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Abstract

State-of-the-art face recognition (FR) models often ex-
perience a significant performance drop when dealing with
facial images in surveillance scenarios where images are
in low quality and often corrupted with noise. Leverag-
ing facial characteristics, such as freckles, scars, gender,
and ethnicity, becomes highly beneficial in improving FR
performance in such scenarios. In this paper, we intro-
duce text-guided face recognition (TGFR) to analyze the
impact of integrating facial attributes in the form of nat-
ural language descriptions. We hypothesize that adding
semantic information into the loop can significantly im-
prove the image understanding capability of an FR algo-
rithm compared to other soft biometrics. However, learn-
ing a discriminative joint embedding within the multimodal
space poses a considerable challenge due to the seman-
tic gap in the unaligned image-text representations, along
with the complexities arising from ambiguous and inco-
herent textual descriptions of the face. To address these
challenges, we introduce a face-caption alignment mod-
ule (FCAM), which incorporates cross-modal contrastive
losses across multiple granularities to maximize the mu-
tual information between local and global features of the
face-caption pair. Within FCAM, we refine both facial and
textual features for learning aligned and discriminative fea-
tures. We also design a face-caption fusion module (FCFM)
that applies fine-grained interactions and coarse-grained
associations among cross-modal features. Through exten-
sive experiments conducted on three face-caption datasets,
proposed TGFR demonstrates remarkable improvements,
particularly on low-quality images, over existing FR models
and outperforms other related methods and benchmarks.

1. Introduction

Current one-to-one face recognition (FR) algorithms
such as ArcFace [5] and AdaFace [23] face challenges
in achieving high verification rates (VR), particularly in

surveillance-based applications [13, 48], where a low-
resolution face probe is captured under non-ideal condi-
tions. Covariate factors like non-uniform lighting, occlu-
sion, and non-frontal pose in such scenarios, severely de-
grade the image quality, leading to decreased matching per-
formance [28, 48]. One way to improve the performance
of an FR algorithm is to integrate auxiliary information,
such as facial marks, gender, age, skin and hair color, fa-
cial expression, and other distinctive facial attributes to a
face recognition model [11, 20, 50].

Natural language descriptions, which highlight the dis-
tinct characteristics of a face image, can also be employed
as a soft biometric to improve the performance of a FR
model [14]. In this research, we hypothesize that seman-
tic information can substantially improve the image under-
standing capability of an FR algorithm compared to other
soft biometrics. Therefore, the core idea of this research
is to develop a model that effectively integrates textual de-
scriptions with facial images, thereby maximizing perfor-
mance. As both image and textual modalities are comple-
mentary to each other, the combination of textual and facial
features will result in a significant performance leap. This
text-guided face recognition (TGFR) has great potential for
applications in systems where face images are captured in
real-world settings, such as criminal investigations and in-
telligent video surveillance [14]. In criminal investigations,
the testimony of the witnesses can be effectively utilized
within the TGFR model to find or narrow down the poten-
tial suspects even from low-quality images.

However, integrating textual descriptions or captions
within a FR loop poses several challenges. Firstly, natural
language captions are inherently more abstract than facial
images. A limited set of facial attributes may be insuffi-
cient to convey all the fine-grained details of a complex face
image. Secondly, as describing a face image involves sub-
jective judgment, captions written by different annotators
for a particular face can be completely or partially differ-
ent. Sometimes, an attribute, which one annotator consid-
ers important may be ignored by others. Thirdly, different
captions of a particular face image may contain large word
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variability. Fourthly, annotators might disagree on specific
attributes, leading to incorrect representations of a person’s
face. For example, annotators may differ on whether the
person has a sharp nose. Lastly, annotators occasionally in-
clude a surplus of non-discriminative information, readily
present on the face, thus making it challenging to differen-
tiate the face-caption pair from others. Therefore, learning
accurate embedding from such textual descriptions is the
most challenging step of a text-guided FR model.

As the primary objective of this work is to improve the
performance of SOTA FR algorithms [5, 23, 32], in our
TGFR framework, we utilize them as fixed feature extrac-
tor. By keeping them in a frozen state, we can accurately
measure the performance gain of the FR model resulting
from textual supervision. However, the contextual embed-
dings generated from the foundation model are unaligned
with image features and have limited distinctiveness for
face recognition. To address these challenges, we pro-
pose a face caption alignment module (FCAM) that fine-
tunes the text encoder with the specific aim of learning text
embeddings that are both discriminative and well-aligned
with visual features. The proposed FCAM incorporates a
global caption-image contrastive loss (CICL) and a local
word-region contrastive loss (WRCL) to learn alignments
between the caption-image and word-regions, respectively.
Additionally, it includes an intra-modal contrastive objec-
tive as well as an identity loss to produce discriminative
features for both visual and semantic modalities.

Furthermore, in a conventional dual-encoder architec-
ture, a fusion scheme is typically employed to learn a
joint representation from image and text features. How-
ever, a simple feature-level fusion (FLF) scheme may be
ineffective as the regional image features and word em-
beddings lack prior relationships [27]. Moreover, the FLF
scheme treats textual and image features as separate entities,
thus failing to capture their interactions and dependencies.
Therefore, we introduce a novel and efficient attention-
guided fusion scheme called face-caption fusion module
(FCFM), aiming to explore cross-modal fine-grained inter-
actions and coarse-grained associations for improved per-
formance in multimodal fusion. In summary, our contribu-
tions are three-fold:

• We boost the performance of SOTA FR algorithms, in-
cluding AdaFace [23] and ArcFace [5], by learning ef-
fective representations through cross-modal and intra-
modal contrastive supervision.

• We introduce FCAM, a novel module to learn
aligned global and local features within a shared se-
mantic space by effectively utilizing the CICL to
align caption-image embeddings and WRCL to align
attention-weighted region with word embeddings.
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Figure 1. An overview of our proposed TGFR framework, com-
prising an image encoder, a text encoder, a face-caption alignment
module (FCAM), and a face-caption fusion module (FCFM). We
follow a two-step learning process. In the initial step, we train
both the foundation model and the FCAM module while keeping
the parameters of the FR model frozen. The goal of FCAM is to
map the local and global embeddings of face-caption pairs into
a shared space, ensuring a proper alignment between image-text
modalities. In the final step, we train the FCFM module.

• Experiments conducted on three challenging face-
caption datasets demonstrate significant improvements
over SOTA methods and baseline approaches in both
1:1 verification and Rank-1 identification.

2. Related work
Text-guided face recognition Facial semantic attributes
have been extensively exploited as auxiliary information
for various tasks, such as face image retrieval [49], gen-
eration [38], and editing [17, 44]. Gonzalez et al. [11] pre-
sented an overview of soft biometrics for face recognition
in unconstrained scenarios. The authors reported a max-
imum relative performance improvement of 40% over the
FR models when utilizing 6 discriminative facial attributes.

Our work is closely related to a recent approach to face
recognition using captions, namely CGFR, introduced by
Hasan and Nasser [14]. In CGFR, the authors employed a
pre-trained FR model and a pre-trained BERT model [8] for
extracting features from the respective modalities. They fur-
ther finetuned the BERT model using a refinement module.
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Afterward, a cross-modal fusion scheme was employed to
transform the uni-modal representations into a unified em-
bedding space. A notable drawback of CGFR [14] is that its
feature extractors were trained independently on objectives
that were distinct and unrelated to the FR task. For exam-
ple, language models such as BERT [8] and RoBERTa [30]
were trained on vast corpora using masked language model-
ing. Therefore, these encoders generate irrelevant features
that result in lower performance in downstream FR tasks.

In this research, rather than adopting BERT, we employ
a CLIP-like foundation model [21,26,34] that has been pre-
trained on a large-scale dataset containing image-text pairs
for a wide range of multimodal tasks including image-text
matching [4, 10, 21, 27, 43], cross-modal retrieval [27, 31].
The rationale behind selecting a CLIP-like model, such as
ALIGN [21], as our text encoder lies in its primary objec-
tive of aligning images and text. Furthermore, they trained
CGFR using the SOTA CMPC [52] and DAMSM [46]
losses on the low-quality MMCelebA dataset [44]. In con-
trast, we train our TGFR using a variety of cross-modal con-
trastive losses and evaluate our model on three challenging
face-caption datasets. Additionally, we incorporate an intra-
modal contrastive supervision and an identity loss to further
enhance the discriminability of the learned features.

Representation learning with text supervision In re-
cent years, with the availability of datasets containing large
corpora of image-text pairs, representation learning with
text supervision [4, 7, 21, 27, 31] has exhibited remark-
able success across a multitude of downstream tasks such
as visual question answering task [2, 37], cross-modal re-
trieval [27,31], and and zero-shot image classification [21].
The semantic context derived from textual supervision aids
the model in capturing more comprehensive multimodal
representations, resulting in improved performance. Desai
and Johnson introduced the VirTex framework [7], where
they trained a CNN model with textual descriptions for im-
age captioning tasks. By fine-tuning the pre-trained model,
they achieved improved performance in image classification
and instance segmentation tasks. Additionally, in the iCAR
framework [42], authors proposed a novel deep fusion ap-
proach for effective image-text alignment. This method
demonstrated superior performance on several benchmark
datasets for zero- and few-shot image classification.

Contrastive learning To tackle the challenges of compu-
tational complexities, noise-contrastive estimation (NCE)
was introduced [12]. In this method, rather than comput-
ing the probability of the target word among all possible
words in the vocabulary, a binary cross-entropy loss is em-
ployed to differentiate between the actual target word and
noise samples. Another approach, information NCE [33],
focuses on maximizing a lower bound on the mutual infor-
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Figure 2. (a) The architecture of the proposed CNN-based projec-
tion for generating phrase-level contextual embeddings from the
output of the foundation model. (b) The network for projecting
global image features into a shared space. (K = 1D kernel)

mation existing between images and captions, particularly
in the context of cross-modal retrieval tasks.

Another powerful technique for learning image-text rep-
resentations is contrastive pretraining, which has recently
demonstrated remarkable success in various multimodal
tasks [21, 27, 34]. CLIP [34] introduces an approach for
learning visual representations using caption by establish-
ing semantic similarity between image-text pairs through
contrastive loss. Jia et al. [21] designed a method called
noisy student training, which utilized noisy text data to im-
prove image-text representation learning by aligning image-
text pairs using a contrastive loss. In another approach, au-
thors [27] employed the momentum distillation technique
for image-text representation learning. They proposed an
image-text contrastive loss to align image-text features be-
fore fusion. Although these methods achieve remarkable
performance on tasks related to multimodal representation
learning, they often fail to capture complex interactions be-
tween image regions and words, resulting in lower perfor-
mance on fine-grained image-text classification [24].

Moreover, in addition to image-text matching loss [21,
27, 31, 34], numerous other contrastive learning-based
cross-modality loss functions have been proposed in the lit-
erature. These encompass, triplet loss [29,47], word-region
alignment [4, 46], word-patch alignment [24], token-wise
alignment [41] and more, all aimed at tackling a variety of
multimodal tasks. For example, Zhang et al. [51] intro-
duced ConVIRT to learn visual features from chest X-ray
images through the analysis of paired reports. They em-
ployed a bidirectional contrastive objective between visual
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and textual modalities, similar to our CICL, and achieved
superior performance across four medical image classifica-
tion and two zero-shot retrieval tasks. Moreover, Huang et
al. [18] contrasted image sub-regions with the correspond-
ing words in the textual report to learn both global and local
representations in their proposed GLoRIA framework.

3. Our approach
3.1. Model architecture

An overview of our method is illustrated in Figure 1. It
consists of several components: an image encoder for ex-
tracting both local and global image features from an in-
put face, a text encoder for learning embeddings from the
associated captions, a face-caption alignment module, and
a face-caption fusion module. The uni-modal features are
then fed into the FCAM module, which serves three main
purposes: 1) aligning cross-modal features, 2) applying
intra- and inter-modal feature interactions, and 3) learning
discriminative image-text features. Finally, the FCFM mod-
ule is applied to implement fine-grained interactions be-
tween cross-modal features.

3.2. Multimodal feature extraction

In this study, we employ a SOTA FR model [5,23] as our
image encoder, fv , and a foundation model [21, 26, 34, 36],
pre-trained on a large number of caption-image pairs, as
our text encoder, fc. The iRestNet18 [5, 16] is adopted
as the backbone network for the image encoder. In this
network, the output of the final adaptive average pooling
layer produces the global feature vector, v̄ ∈ R512, for
the input image which contains high-level semantic infor-
mation of the face. Additionally, regional image features,
R̄ ∈ R256×14×14, are extracted from an intermediate con-
volutional stage. From the output of the foundation model,
we obtain a contextualized word matrix, W̄ ∈ RD×T . Here,
T represents the total token count, while D denotes the di-
mensionality of each token embedding.

3.3. Projection networks (PNs)

The output of the text encoder comprises 768-
dimensional contextualized embeddings for each token in
the caption [21, 26]. In this work, we design a 1D CNN-
based projection network to map each embedding into a
shared 256-dimensional multimodal space, Figure 2 (a), il-
lustrates the proposed network which allows us to capture
phrase-level contextual information. For convolutions, each
utilizing a kernel size ranging from 2 to 5 and a stride of 1
are applied to the word matrix, W̄ ∈ R768×(T−1), to ef-
fectively capture local patterns within the text. Next, we
concatenate all generated feature maps. Subsequently, we
apply a 1D max-pooling and L2 normalization to the fea-
ture maps to generate word embeddings, W ∈ R256×(T−1).

Moreover, we incorporate an additional 1D max-pooling to
compute the final caption embedding, c ∈ R256. In addi-
tion, another projection network, as illustrated in Figure 2
(b), is designed to map the global image features, v̄ ∈ R512,
into a shared embedding space, v ∈ R256.

To increase the inherent relationships embedded within
the local image features, R̄ ∈ R256×14×14, we introduce
an intra-modal interaction module (IMIM). The proposed
IMIM, as depicted in Figure 3, refines local features to gen-
erate more informative representations by capturing fine-
grained local patterns. It also contributes in filtering out ir-
relevant information, thereby improving the model’s robust-
ness to variations. In this module, we first normalize [19]
the input features. Afterward, self-attention (SA) [40]
mechanism is applied, where the keys, queries, and values
are learned via 1x1 convolutions. The SA layer improves
intra-modality relationships effectively, by capturing long-
range dependencies of R̄. It is noteworthy that in our experi-
ment we also applied the proposed IMIM module to the tex-
tual branch. However, due to the strong intra-modal interac-
tions, that are already present within the contextual embed-
dings of transformer-based foundation models [8,21,26,30],
the performance of our model remains the same. Hence, we
skip it.

3.4. Face caption alignment module (FCAM)

We design this module to learn well-aligned global and
local features for both the visual and semantic modalities.
The training objectives of this module are as follows: 1)
CICL, designed to find relationships between the face image
and its associated caption, 2) WRCL, designed to learn fine-
grained alignments between image sub-regions and word
embeddings. 3) IMCL, for improving feature representa-
tion within each modality and 4) an identity loss.

Caption-image contrastive loss (CICL) To learn aligned
global image and caption embedding, similar to the ap-
proach in [18,41,51], we design a caption-image contrastive
objective between the visual and textual domains. Our
CICL aims to maximize the similarity score between true
face-caption pairs against random pairs. We pass the in-
put face image, xf , through an image encoder and then the
proposed projection network to generate the global image
features, v. In parallel, we compute the contextualized cap-
tion embedding, c, from the output of the text encoder and
the 1D-CNN-based projection network. We encode a mini-
batch of B input caption-image pairs (xf , xc) to generate
global caption-image embeddings (v, c). Next, we compute
the face-to-caption contrastive loss, L(f2c), for the ith pair
in the similar way to the InfoNCE loss [33]:

L
(f2c)
i = − log

exp(⟨vi, ci⟩/τ)∑B
k=1 exp(⟨vi, ck⟩/τ)

. (1)
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Figure 3. The block diagram of the proposed face-caption alignment module where we learn context-aware sub-regional features by
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word embeddings are fed into the projection networks to map them in a shared multimodal semantic space. Next, a word-region contrastive
loss is applied to the context-aware regional features and their respective word representations.

where ⟨vi, ci⟩ = v⊤i ci/∥vi∥∥ci∥ represents the cosine
similarity. The loss drives the TGFR model to align posi-
tive face-caption pairs while effectively preserve the mutual
information. In addition, we define a similar caption-to-face
contrastive loss, L(c2f), as:

L
(c2f)
i = − log

exp(⟨ci, vi⟩/τ)∑B
k=1 exp(⟨ci, vk⟩/τ)

. (2)

Here, τ represents a learnable parameter. We calculate the
final CICL as the summation of these two losses.

Word-region contrastive loss (WRCL) To align sub-
regional image features, R ∈ R256×196, with word embed-
dings, W ∈ R256×(T−1), we begin by mapping the R and
W into a multimodal semantic space. Then, we calculate a
dot-product similarity matrix denoted as S ∈ R(T−1)×196,
where (T − 1) represents the number of all tokens except
[CLS] token, and 196 corresponds to the image sub-regions.
Then, the similarities of each sub-region are normalized.

s̄i,j =
exp(si,j)∑T−2

i=0 exp(sk,j)
,where S = WT R. (3)

Next, we learn an attention weight vector, α, which as-
signs varying weights to different image sub-regions ac-
cording to their association with a specific word in the cap-
tion. To calculate this, we compute the attention weight
for the ith word by normalizing s̄i,j across all image sub-
regions. Finally, we compute attention-weighted sub-region
features, rattn, using the attention weighted vector, α.

ratti =

195∑
j=0

αj × rj where αj =
exp (s̄i,j /τ1)∑195
k=0 exp (s̄i,j /τ1)

. (4)

Here, τ1 ∈ R is the temperature parameter. Now, to
find the attention-guided matching score between all words

and attention-weighted sub-regions features, we define the
following matching function, f .

f(xf , xc) = log (

T−1∑
i=1

exp(⟨rattni ,wi⟩/τ2)τ2 . (5)

Here, τ2 is another hyperparameter and (xf , xc) is the
input face-caption pair. Similar to approaches in [9, 46],
we define the word-region contrastive loss as the negative
log posterior probability that aims to maximize the posterior
probability of the attention-weighted region features. The
contrastive loss for image sub-regions being matched with
their corresponding words are given below:

L
r|w
WRCL =

B∑
i=1

−log
exp (f(xfi, xci) /τ3)∑B

k=1 exp (f(xfi, xck) /τ3)
. (6)

In addition, we also minimize L
w|r
WRCL. The final loss,

LWRCL, is the summation of these two loss.

Intra-modal contrastive loss (IMCL) While CICL and
WRCL effectively align caption-image and word-region
embeddings, respectively, they failed to incorporate self-
supervision within each modality. Therefore, we introduce
an additional contrastive objective, called intra-modal con-
trastive learning (IMCL), that introduces intra-modal self-
supervision, leading to the semantic alignment between true
pairs within each modality. The application of the IMCL,
in our work, significantly improves image-text feature rep-
resentations and also makes them more discriminative. For
input captions, we pair two different captions belonging to a
particular subject as true pairs (xc1, xc2). Likewise, for the
visual input, we consider two different face images belong-
ing to a subject, to form a true pair (xf1, xf2). However,
in cases where a subject has only one view in the dataset,
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Figure 4. Block diagram of the proposed face-caption fusion mod-
ule (FCFM) to capture complex fine-grained relationships and de-
pendencies between regional features and word embeddings.

we generate two random views of the subject through ran-
dom data augmentation. The following objective function
represents LIMCL loss.

LIMCL =
1

2
(Lv

IMCL(xf1, xf2) + Lc
IMCL(xc1, xc2)). (7)

Here, Lv
IMCL represents the InfoNCE loss [33] be-

tween face image pairs (xf1, xf2) where similar-
ity is calculated using the function, s(xf1, xf2) =
⟨fv(gv(xf1)), fv(gv(xf2))⟩. Here, fv is the image encoder
and gv is the projection network. Likewise, Lc

IMCL

represents the InfoNCE loss between caption pairs.

Identity loss To increase the discriminative power of both
textual and facial features, we further employ a normalized
cross-entropy loss [5], as our identity loss, LIDL. This loss
improves intra-class compactness while promoting inter-
class dispersion. The total loss is the summation of the
identity loss of both the textual and visual modalities.

Overall loss The following Eq. 8 delineates the objective
function for the initial step of training process.

Ltotal = LWRCL + λ1LIDL + λ2 LCICL + λ3LIMCL. (8)

Here, λ1, λ2, and λ3 are the hyperparameters.

3.5. Face caption fusion module (FCFM)

Figure 4 depicts the block diagram of the proposed
FCFM module. The module incorporates a cross-attention
between the word embeddings, W, and regional image fea-
tures, R. This cross-attention mechanism [40] allows the
TGFR to put attention on relevant image regions while
processing a specific word. A self-attention [40] block is
applied twice to the cross-modal feature which helps the

Table 1. A comprehensive list of face-to-image datasets.

Dataset Public Images Annotations
Face2Text [39] Yes 10,177 1∼

MM CelebA-HQ [44] Yes 30,000 10
FFHQ-Text [53] Yes 760 9

CelebA-Dialog [22] Yes 202,599 ∼5
SCU-Text2face [3] No 1,000 5

TGFR to capture inherent dependencies and interactions
within the input features. Afterward, a max-pooling layer
is applied to the cross-modal features before they are fed
into a linear layer. To capture the coarse-grained associa-
tions between global image-caption features, we employed
an additional cross-attention mechanism [40], which is then
followed by a normalization layer [1]. Lastly, the output of
the linear layer is concatenated with the global cross-modal
features before being fed into the final linear layer.

4. Experiments
4.1. Datasets and baselines

Table 1 presents a list of all available face-caption
datasets. It is worth noting that the SCU-Text2face [3]
dataset is not publicly available and FFHQ-Text [53] has
only 760 pairs. Other face-caption datasets also have
a limited number of face-caption pairs. This limitation
arises due to the complexity of annotating face images,
as mention in Section 1. In this work, we conduct ex-
periments on three publicly available face-caption datasets,
namely Multi-Modal CelebA-HQ [44], Face2Text [39], and
CelebA-Dialog [22]. We consider the following baselines:

BiLSTM-FLF The bidirectional LSTM [35] is utilized
as a text encoder and trained with an identity loss. The
feature-level fusion scheme is applied using a linear layer.

BERT-FLF The pre-trained BERT [8] is employed as a
text encoder and fine-tuned with an identity loss. Also, a
linear layer is used for the FLF scheme.

4.2. Implementation details

Our TGFR model has two steps training process. In the
initial step, we finetune the ALIGN encoder [21] and train
the FCAM module, utilizing the objective function outlined
in Eq. 8. We empirically set the hyperparameters λ1 = 100,
λ2 = 2, and λ3 = 1. The ALIGN encoder [21] is fine-
tuned for 20 epochs using an Adam optimizer [25] with a
weight decay of 0.01, and a batch size of 16. In paral-
lel, for the projection network of both branches, we em-
ploy another Adam optimizer [25], initialized with a learn-
ing rate of 0.001. Furthermore, for the ArcFace [5] image
encoder, the backbone iResNet18 network was pre-trained
on the MS1MV3 dataset [6] whereas, for the AdaFace [23]
image encoder, the same backbone was pre-trained on the
WebFace4M dataset [54]. In the subsequent step, the FCFM
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Table 2. Comparison between the proposed TGFR framework and the baselines for 1:1 verification rate and Rank-1 Identification.

Methods MMCelebA [44] Ver. (%) Face2Text [39] Ver. (%) CelebA-Dialog [22] Ver. (%)
1e-5 1e-4 1e-3 Id.(%) 1e-5 1e-4 1e-3 Id.(%) 1e-5 1e-4 1e-3 Id.(%)

Only AdaFace [23] 59.90 70.75 81.35 16.43 54.65 57.90 63.30 8.38 4.29 10.32 19.38 1.01
BiLSTM-FLF 66.20 78.60 85.0 16.43 57.40 62.40 69.0 8.38 17.47 31.66 48.60 4.77

BERT-FLF 65.50 78.0 85.80 16.43 60.60 63.0 70.40 8.38 22.78 33.51 49.31 5.96
CGFR [14] 65.80 81.0 87.60 18.90 61.60 65.0 71.80 9.97 22.36 34.88 50.39 7.39

Ours 68.20 81.0 88.20 21.86 64.29 67.81 74.52 14.33 25.50 37.20 53.0 10.49

Only ArcFace [5] 49.47 55.71 66.56 24.65 46.10 52.14 59.09 8.38 4.90 8.11 14.13 5.96
BiLSTM-FLF 62.50 71.96 78.73 16.43 61.02 64.21 72.0 8.38 14.13 21.77 38.65 4.17

BERT-FLF 63.89 72.83 79.89 16.43 61.20 63.96 72.67 8.38 15.77 25.23 40.82 12.70
CGFR [14] 66.32 78.05 82.23 28.59 63.50 65.92 74.48 16.64 16.90 26.83 42.45 18.06

Ours 67.72 78.73 84.47 33.94 64.28 67.06 76.85 21.21 19.02 27.84 44.64 22.0

(c) ROC Curves on CelebA-Dialog Dataset(a) ROC Curves on CelebA Dataset (b) ROC Curves on Face2Text Dataset
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Figure 5. ROC curves depict the performance comparison of the proposed TGFR with other methods in terms of 1:1 verification rates.

module is trained for an additional 36 epochs. We employed
an SGD optimizer with a weight decay of 1e-4 and a mo-
mentum of 0.9. The initial learning rate is 0.1 and is divided
by 10 after the 6th and 24th epochs.

4.3. Evaluation on face recognition

In Table 2, we conduct experiments to evaluate the per-
formance of our TGFR framework for both face verifi-
cation and identification. As depicted in Figure 5, our
framework substantially improves the verification rate (VR)
by utilizing textual descriptions as compared to the base-
line approaches and the pre-trained AdaFace model [23]
across all three experimental datasets. For the MMCelebA
dataset [44], our framework achieves a VR of 68.20%
at TAR@FAR=1e-5, marking a 3.52% improvement over
CGFR [14] and a remarkable 12.17% improvement over
the AdaFace model. Moreover, for the identification task,
our proposed TGFR attains a Rank-1 accuracy of 21.86%,
surpassing CGFR [14] by 13.54% and the baselines by
24.84%. Similarly, on the Face2Text dataset [39], our
TGFR achieves a 4.18% higher VR at TAR@FAR=1e-5 and
a 30.43% higher Rank-1 accuracy compared to CGFR [14].
The CelebA-Dialog dataset [22] is more challenging than
the other two datasets. In this dataset, the proposed TGFR
remarkably improves the Rank-1 accuracy of pre-trained
AdaFace from 1.01% to 10.49%.

We also perform experiments on the TGFR using the
pre-trained ArcFace encoder [5] across all three datasets.

Table 3. Ablation experiments on the objective function of the
proposed FCAM module using the MMCelebA dataset.

Identity CICL WRCL IMCL 1e-5 1e-4 1e-5

✓ - - - 64.67 78 86.35
✓ ✓ - - 65.84 80.50 87.17
✓ - ✓ - 66.64 81.0 87.70
✓ - - ✓ 65.23 78.60 87.00
✓ ✓ ✓ ✓ 68.20 81.0 88.20

In the MMCelebA dataset [44], TGFR achieves a VR of
67.72% at TAR@FAR=1e-5, achieving a 2.07% improve-
ment over CGFR and a 26.95% improvement over the pre-
trained ArcFace model. In addition, for the identification
task, TGFR achieves a Rank-1 accuracy of 33.94%, out-
performing CGFR by 15.76% and the baseline models by
51.59%. Similarly, on the Face2Text dataset [39] and the
CelebA-Dialog dataset [22], the proposed TGFR, using Ar-
cFace encoder, demonstrates superior performance com-
pared to other approaches. These results validate the gener-
alizability and robustness of our TGFR framework.

4.4. Ablation study

Analysis of FCAM We analyze the role of each loss
function in the proposed FCAM module, as shown in Ta-
ble 3. In all the experiments conducted on the MMCelebA
dataset [44] using the AdaFace [23] encoder, the identity
loss is included, which is pivotal for generating discrimina-
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Normal Poor Bad Very Bad

Figure 6. Face images of a subject across different image qualities.

Table 4. Ablation experiments on the text encoders

Encoders 1e-5 1e-4 1e-3

BERT-base [8] 66.0 81.0 87.60
ALIGN [21] 68.20 81.0 88.20
CLIP [34] 67.65 81.0 87.96
BLIP [26] 68.20 81.0 88.20

GroupViT [45] 68.0 81.0 88.06
FLAVA [36] 67.90 81.0 88.0

Table 5. Comparison of 1:1 VR on TGFR framework across vari-
ous image qualities.

Score Level Method EER 1e-5 1e-4 1e-3

4 normal
AdaFace [23] 5.88 59.90 70.75 81.35
CGFRR [14] 4.11 65.80 81.0 87.60

TGFR 4.00 68.20 81.0 88.20

3 poor
AdaFace [23] 10.59 35.66 41.41 53.41
CGFRR [14] 9.88 41.50 44.14 61.08

TGFR 9.11 44.80 46.61 63.12

2 bad
AdaFace [23] 16.30 23.75 31.55 40.10
CGFRR [14] 15.10 31.23 35.85 48.35

TGFR 14.68 32.31 37.20 50.92

1 very bad
AdaFace [23] 19.06 11.67 18.98 27.77
CGFRR [14] 18.78 21.39 29.95 38.39

TGFR 17.65 24.40 31.0 39.60

tive features. From Table 3, it is observed that the FCAM
module without any contrastive loss experiences a decrease
in VR. This proves the necessity for both intra- and inter-
modal contrastive losses. Furthermore, under the evalua-
tion metric of TAR@FAR=1e-5, WRCL demonstrates an
improvement from 64.67% to 66.64% over the performance
of the identity loss alone. In contrast to the 2.96% im-
provement achieved by WRCL, we also note a 1.78% im-
provement achieved by CICL and a 0.86% improvement
achieved by IMCL. These results signify the idea that each
contrastive loss has a positive impact on VR performance.
By combining all four components, we observe the highest
VR, surpassing the identity loss alone by 5.16%.

Analysis of text encoder We investigate the impact
of different foundation models, such as CLIP [34], and
ALIGN [21] on the proposed TGFR model in Table 4.
While the VR of all the CLIP-like foundation models is sim-
ilar, they outperforms the BERT [8]. Therefore, in TGFR,
we adopt the ALIGN model [21] as our text encoder.

Effect of image quality We investigate the impact of im-
age qualities on the proposed TGFR model, utilizing the
AdaFace model [23] as the image encoder, which is trained
on the “normal” images of the MMCelebA dataset [44].
Figure 6 depicts a face image of a subject across various
image qualities. In this study, we report the 1:1 VR us-
ing two evaluation metrics: EER, and TAR@FAR. Our
analysis, presented in Table 5, leads to several key obser-
vations. First, we observe a drastic drop in the perfor-
mance of the AdaFace model as image quality degrades.
For instance, when transitioning from an image quality of
“normal” (score 4) to “very bad” (score 1), the VR of the
AdaFace substantially degraded from 59.90% to 11.67% at
TAR@FAR=1e-5.

Secondly, across all levels of image qualities, our TGFR
consistently achieves significantly higher VR compared to
both CGFR [14] and the pre-trained AdaFace model. For
instance, in the “very bad” image quality, the proposed
TGFR achieves an EER score of 17.16%, which is 6.40%
lower than CGFR [14] and 7.99% lower than the AdaFace
model. Additionally, we get a 12.34% improvement com-
pared to CGFR at TAR@FAR=1e-5, and a 3.39% improve-
ment at TAR@FAR=1e-4. Thirdly, as the quality of the in-
put image degrades, the performance gain in the proposed
TGFR becomes higher. For example, in the case of “very
bad” quality images, the improvement in VR of our TGFR
reaches 52.17% at TAR@FAR=1e-5 which is higher than
the 20.40% improvement observed in “poor” quality im-
ages. These results show the efficacy of textual descriptions
in boosting the performance of the FR model, specifically
in low-quality face images that are corrupted with noise.

5. Conclusion

This paper presents TGFR, a framework designed to en-
hance the relative performance of existing FR algorithms
using textual descriptions. In this framework, we present a
face-caption alignment module that effectively handles the
inherent heterogeneity between the visual and the semantic
domain by increasing the mutual information between the
local and the global features of the face-caption pair. Our
FCAM employs multiple contrastive losses across different
granularities to implement inter-modal alignment between
cross-modal features and intra-modal alignment within each
modality. Aligning image features with textual features not
only ensures the capture of complete shared semantics but
also helps to focus on the distinctive content of the facial
image, leading to improved performance in FR tasks.
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