
research on each such task.

Spatial Graph Classification
3D mesh and point-cloud classification is a common

task for graph networks. PointNet [33] was a foundational
work for using multi-layer perceptrons to learn on point
clouds, and was further expanded in [34]. Wang et al. [45]
achieve state-of-the-art performance by dynamically build-
ing a graph from point clouds based on feature values at
each layer of the network. More recently, many have ad-
dressed the need for an anisotropic convolution that ap-
proximates a local kernel similar to 2D CNNs [4, 12, 32].
Other researchers have focused on using attention mech-
anisms and transformers within spatial graphs and point
clouds [25, 35, 53].

Traffic Prediction
Since early in the age of deep learning, the task of road

traffic prediction has been approached using neural net-
works [29, 46]. Many have proposed using recurrent net-
works to handle the temporal nature of the data [2, 27, 54]
while others use explicit temporal convolutions [18,52]. At-
tention is also used to increase performance [1,18]. For this
work, we use a spatio-temporal network called TGCN [54].
This method uses a recurrent network to learn over time
steps, while using a GCN as an aggregator over the spatial

1795

information. For a survey of traffic prediction techniques,
see [22].

Molecular Property Prediction
Many chemistry datasets map naturally to a graph struc-

ture, whether it be representing protein structures as in the
PPI dataset [56] or molecules as in the QM9 dataset [50].
Gilmer et al. [17] were one of the first to introduce a mes-
sage passing scheme designed specifically for molecules.
Schutt et al. [39] proposed a continuous filter space for de-
scribing properties such as energy throughout the molecule.
DimeNet [15, 16] uses radial and spherical basis functions
to more accurately capture direction and angle between the
atoms, with further improvements made in [14]. Rotation
and translation equivariant graph neural networks have also
been used [3, 40] with current state-of-the-art results using
spherical message passing [28].

3. Selection in Graph Convolution
As introduced in [20], selection-based convolution par-

titions the edges of a graph based on relationships between
adjacent nodes. Edges are assigned to an individual parti-
tion by a selection function designed for a specific problem
domain. The partition an edge is assigned to is called its
selection. These selections are then used as the basis for
a set of unique learned weights. Thus, node features are
aggregated with different learned weights according to the
assigned selection of their connecting edges.

As a simple illustration of why one would want to incor-
porate selection into a network, consider the task of graph
classification on MNIST Superpixels [30]. This dataset
takes images from the original MNIST dataset [10] and rep-
resents them as superpixel regions. A single node is used to
represent each region, and nearby nodes are connected to-
gether as shown in Fig. 2. Each node contains a binary label
(0 for black, 1 for white) and the position of the centroid of
the region. The desired output is the digit (0 through 9)
represented in the original image.

To solve this task, a standard GCN could be designed
that takes as input the label and position of each node.
As demonstrated later in this section, most kinds of GCNs
would perform poorly on this task since they perform a
naive aggregation across all nearby nodes. Even though
position is included as input, there is no intrinsic under-
standing of locations in the network. In comparison, using
a selection-based approach, positional relationships could
be preserved during the convolution. This would be done
by preprocessing the edges based on the direction that they
feed into the source node. One partition could contain all
the edges coming from the left, another all the edges com-
ing from the bottom right, etc. By giving those different
kinds of edges different learned weights, the directional re-
lationship between nodes is preserved during the convolu-

Original Image Superpixel Graph

Figure 2. Example superpixel graph. Regions of similar pixels are
grouped together and represent a single node in the graph. Nearby
nodes are connected to each other. Our selection function then
partitions edges based on their closest cardinal or ordinal direction.

tion. This is represented by the different edge colors shown
on the right side of Fig. 2.

Though this is a simple example, there are many cases
where selection naturally fits into a graph problem. In order
to use selection-based graph convolution, the graph network
that is used for the task needs to employ selection informa-
tion. We now demonstrate how to augment many common
graph convolution operators to include selection informa-
tion.

3.1. Selection-based GCNs

The primary way to augment a GCN to incorporate se-
lection is to multiply incoming node features by unique
learned weights during the aggregation step. For example,
consider the common message passing system used in [31],
which is

x′
i = Waxi +Wb

∑
j∈N (i)

xj (1)

where xi is the vector of source features for node i, each xj

is the target feature vector for corresponding node j in the
neighborhood N (i), and x′

i is the resulting feature vector at
the source node for the next layer. The weights Wa and Wb

are learned during the training process. Note in this form
that all neighboring nodes j ∈ N (i) are treated identically.

To add selection information to this convolution layer,
we first define a selection function σ(i, j) that assigns the
edge between node i and adjacent node j to one of a set of
disjoint groups based on properties relevant to the problem.
We denote the set of all possible selection values as S =
{0, 1, 2, ..., smax} such that σ(i, j) = s ∈ S. Once these
are defined, we can modify the graph network to associate
learned weights to specific selection groups and complete
an additional summation across selections. This updates our
message passing system to be

1796

x′
i = Waxi +Wb

∑
s∈S

Ws

∑
j∈Ns(i)

xj (2)

where Ws is a learned weight for each selection s in the
set S of all possible selections, and the neighborhood N (i)
is partitioned into multiple selection-based neighborhoods
Ns(i) based on each selection s. Thus, selection weights
Ws are applied selectively to the nodes in Ns(i) first before
they are aggregated and multiplied by Wb.

In general, the message passing scheme for all
convolution-based graph networks [13] can be written as

x′
i = γΘ

(
xi,□j∈N (i) ϕΘ (xi,xj , ej,i)

)
(3)

where ej,i is a possible edge weight, γΘ and ϕΘ are dif-
ferentiable functions with possible learned weights, and □
denotes a differentiable and permutation-invariant aggrega-
tion function such as sum, mean, or max. To incorporate se-
lection, we use the same summation over selection weights
as in Eq. 2. A selection-based message passing scheme is
thus

x′
i = γΘ

(
xi,
∑
s∈S

□j∈Ns(i) ϕΘ (xi,Wsxj , ej,i)

)
(4)

which modifies the original message passing scheme in
Eq. 3 to include aggregation across selection without loss
of generality.

Note that these selection weights are different from edge
weights that are sometimes included in graphs. This is
because edge weights are usually a single value between
0 and 1 describing how much influence the node should
have during an aggregation, whereas selection weights are
learned, can be positive or negative, and apply the weight
per channel. This provides a nonlinear piecewise aggrega-
tion that has more expressive power than fixed or learned
edge weights.

To illustrate this approach, we add selection to multi-
ple graph convolutional networks and test their performance
on the MNIST Superpixel [30] classification task described
previously. For the regular graph networks, the input in-
cludes both the label and position of each node. For the
selection-based graph networks, node position is used to
process the selections, but only the node labels are given
as input to the network. We use an 8-way directional se-
lection function that assigns edges based on the best align-
ment of the spatial relationship between the superpixels and
the eight cardinal/ordinal directions (or zero if extremely
close to the connected node) as described in more detail in
Sec. 4.1.

We compare performance of various baseline GCNs to
various selection-based GCNs. We use the naming conven-
tions of PyTorch Geometric [13] for each type of convo-
lution and denote their selection-based enhancements with

0 10 20 30 40 50
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1
-S

co
re

SelGCN(x)
SelGraphConv(x)
SelSAGEConv(x)
SAGEConv(x,pos)
GCN(x,pos)
GraphConv(x,pos)

Figure 3. Performance of various networks on MNIST Superpix-
els [30]. The regular networks had both the label (x) and the po-
sition (pos) information, while the selection-based networks only
had the label as input and used position only for preprocessing the
selections. Note that the selection-based networks perform better
than their regular counterparts even though they feed less informa-
tion into the network.

“Sel”. This comparison is shown in Fig. 3. Additional re-
sults are presented in Sec. 5.1.

As can be seen in this simple example, adding selection
to these networks gives them superior performance. Specif-
ically, note how a network such as GCNConv [23] performs
poorly on this task, but its selection-equivalent (SelGCN-
Conv) performs well. In Sec. 5.1, we show that selection-
based network performance is comparable to state-of-the art
approaches such as [45] despite omitting explicit position
information.

3.2. Why assigned selection over learned attention?

The description of selection may remind readers of
attention-based graph networks such as GAT [44]. The
multiple selection weights are similar to the multiple heads
in an attention-based network, the main difference being
that selection weights are assigned while attention heads
are learned. So what benefit does a predetermined selec-
tion have over a modifiable attention? While attention may
perform better when given general graph structures to work
with, if the graph has inherent properties that are easy to
understand and mathematically define, selection may be
preferable to attention because it more directly incorporates
the intuition that we often hope attention mechanisms will
eventually learn.

Selection can perform similarly or superior to attention-
based networks while having fewer parameters.

A single learned selection weight can be thought of as
having a similar number of parameters to a single head on
a multi-headed attention framework. Attention networks,

1797

however, often concatenate features and add additional lin-
ear layers to handle the aggregation of the learned features.
Thus, selection-based networks generally take less memory
than their attention-based counterparts, but this reduction of
parameters does not mean a reduction in performance. For
example, as we will show in Sec. 5.2, our selection-based
traffic-prediction networks outperform attention-based net-
works while using fewer parameters.

Selection can be included in complex network designs
that attention cannot.

Attention for graphs is designed to look at properties of
node features. In comparison, selection functions can be
designed to look at node features, edge features, or even
groups of nodes together and can be added to existing net-
works with just a few lines of code (which are provided in
the supplemental material). For example, DimeNet [16] is a
complex graph network that is designed for molecule clas-
sification and operates on groups of edge and even angles
between triplets of atoms. It would be quite difficult to in-
corporate attention into such a framework, but in Sec. 5.3
we will show that it is simple to add selection and improve
the performance on this network.

4. Selection Functions for Graphs
In our previous example, we used an 8-directional selec-

tion function to enforce spatial relationships between nodes
in a graph, but selection can be generalized to work with
any graph data given a properly-designed selection func-
tion. We now explain and generalize directional selection
and demonstrate possible selection functions for various
types of graph data.

4.1. Directional Selections

Given an edge between two nodes in a graph, the original
selection function presented in [20] determines the cardi-
nal/ordinal direction that the edge most closely aligns with.
This can be mathematically written as

σ(i, j) =

0 if ∥xj − xi∥ < ϵ

argmax
k

Dk · (xj − xi) otherwise (5)

where xi and xj are the spatial coordinates of nodes i and
j and Dk is list of the unit vectors for the 8 different direc-
tions of interest. If we are working with 2D graph data, we
can use this same selection function, but since we are not re-
stricted like [20] to match the 3 × 3 convolution kernels of
images, we can use any set of unit vectors that are equally
spaced by angle. Thus, we can include more or fewer di-
rectional vectors if desired. We show the results of such
adjustments in Sec. 5.1.

We can extend this selection function to work with 3D
data by expanding the list Dk accordingly. One possible

Figure 4. The 26 vectors representing the different directions of
interest in a 3D selection function. The vectors are normalized
during selection calculations.

formulation is to take the unit vectors formed by all combi-
nations of -1, 0, and 1 for each dimension, giving 26 vec-
tors that align with the various faces, edges, and corners
of a cube, as shown in Fig. 4. (We exclude the null vec-
tor [0, 0, 0] and account for this explicitly in Eq. 5.) Again,
any set of equally-spaced unit vectors could theoretically
be used, but we empirically find this to be an effective set
as demonstrated in Sec. 5.1.

Limitations of Directional Selections
As often pointed out in related work [19, 33], 3D data

usually does not maintain a canonical orientation between
samples in the dataset. Because of the ambiguous rota-
tion, directional selections would be ineffective in such a
case without using techniques as such learned data align-
ment [33]. Thus, we specifically experiment on datasets
where a consistent global orientation exists. Our method
could also be applied to datasets where a local orientation
exists for each node, such as on surfaces or other manifolds.

4.2. Distance Selections

In addition to the spatial direction associated with in-
coming edges, some tasks may be sensitive to the distance
between the target and source nodes. In the task of road
traffic prediction, for example, one would expect during a
particular time step that nearby nodes would have greater
effect on local traffic than distant nodes. Distances are often
used to inform edge weights in traffic datasets [27], but this
simply dilutes messages in most aggregation schemes, and
distances are otherwise not accounted for. A selection func-
tion provides more expressive depth to the GCN through its
piecewise aggregation of learned weights. This creates a
nonlinear function over distance.

One possible formulation of a distance selection function
is to bin distances of similar value, forming various equiv-
alence classes. Mathematically, this would have the form

σ(i, j) =

⌈
b

√
(xj − xi)2

dmax

⌉
(6)

where b is the number of desired bins and dmax is the maxi-
mum distance between nodes in the graph. Note that nodes

1798

0 1 2 3

Figure 5. A distance selection function bins nodes based on their
distance from the source node.

that are a distance of 0 apart (i.e., nodes connected to them-
selves) receive their own bin, then the rest of the distances
are linearly separated, creating b+1 partitions as illustrated
in Fig. 5. Depending on the data, other binning strategies
such as quadratic or log-based separations could be used by
preprocessing the distance values.

4.3. Other Selections

Many other possible selection functions exist based on
the specific nature of the graph data that is being used. A
selection function can be designed whenever there is a node
or edge property that can be divided into different groups.
For example, temporal selection could be used to separate
past, present, and future nodes for spatiotemporal graph
data. This could especially benefit dynamic graphs such as
those generated in [24]. Another example includes pairings
of node attributes, such relationships between members of
different age groups in a social network. Selection func-
tions can even be introduced into more complex networks
that learn on groups of nodes at a time. As we will show
in Sec. 5.3, a selection function can be used to distinguish
between different angles between atoms in a molecule. This
selection function bins angles together in fashion similar to
that presented in Eq. 6. As long as there is an intuitive prop-
erty that can be retrieved before the aggregation step of a
network, a selection function can be used.

4.4. Combined Selection Functions

Any of the described selection functions can be com-
bined to increase usability. For example, the directional
selection function could be combined with the distance se-
lection function for increased performance in spatial tasks.
A spatial selection function could be combined with tem-
poral selections for time-dependant graphs. There may be
multiple node attributes you wish to compare at the same
time. All of these are scenarios where a combined selection
function could be beneficial.

To combine two selection functions together, a new se-
lection number is assigned for each possible pairing of the
selections. For selection functions σ1 and σ2, this gives

σ(i, j) = σ1(i, j) + |S1| σ2(i, j) (7)

where |S1| is the number of possible selections for σ1.
In this combined selection function, the new number of
learned weights is equal to the product |S1| |S2| of the num-
ber of selections for each original function.

5. Results

We demonstrate the effectiveness of our approach in the
following tasks: Spatial Graph Classification, Traffic Pre-
diction, Molecular Property Prediction. We pick these par-
ticular tasks because they all have intrinsic spatial proper-
ties or other attributes that are well suited for the selection
functions described in Sec. 4.

5.1. Spatial Graph Classification

First, we show additional results for MNIST Superpix-
els [30] in Table 1. Also, we also show performance on the
CoMA 3D Faces dataset [36], which contains 3D meshes
of faces in 12 different expressions. We train various GCNs
on the expression classification task. These results are pro-
vided in Table 2. For these tasks, we use the 2D and 3D
directional selection functions from Sec. 4.1. As described
in Sec. 3.1, we use the naming conventions of PyTorch
Geometric [13] for each type of convolution and denote
their selection-based enhancements with “Sel”. An ablation
study of selection functions is provided for the SelGraph-
Conv network.

Additional ablation studies of selection functions as well
as our training configurations are provided in the accompa-
nying supplemental materials.

Table 1. F1 scores on the test set for MNIST superpixels [30].
Note that selection allows many networks to have near state-of-
the-art performance, even without explicitly receiving position in-
formation as input. Also note that EdgeConv and GAT, common
SOTA methods, cannot perform well without the position infor-
mation.

Network Input Selection F1 Score
GCNConv [23] label + pos - 0.645

SelGCNConv label 8 Directions 0.959
SAGEConv [19] label + pos - 0.893

SelSAGEConv label 8 Directions 0.940
GraphConv [31] label + pos - 0.625

SelGraphConv label 4 Distances 0.681
SelGraphConv label 4 Directions 0.955
SelGraphConv label 8 Directions 0.961
SelGraphConv label 12 Directions 0.963
SelGraphConv label 8 Dir + 4 Dist 0.968
GINConv [51] label + pos - 0.966

SelGINConv label 8 Directions 0.970
EdgeConv [45] label + pos - 0.987

EdgeConv label - 0.594
GAT [44] label + pos - 0.979

GAT label - 0.739

1799

Table 2. F1 scores on the expression classification task for the
test set of CoMA [36]. The input for network was 3D position
data. Note that selection-based methods outperform GAT while
using fewer parameters and are competitive with a network such
as EdgeConv that was designed specifically for 3D data.

Network Selection F1 Score
GCNConv [23] - 0.282

SelGCNConv 26 Directions 0.770
SAGEConv [19] - 0.150

SelSAGEConv 26 Directions 0.742
GraphConv [31] - 0.522

SelGraphConv 6 Directions 0.615
SelGraphConv 26 Directions 0.713
SelGraphConv 6 Directions + 4 Distances 0.682
GINConv [51] - 0.682

SelGINConv 26 Directions 0.779
GAT [44] - 0.600

EdgeConv [45] - 0.860

5.2. Traffic Prediction

We show the performance of selection-based GCNs on
the METR-LA dataset [27] which contains traffic data for
highways in Los Angeles County. For this tasks, we use the
distance-based selection function described in Sec. 4.2.

First, we show the ability of selection to improve basic
spatiotemporal networks. We start with the recurrent net-
work of TGCN [54] as our temporal backbone. We use
the implementation provided by [37] which includes a ba-
sic attention-mechanism across time as introduced in [1].
In our experiment, we compare replacing the standard spa-
tial graph convolution (GCNConv) in the network with our
selection-based one (SelGCNConv). We also compare with
using GAT as the spatial aggregator with four heads since
SelGCNConv uses four distance-based weights. These re-
sults can be seen in Table 3.

We note three important findings from these results.
First, selection-based graph convolution significantly out-
performs standard convolution, even when the convolution
uses distance-based edge weights. Second, we note that Sel-
GCNConv out performs GAT while using fewer parameters.
Last, we note that both standard convolution and attention-
based convolution do not scale in performance as more lay-
ers are added to the spatial network. In comparison, our
network continues to improve in performance when addi-
tional layers are used.

As another experiment, we modify the MSTGCN net-
work proposed in [18] to include selection. In [18], AST-
GCN implements an attention-based Chebyshev convolu-
tion for the spatial aggregator in the traffic network. MST-
GCN is also described as its non-attention counterpart.
By simply augmenting MSTGCN to include selection, we
achieve superior performance to ASTGCN while having
fewer parameters. This is shown in Table 4.

Finally, we specifically find that a five-layer deep version

Table 3. Mean absolute error in prediction of traffic speed (in mph)
after different amounts of time for the METR-LA dataset. The
designation (EW) means that distance edge weights were used.

Network Layers # Params 15 Min 30 Min 60 Min
GCNConv [23] 1 26.1K 6.186 6.356 6.654

GCNConv (EW) 1 26.1K 5.265 5.591 6.100
GAT [44] 1 78.7K 3.206 3.788 4.632

SelGCNConv 1 75.3K 3.010 3.603 4.472
GCNConv 2 38.6K 6.366 6.479 6.674

GCNConv (EW) 2 38.6K 5.837 6.021 6.326
GAT 2 277K 3.332 3.860 4.670

SelGCNConv 2 136K 2.901 3.389 4.073
GCNConv 3 51.1K 6.225 6.331 6.521

GCNConv (EW) 3 51.1K 5.993 6.140 6.389
GAT 3 476K 3.272 3.780 4.512

SelGCNConv 3 198K 2.814 3.212 3.707

Table 4. Mean absolute error in prediction of traffic speed (in mph)
after different amounts of time for the METR-LA dataset. Results
are given for non-attention-based MSTGCN and attention-based
ASTGCN as proposed in [18]. We compare this to our single layer
and multi-layer selection-based SelMSTGCN which have superior
performance.

Network # Params 15 Min 30 Min 60 Min
MSTGCN 80.3K 2.908 3.432 4.142
ASTGCN 367K 2.869 3.382 4.052

SelMSTGCN-1L 112K 2.850 3.329 3.936
SelMSTGCN-3L 236K 2.804 3.253 3.813

of the simple TGCN with SelGCNConv performs compara-
bly with the state-of-the-art methods that rely on complex
algorithms such as pretraining schemes and changing multi-
layer graph structures. These results are shown in Table 5.

5.3. Molecular Property Prediction

As another example task that benefits from selection, we
use the QM9 dataset [50], which contains over 130,000 or-
ganic molecules descriptions with the target of estimating
quantum properties such as Atomization Energy. We mod-
ify DimeNet [16], a state-of-the-art network designed for
molecular data. This network utilizes both learned features
on edges as well as angles between triplets of atoms. Thus,
we experiment with an angle-based selection that employs a
binning strategy as described in Sec. 4.2. For the angles, we
select in 3 groups between 0◦ and 180◦ (60◦ increments).
In the supplemental material, we also provide results for
distance-based selections, as well as a combined selection
function with both distance and angle using the technique
described in Sec. 4.4.

We compare the original DimeNet to our modified net-
work on multiple targets. In the original work, the au-
thors trained DimeNet for over 1500 epochs with exponen-
tial learning rate decay and an exponential moving average
on the weights of the network. We also use an exponential
moving average, but found we could achieve similar perfor-

1800

Table 5. Performance comparison on the METR-LA dateset using multiple error metrics for various state-of-the-art traffic prediction
networks. (*) Numbers taken from updated appendix D of [41].

15 Min 30 Min 60 Min
Models MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
ARIMA [27] 3.99 8.21 9.60% 5.15 10.45 12.70% 6.90 13.23 17.40%
FC-LSTM [27] 3.44 6.30 9.60% 3.77 7.23 10.90% 4.37 8.69 13.20%
DCRNN [27] 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50%
GMAN [55] 2.80 5.55 7.41% 3.12 6.49 8.73% 3.44 7.35 10.07%
SelGCN (ours) 2.80 5.15 7.57% 3.16 5.95 8.90% 3.59 6.81 10.58%
Graph WaveNet [49] 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01%
MTGNN [48] 2.69 5.18 6.88% 3.05 6.17 8.19% 3.49 7.23 9.87%
TwoResNet [26] 2.67 5.13 6.83% 3.05 6.18 8.13% 3.49 7.32 9.67%
GTS* [41] 2.64 4.95 6.8-% 3.01 5.85 8.2-% 3.41 6.74 9.9-%
STEP [42] 2.61 4.98 6.60% 2.96 5.97 7.96% 3.37 6.99 9.61%

Table 6. The mean absolute error of DimeNet with various selection functions on multiple QM9 molecular targets. Results for SchNet are
also provided as a baseline. Selection over angle lowers the error rate of DimeNet on many tasks when using a full-sized network. Also,
our smaller selection networks can achieve similar results to the original network with far fewer parameters and less training time.

Target Unit SchNet [39] DimeNet-small SelDimeNet-small DimeNet [16] SelDimeNet
of params - 534 K 608 K 2.1 M 2.4 M
training time - 21 h 24 h 32 h 48 h

µ D 0.033 0.037 0.031 0.029 0.028
α a0

3 0.235 0.059 0.051 0.047 0.044
ϵHOMO meV 41 32.4 29.2 27.8 23.1
ϵLUMO meV 34 23.0 21.0 19.7 18.0
⟨R2⟩ a0

2 0.073 0.739 0.597 0.331 0.451
ZPVE meV 1.7 1.37 1.25 1.29 1.25
U0 meV 14 9.40 8.30 8.02 7.88
U meV 19 9.95 8.29 7.89 7.87
H meV 14 10.53 8.40 8.11 8.71
G meV 14 10.97 8.71 8.98 9.11
cv

cal
mol K 0.033 0.027 0.025 0.025 0.023

mance using 200 epochs with a faster exponential learning
rate decay (from 10−3 to 10−5 over the 200 epochs). This
shorter training scheme is necessary to conduct an effective
ablation study over many targets and variations of the selec-
tion function. In all other ways, we match the original con-
figuration and hyperparameters of the original work for all
networks tested. Additional details are given in the accom-
panying supplemental materials. Lastly, we also experiment
with small versions of the networks, where the hidden size
at each layer is 64 instead of 128, which drastically reduces
the number of parameters and training time for the network.

The mean absolute error of each network for each tar-
get is given in Table 6. As is shown, selection improves
performance of the complex DimeNet network on many of
the desired targets. Additionally, a smaller version of our
selection-based network can achieve similar performance to
the original DimeNet while using fewer than 1/3 as many
parameters. We also note that selection increases error on

some targets. This reinforces the idea that selection func-
tions should be designed to match our intuition of the prob-
lem. A specific selection function is needed to improve per-
formance, not an arbitrary one. For molecule datasets, it is
possible that better selection functions could be designed by
specialists to match scientific principles of chemistry.

6. Conclusion
We have presented a technique for adding intrinsic graph

relationships into Graph Convolutional Networks, espe-
cially spatial data. We have demonstrated that incorporating
selection can improve a variety of networks and even out-
perform attention-based networks. We have further demon-
strated that our approach can improve the performance of
state-of-the-art graph networks or perform comparably with
smaller networks. Our framework is general and can con-
tinue to be used and extended by others to incorporate intu-
itive relational information into graph networks.

1801

References
[1] Jiandong Bai, Jiawei Zhu, Yujiao Song, Ling Zhao, Zhixi-

ang Hou, Ronghua Du, and Haifeng Li. A3T-GCN: Atten-
tion temporal graph convolutional network for traffic fore-
casting. ISPRS International Journal of Geo-Information,
10(7), 2021. 2, 7

[2] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang.
Adaptive graph convolutional recurrent network for traffic
forecasting. In Advances in Neural Information Process-
ing Systems, volume 33, pages 17804–17815. Curran Asso-
ciates, Inc., 2020. 2

[3] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger,
Jonathan P Mailoa, Mordechai Kornbluth, Nicola Molinari,
Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph
neural networks for data-efficient and accurate interatomic
potentials. Nature Communications, 13(1):2453, 2022. 3

[4] Dominique Beaini, Saro Passaro, Vincent Létourneau, Will
Hamilton, Gabriele Corso, and Pietro Liò. Directional graph
networks. In International Conference on Machine Learn-
ing, pages 748–758. PMLR, 2021. 1, 2

[5] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are
graph attention networks? In International Conference on
Learning Representations, 2022. 1, 2

[6] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-
Cun. Spectral networks and locally connected networks on
graphs. International Conference on Learning Representa-
tions, 2014. 1

[7] Dan Busbridge, Dane Sherburn, Pietro Cavallo, and Nils Y
Hammerla. Relational graph attention networks. arXiv
preprint 1904.05811, 2019. 2

[8] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro
Liò, and Petar Veličković. Principal neighbourhood aggre-
gation for graph nets. Advances in Neural Information Pro-
cessing Systems, 33:13260–13271, 2020. 1, 2

[9] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In Advances in Neural Infor-
mation Processing Systems, 2016. 1

[10] Li Deng. The MNIST database of handwritten digit images
for machine learning research. IEEE Signal Processing Mag-
azine, 29(6):141–142, 2012. 3

[11] Yan Ding, Xiaoqian Jiang, and Yejin Kim. Relational graph
convolutional networks for predicting blood–brain barrier
penetration of drug molecules. Bioinformatics, 38(10):2826–
2831, 04 2022. 2

[12] Moshe Eliasof and Eran Treister. Diffgcn: Graph con-
volutional networks via differential operators and algebraic
multigrid pooling. In Proceedings of the 34th Interna-
tional Conference on Neural Information Processing Sys-
tems, NIPS’20, Red Hook, NY, USA, 2020. Curran Asso-
ciates Inc. 1, 2

[13] Matthias Fey and Jan E. Lenssen. Fast graph representa-
tion learning with PyTorch Geometric. In ICLR Workshop on
Representation Learning on Graphs and Manifolds, 2019. 4,
6

[14] Johannes Gasteiger, Florian Becker, and Stephan
Günnemann. Gemnet: Universal directional graph

neural networks for molecules. In Conference on Neural
Information Processing Systems, 2021. 3

[15] Johannes Gasteiger, Shankari Giri, Johannes T. Margraf, and
Stephan Günnemann. Fast and uncertainty-aware directional
message passing for non-equilibrium molecules. In Machine
Learning for Molecules Workshop, NeurIPS, 2020. 3

[16] Johannes Gasteiger, Janek Groß, and Stephan Günnemann.
Directional message passing for molecular graphs. In Inter-
national Conference on Learning Representations, 2020. 2,
3, 5, 7, 8

[17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol
Vinyals, and George E Dahl. Neural message passing for
quantum chemistry. In International Conference on Machine
Learning, pages 1263–1272. PMLR, 2017. 3

[18] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and
Huaiyu Wan. Attention based spatial-temporal graph convo-
lutional networks for traffic flow forecasting. Proceedings of
the AAAI Conference on Artificial Intelligence, 33(01):922–
929, Jul. 2019. 2, 7

[19] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. Advances in Neural
Information Processing Systems, 30, 2017. 1, 2, 5, 6, 7

[20] David Hart, Michael Whitney, and Bryan Morse. Selection-
Conv: convolutional neural networks for non-rectilinear im-
age data. In European Conference on Computer Vision, Oc-
tober 2022. 1, 2, 3, 5

[21] David Hart, Michael Whitney, and Bryan Morse. Inter-
polated SelectionConv for spherical images and surfaces.
In Winter Conference on Applications of Computer Vision,
pages 321–330. IEEE, January 2023. 2

[22] Weiwei Jiang and Jiayun Luo. Graph neural network for traf-
fic forecasting: A survey. Expert Systems with Applications,
207:117921, 2022. 3

[23] Thomas N. Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. In International
Conference on Learning Representations, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017. 1,
2, 4, 6, 7

[24] Eitan Kosman and Dotan Di Castro. GraphVid: It only takes
a few nodes to understand a video. In European Confer-
ence on Computer Vision, page 195–212, Berlin, Heidelberg,
2022. Springer-Verlag. 1, 2, 6

[25] Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang
Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia. Stratified trans-
former for 3d point cloud segmentation. In Conference
on Computer Vision and Pattern Recognition, pages 8500–
8509. IEEE, June 2022. 2

[26] Danya Li, Semin Kwak, and Nikolas Geroliminis. Twores-
net: Two-level resolution neural network for traffic forecast-
ing on freeway networks. In International Conference on
Intelligent Transportation Systems, pages 3963–3969. IEEE,
2022. 8

[27] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Dif-
fusion convolutional recurrent neural network: Data-driven
traffic forecasting. In International Conference on Learning
Representations, 2018. 2, 5, 7, 8

1802

[28] Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang,
Bora Oztekin, and Shuiwang Ji. Spherical message pass-
ing for 3d molecular graphs. In International Conference on
Learning Representations, 2022. 3

[29] Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and
Fei-Yue Wang. Traffic flow prediction with big data: A deep
learning approach. IEEE Transactions on Intelligent Trans-
portation Systems, 16(2):865–873, 2014. 2

[30] Federico Monti, Davide Boscaini, Jonathan Masci,
Emanuele Rodola, Jan Svoboda, and Michael M Bronstein.
Geometric deep learning on graphs and manifolds using
mixture model CNNs. In Conference on Computer Vision
and Pattern Recognition, pages 5115–5124. IEEE, 2017. 3,
4, 6

[31] Christopher Morris, Martin Ritzert, Matthias Fey, William L
Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin
Grohe. Weisfeiler and Leman go neural: Higher-order graph
neural networks. AAAI, 33(01):4602–4609, 2019. 1, 2, 3, 6,
7

[32] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu
Lei, and Bo Yang. Geom-gcn: Geometric graph convolu-
tional networks. In International Conference on Learning
Representations, 2020. 1, 2

[33] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep learning on point sets for 3D classification
and segmentation. In Conference on Computer Vision and
Pattern Recognition, pages 652–660. IEEE, 2017. 2, 5

[34] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. 2

[35] Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing
Peng, and Kai Xu. Geometric transformer for fast and robust
point cloud registration. In Conference on Computer Vision
and Pattern Recognition, pages 11143–11152. IEEE, June
2022. 2

[36] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J. Black. Generating 3D faces using convolutional
mesh autoencoders. In European Conference on Computer
Vision, pages 725–741, 2018. 6, 7

[37] Benedek Rozemberczki, Paul Scherer, Yixuan He, George
Panagopoulos, Alexander Riedel, Maria Astefanoaei, Oliver
Kiss, Ferenc Beres, Guzmán López, Nicolas Collignon, and
Rik Sarkar. Pytorch geometric temporal: Spatiotemporal sig-
nal processing with neural machine learning models. In Pro-
ceedings of the 30th ACM International Conference on Infor-
mation and Knowledge Management, page 4564–4573, New
York, NY, USA, 2021. Association for Computing Machin-
ery. 7

[38] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne
Van Den Berg, Ivan Titov, and Max Welling. Modeling rela-
tional data with graph convolutional networks. In European
semantic web conference, pages 593–607. Springer, 2018. 2

[39] Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc
Sauceda Felix, Stefan Chmiela, Alexandre Tkatchenko, and

Klaus-Robert Müller. Schnet: A continuous-filter convo-
lutional neural network for modeling quantum interactions.
Advances in Neural Information Processing Systems, 30,
2017. 3, 8

[40] Kristof Schütt, Oliver Unke, and Michael Gastegger. Equiv-
ariant message passing for the prediction of tensorial prop-
erties and molecular spectra. In International Conference on
Machine Learning, pages 9377–9388. PMLR, 2021. 3

[41] Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure
learning for forecasting multiple time series. In International
Conference on Learning Representations, 2021. 8

[42] Zezhi Shao, Zhao Zhang, Fei Wang, and Yongjun Xu. Pre-
training enhanced spatial-temporal graph neural network for
multivariate time series forecasting. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD ’22, page 1567–1577, New York,
NY, USA, 2022. Association for Computing Machinery. 8

[43] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong,
Wenjing Wang, and Yu Sun. Masked label prediction: Uni-
fied message passing model for semi-supervised classifica-
tion. In Zhi-Hua Zhou, editor, Proceedings of the Thirti-
eth International Joint Conference on Artificial Intelligence,
pages 1548–1554. International Joint Conferences on Artifi-
cial Intelligence Organization, 8 2021. Main Track. 1, 2

[44] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
Attention Networks. International Conference on Learning
Representations, 2018. 1, 2, 4, 6, 7

[45] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph CNN for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 1, 2, 4, 6, 7

[46] Yuankai Wu and Huachun Tan. Short-term traffic flow fore-
casting with spatial-temporal correlation in a hybrid deep
learning framework. arXiv preprint 1612.01022, 2016. 2

[47] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,
Chengqi Zhang, and Philip S. Yu. A comprehensive survey
on graph neural networks. IEEE Transactions on Neural Net-
works and Learning Systems, page 1–21, 2020. 2

[48] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiao-
jun Chang, and Chengqi Zhang. Connecting the dots: Multi-
variate time series forecasting with graph neural networks. In
Proceedings of the 26th ACM SIGKDD international confer-
ence on knowledge discovery & data mining, pages 753–763,
2020. 8

[49] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and
Chengqi Zhang. Graph wavenet for deep spatial-temporal
graph modeling. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence, page 1907–1913.
AAAI Press, 2019. 8

[50] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph
Gomes, Caleb Geniesse, Aneesh S Pappu, Karl Leswing, and
Vijay Pande. MoleculeNet: a benchmark for molecular ma-
chine learning. Chemical science, 9(2):513–530, 2018. 1, 3,
7

[51] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks? In International

1803

Conference on Learning Representations, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. 1, 2, 6, 7

[52] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal
graph convolutional networks: A deep learning framework
for traffic forecasting. In Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence, 2018. 2

[53] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In International Confer-
ence on Computer Vision, pages 16259–16268. IEEE, 2021.
2

[54] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao
Lin, Min Deng, and Haifeng Li. T-GCN: A temporal graph
convolutional network for traffic prediction. IEEE Trans-
actions on Intelligent Transportation Systems, 21(9):3848–
3858, 2019. 2, 7

[55] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and
Jianzhong Qi. Gman: A graph multi-attention network for
traffic prediction. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pages 1234–1241, 2020. 8

[56] Marinka Zitnik and Jure Leskovec. Predicting multicellular
function through multi-layer tissue networks. Bioinformat-
ics, 33(14):i190–i198, 2017. 3

1804

