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Abstract

High Content Imaging (HCI) plays a vital role in modern
drug discovery and development pipelines, facilitating var-
ious stages from hit identification to candidate drug char-
acterization. Applying machine learning models to these
datasets can prove challenging as they typically consist of
multiple batches, affected by experimental variation, espe-
cially if different imaging equipment have been used. More-
over, as new data arrive, it is preferable that they are ana-
lyzed in an online fashion. To overcome this, we propose
CODA, an online self-supervised domain adaptation ap-
proach. CODA divides the classifier’s role into a generic
feature extractor and a task-specific model. We adapt the
feature extractor’s weights to the new domain using cross-
batch self-supervision while keeping the task-specific model
unchanged. Our results demonstrate that this strategy sig-
nificantly reduces the generalization gap, achieving up to
a 300% improvement when applied to data from different
labs utilizing different microscopes. CODA can be applied
to new, unlabeled out-of-domain data sources of different
sizes, from a single plate to multiple experimental batches.

1. Introduction
High Content Imaging (HCI) plays a pivotal role in mod-

ern drug discovery and development, being used through-
out preclinical drug discovery cascades. It can capture
detailed phenotypic responses of cells treated with com-
pounds or genetic perturbants, and reveal complex sub-
cellular processes. Machine learning can help analyze
HCI data to unveil biological correlations, reveal mode-
of-action, predict compound bioactivity, and predict toxi-
cities [20, 26, 30, 31, 36]. Recent advances in ML for HCI
have helped accelerate screening of compound libraries, en-
hanced data interpretation, and enabled novel therapeutic
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Figure 1. Illustration of the proposed approach. CODA divides
the role of a classifier into two separate entities: one model de-
signed to extract generic features and a subsequent task-specific
model that operates on these features to accomplish the given task.
We then adapt the feature extractor when testing on a new source
using self-supervision, while leaving the task-specific model un-
touched. The result is a model that can be easily adapted to new
out-of-domain data as it arrives, seeing a significant boost in per-
formance, without the need for any labels.

insights [18]. However, several challenges hinder its full
potential.

In particular, the generalization gap presents signifi-
cant challenges to HCI and drug discovery. Discrepancies
caused by variations in experimental conditions, apparatus,
biological noise, and the presence of random or systematic
errors can impede model performance. Limited ability of
standard ML models to adapt or transfer across HCI set-
tings results in reduced predictive accuracy [15]. To fully
harness the power of machine learning in HCI, there is a
need for robust and adaptable models that can generalize
effectively across different contexts and conditions without
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compromising performance.
Recently, ten pharmaceutical companies, six supporting

technology companies, and two non-profit partners formed
the JUMP-CP (Joint Undertaking in Morphological Pro-
filing) initiative to generate phenotypic response data for
over 116,750 unique compounds, over-expression of 12,602
genes, and knockout of 7,975 genes using CRISPR-Cas9,
all in human osteosarcoma cells (U2OS) [3]. The dataset
is estimated to be 115 TB in size and captures 1.6 billion
cells and their single-cell profiles using the Cell Painting
assay [1,6]. A subset of the compounds profiled by the con-
sortium were profiled across all the participating labs, using
the different equipment setups available in the individual
labs. This dataset offers a unique opportunity to develop
and test domain adaptation methods for HCI.

In this study, we leverage the newly-released JUMP-CP
data to develop and validate a new approach for online self-
supervised domain adaptation (SSDA), Cross-batch Online
Domain Adaptation (CODA) which uses cross-batch self-
supervision to adapt a feature extractor to incoming out-
of-domain data. By using the setup illustrated in Figure
1, where the model is separated into an adaptable feature
extractor and a frozen task-specific classifier, we are able
realize huge improvements, up to 300%, when the model is
applied to data from different labs or different microscopes.
Crucially, this can be done without the need for any labels
for the out-of-domain data.

We test our approach using data from different institu-
tions in the JUMP-CP data repository – training CODA us-
ing data from a source institution and performing SSDA to
successfully adapt to the other institutions without access
to any labels. Our contributions can be summarized as fol-
lows:

• Propose CODA, a self-supervised domain adaptation
method, enabling online adaptation of a model trained
on a single HCI data source to other out-of-domain
sources (e.g., different institution or microscope) –
demonstrating its applicability to a variety of real-
world experimental settings.

• Introduced ODA as an alternative approach when
cross-batch consistency learning is not feasible, re-
sulting in a slight performance drop from CODA but
significant performance improvements over supervised
methods.

• Conducted an extensive experimental validation on di-
verse subsets of data from the JUMP-CP repository,
showcasing the robustness of the proposed approaches
to variations in acquisition and apparatus, and verified
the effectiveness of CODA in aligning the feature ex-
tractor to the target domain.

The code to reproduce our experiments can be found at
https://github.com/cfredinh/coda.

2. Related Work
The problem of distributional shifts between the training

and test sets is widely recognized to degrade performance in
various domains [5,9,14,22]. To mitigate these effects, tra-
ditional strategies involve gathering more data or employ-
ing sophisticated augmentation techniques to incorporate
test distribution-like data into the training domain [19, 38].
However, these approaches may not always be feasible, as
anticipating the expected domain shifts during testing is not
always possible. HCI data faces similar challenges due to
domain shifts [4,15]. Experimental batches in HCI data ex-
hibit high homogeneity within themselves but have limited
overlap with other batches due to inherent biological noise
and variations in experimental setups. These variations are
commonly referred to as batch effects in HCI, representing
undesirable domain shifts resulting from biological noise
and difficult-to-control experimental conditions.

Research in the field of addressing distribution shifts
focuses on two main directions: Domain Generalization
(DG) and Domain Adaptation (DA). DG aims to learn
domain-invariant features from one or multiple source do-
mains during training, using techniques focused on identi-
fying domain-invariant features [5, 12, 15, 27]. DA, on the
other hand, leverages data from parts or the entire target
domain during training, allowing for supervised or unsu-
pervised alignment of features to handle distribution shifts
[28, 29, 32, 37]. However, anticipating all possible distribu-
tion shifts during training is impractical, resulting in lim-
ited generalization capabilities across test domains. Con-
sequently, performance cannot be guaranteed for unknown
test domains.

The concept of updating model weights online has re-
cently gained attention, with [33] introducing a pre-text task
for weight updates, followed by [13] using a image recon-
struction task. The underlying principle in most such ap-
proaches is that either only a sample or the full test set can
be used to align the test domain without relying on and
data associated with the primary task. This approach has
shown clear performance gains in the natural image domain
e.g. [13, 33]. Although these methods individually update
weights for each sample, they are suboptimal for feature
extraction in HCI data, as confirmed by our own experi-
ments and recent findings [21]. Considering the nature of
HCI data, which is often grouped into subsets such as wells,
plates, or batches, adapting feature extraction strategies to
these groups becomes an appealing and efficient option.

While test time domain adaptation has shown success in
the Natural Imaging domain, its application in the medi-
cal and biomedical imaging domain, specifically in tasks
like medical image segmentation [23] and image recon-
struction [10, 17], remains limited. Notably, there is a lack
of research directly addressing domain shifts in medical
and biomedical classification tasks, and particularly for HCI
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data, where these distributional shifts overwhelmingly dom-
inate the learning signal.

3. Methods
In this study, we address the challenge of generaliza-

tion gaps caused by domain shifts in new sources of High
Content Imaging (HCI) data. To tackle this problem, we
propose a novel self-supervised domain adaptation (SSDA)
strategy called CODA which is able to deal with the unique
challenges associated with HCI data.

Building upon the recent work of [13], we adopt a dual-
model approach, which separates the model into a feature
extractor and a classifier (Figure 1). Within our framework,
the feature extractor is trained in a self-supervised manner
and produces features which are then processed by the clas-
sifier to solve the classification task (Figure 2). Then, when
unlabeled data from a new domain is encountered, one can
update only the feature extractor using self-supervision to
adapt to the new domain. This allows the model to adapt
the feature extractor to the new domain while preserving
the ability of the classifier to make correct predictions.

However, as demonstrated in this study, directly apply-
ing this design yields very poor performance in HCI data.
This is because the biological signals of interest are over-
shadowed by acquisition and experimental artifacts (see Ta-
ble 2). To overcome this obstacle, we made adaptations in-
spired by [15] to modify the SSDA so that it becomes ag-
nostic to these distracting artifacts. This allows it to learn
features that better distinguish the biological signal of inter-
est and pass them on to the frozen classifier.

Baseline The primary baselines we utilize in this study in-
volve the supervised learning of a standalone Vision Trans-
former (ViT) model on HCI data, as commonly used. Once
trained, we directly apply this model to the target dataset.

The dual model In our approach, we utilize a vision
transformer (ViT) model to learn meaningful representa-
tions from input patches. However, the standard ViT lacks
the ability to differentiate generic low-level features from
task-specific ones. To address this, we take inspiration
from Test-Time Training (TTT) [13, 33], which separates
the model into a feature extractor and a classifier. As seen
in Figure 2, the feature extractor learns generic represen-
tations through self-supervised training, while the classi-
fier focuses on solving the specific task. In our study, we
employ DINO [2], a consistency-based method, instead of
reconstruction based Masked Autoencoders (MAE) [13].
This is motivated by the subpar performance of MAE in
HCI data [21] instead using DINO which has show better
performance than other SSL approaches in HCI [15, 21].
After the feature extractor is trained, it generates features
that are used by the classification model.
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Figure 2. The training strategy and deployment of the dual model
in CODA. In the first step, a labeled data source is used to pretrain
a feature extractor using self-supervision. In step 2, a classifier is
appended to the feature extractor and supervised training is per-
formed on the same data source. In step 3, the model is adapted
online to a new unlabeled out-of-domain data source by using
cross-batch consistency learning [15] and self-supervision [2] to
adapt the feature extractor while keeping the weights of the clas-
sifier frozen.

Self-supervised domain adaptation When a model is
deployed in a new domain, the performance can be severely
impacted by distribution shifts that alter the data representa-
tion, particularly in the case of HCI data, as discussed pre-
viously. These shifts primarily stem from intrinsic proper-
ties of the data rather than task-specific characteristics. In
our problem the task remains constant, it is the appearance
of the data that changes. Therefore, the domain adaptation
method should focus on producing unbiased features that
can be consumed by the classifier for the task at hand.

Adapting the features of a monolithic model to a new
domain can be challenging due to the entanglement of low-
level and high-level features, impacting both generic and
task-specific representations. However, employing a dual
model system allows for updating the feature extractor in-
dependently, while preserving the task-specific portion of
the network. Inspired by this insight, we adopt the on-the-
fly feature extractor update approach introduced by [13,33].

Figure 2 illustrates the process. First, a labeled data
source is utilized to pretrain the feature extractor through
self-supervised learning (step 1). Subsequently, a classifier
is appended to the feature extractor, and supervised train-
ing is conducted on the same data source (step 2). Fi-
nally, to adapt the model to a new unlabeled out-of-domain
data source, using self-supervision techniques, specifically
DINO [2] are employed, allowing the feature extractor to
be updated while keeping the classifier weights frozen (step
3). By employing this approach, the classification model
remains unaffected, while the feature extractor is adapted to
extract generic representations suitable for the task, agnos-
tic to the peculiarities of the data source.
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Table 1. Imaging settings and data volume for the studied sources.

Source Description Objective Batches Plates Images

S3 Opera Phoenix, widefield, laser 20X/1 13 25 85,409
S5 CV8000, confocal, laser 20X/0.75 23 24 82,256
S8 ImageExpress Micro, confocal, LED 20X/0.75 4 4 13,824
S11 Operetta, widefield, LED 20X/1 4 7 23,373

S7 CV7000, confocal, laser 20X/0.75 7 7 24,192
S10 CV8000, confocal, laser 20X/0.75 6 6 13,812

Figure 3. Example images from the six sources, showing the simi-
larity between images of the same source but different compounds,
highlighting the inherent variability and batch effects.

Cross-batch consistency learning In High Content
Imaging (HCI), the data collection process is character-
ized by discrete experimental batches, leading to distribu-
tion shifts caused by variations in experimental conditions,
capturing settings, and time points. These shifts are com-
monly referred to as batch effects. Ideally, each HCI image
should capture only the biological effects of the treatment
and no batch effects. However, in practice, batch effects
often dominate the data, causing SSL methods to prioritize
these confounding factors over the relevant biological sig-
nals. As a result, SSL methods tend to model batch effects
rather than the desired biological signals, leading to subop-
timal performance [15].

To address this challenge, Haslum et al. [15] pro-
pose a solution called Cross-Domain Consistency Learning
(CBCL), which builds upon the principles of consistency-
based SSL methods. CDCL leverages the concept of con-
sistent representation between pairs of images that share the
same treatment but come from different domains. The un-
derlying assumption is that when the network is presented
with two images of the same treatment but from different
batches, the shared signal of interest should be the biologi-
cal signal rather than the batch effects. We adopt this strat-
egy in the Self-Supervised in domain and adaptation step
(steps 1 and 3 in Figure 2) to mitigate the influence of batch
effects and enhance the robustness of the self-supervised
feature extractor.

Test Time Training Beyond the supervised baseline, we
also include a recent Online Domain Adaptations approach,
Test-Time Training (TTT) [13]. TTT used a dual-model
setup with a MAE [16] as a feature extractor with a clas-
sification model stacked on top of it, these are trained in

sequence. At test time the FE is update for each test image
individually, see [13] for more details.

4. Experimental Setup
In this section, we describe the datasets, task used and

the implementations details of the methods described in the
previous section 3. Starting with the task, we focus on
Mechanism-of-Action (MoA) prediction. The MoA of a
compound describes how a substance produces a pharma-
cological effect, often involving determining which target,
such as proteins or enzymes, the substance interacts with.
Understanding the MoA can help in predicting potential
drug interactions, side effects, and can help guide the de-
sign of new, more effective drugs or therapies.

Dataset We conducted experiments using different sub-
sets of the JUMP-CP Cell Painting High Content Imaging
set [3]. The JUMP-CP dataset encompasses a wide range
of compound and genetic perturbations that were imaged
using an optimized version of the Cell Painting assay [1,6].
This dataset was generated through collaborations between
multiple institutions, making it an ideal choice for studying
domain shifts due to its diverse origins and the inclusion
of various microscope types and settings. See Figure 3 for
image examples.

For our analyses, we selected a subset of perturbations
from all participating institutions of the JUMP-CP initia-
tive. This subset comprised 302 unique compounds that
were imaged across 15 different centers, coming from the
JUMP-CP TARGET2 plates. It encompassed a total of 120
experimental batches and covered 141 distinct plates. As
targets for our study, we aim to predict the Mechanism of
Action (MoA) information associated with the compounds,
which was obtained from the Drug Repurposing Hub [7].
Among the compounds, 135 had single MoA labels, repre-
senting 54 unique MoA types. With the goal of predicting
the MoA of each the compounds, we treat the problem as a
multi-class classification task.

Our main experiments focus on a subset of the data from
four (anonymized) partners within the JUMP-CP consor-
tium [3]. This subset consists of images captured using dif-
ferent microscopes and microscope types, with variations
in objectives used. These four sources were selected as they
were the largest subsets of data from each of the microscope
types, providing the most diverse set of data sources, see
top of Table 1 for details. Two additional sources were also
used for auxiliary testing, see Table 1. These sources use
similar microscope setups to the ones used in S5, allowing
for comparison between similar image acquisition settings.
Additional details for the sources used in this work can be
found in Appendix A.2.

Note that in this work we use a subset of images with
known MoA labels. The raw image data were prepared us-
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ing standard illumination correction and intensity outlier re-
moval followed by downscale to half the original size and
compressed, using DeepProfiler [25]. Finally, we reduce
the image channels from five to the three most informative
channels, based in observations by [34].

Implementation details Throughout this study, we em-
ploy DEIT-S models [35], initialized with pretrained
weights from IMAGENET [11]. For all supervised models,
we utilize cross-entropy loss for the MoA task. Our training
process includes a linear warmup phase of 3 epochs, during
which the learning rate gradually increases until it reaches a
value of 10�4. Subsequently, we employ a step-wise learn-
ing rate reduction strategy, reducing the learning rate by a
factor of 10 each time the validation loss and accuracy met-
ric reach a saturation point.

To train the dual model, we follow a two-step approach
depicted in Figure 2. First, we perform a self-supervised
step using DINO, adhering to the default settings described
in [2] with slight variations. This involves training for 300
epochs, using a learning rate of 10�4, linear warm-up for
10 epochs, followed by cosine annealing. We use an ex-
ponential moving average of 0.996, following the augmen-
tation strategy from [21]. When incorporating cross-batch
examples, the same setup is used, with the exception of how
the augmented samples are combined, using one global and
three local views from each images in the sampled pair. The
pairs are sampled based on metadata, with the requirement
that the images are of the same treatment, but come from
distinct batches. In the second step, the supervised task-
specific step, we stack a DEIT-S model on top of the frozen
feature extractor trained in the first step. Passing the tokens
of the feature extractor into the task-specific model by re-
moving the embedding layer and replacing it with a linear
layer. The training strategy for this step remains consistent
with the supervised baseline approach described earlier.

Finally, the third step is adaptation using DINO, with or
without CB sampling, to adapt the feature extractor to new
out-of-domain data. This is done following the exact same
strategy as in the second step described above, unless other-
wise stated, but applied to the test set images, crucially not
relying on any labels related to the primary task.

5. Experiments and Results
In previous sections, we discussed the significant impact

of distribution shifts in HCI. In this section, we demonstrate
how dramatically performance degrades when applying a
standalone model to a new HCI source.

We measured performance using Accuracy as the label
proportions are maintained across sources. We further re-
port the F1 scores in Table 4 in the Appendix. We first as-
sess the generalization and adaptation capabilities of stan-
dalone DEIT models, which serve as our baselines. Next,

Table 2. Generalization performance across target sources (Acc.).

Target
Source S3 S5 S8 S11 S7 S10 Model type (Set trained)

S3

39.0 ± 0.4 13.5 ± 1.3 15.6 ± 0.9 11.4 ± 1.0 19.5 ± 0.8 12.0 ± 0.6 Supervised
35.6 ± 0.2 9.2 ± 1.2 9.9 ± 0.1 7.1 ± 0.5 14.8 ± 0.5 9.5 ± 0.8 Dual-model-DINO
40.5 ± 0.4 14.3 ± 0.2 12.8 ± 1.1 9.0 ± 0.9 17.9 ± 0.5 10.8 ± 0.7 Dual-model-CB

- 8.2 ± 1.4 9.0 ± 1.0 9.0 ± 2.8 10.8 ± 3.3 7.6 ± 1.6 TTT
- 24.4 ± 0.6 25.4 ± 0.4 20.5 ± 1.3 27.2 ± 0.6 17.3 ± 1.0 ODA
- 33.3 ± 0.3 33.9 ± 0.2 30.4 ± 0.6 36.7 ± 0.3 26.7 ± 0.1 CODA

S5

7.8 ± 0.2 35.9 ± 0.3 13.5 ± 0.5 5.9 ± 0.4 11.7 ± 1.0 12.7 ± 0.2 Supervised
5.2 ± 0.6 36.2 ± 0.6 13.6 ± 0.5 5.2 ± 0.7 9.4 ± 0.4 11.9 ± 0.6 Dual-model-DINO
6.0 ± 1.0 36.6 ± 0.7 14.9 ± 0.9 5.3 ± 1.0 9.1 ± 0.5 12.6 ± 0.6 Dual-model-CB
6.6 ± 1.6 - 10.4 ± 1.8 5.9 ± 1.0 9.2 ± 2.2 9.0 ± 1.2 TTT

13.9 ± 1.1 - 25.5 ± 0.4 14.9 ± 1.0 23.4 ± 0.7 20.4 ± 0.7 ODA
26.7 ± 1.3 - 28.5 ± 1.1 21.2 ± 0.7 27.6 ± 0.6 28.1 ± 0.5 CODA

S8

9.5 ± 0.6 11.8 ± 1.4 31.0 ± 0.5 10.3 ± 1.5 18.3 ± 0.4 12.0 ± 0.7 Supervised
7.0 ± 0.7 12.0 ± 0.8 31.2 ± 0.9 8.4 ± 0.4 13.0 ± 0.4 9.7 ± 0.3 Dual-model-DINO
8.6 ± 0.5 12.0 ± 0.4 31.5 ± 1.9 9.3 ± 0.5 13.3 ± 0.4 9.7 ± 0.6 Dual-model-CB
5.1 ± 0.6 4.6 ± 0.5 - 5.2 ± 0.5 3.3 ± 0.2 4.7 ± 0.6 TTT

14.1 ± 0.7 19.0 ± 0.6 - 18.2 ± 0.3 21.8 ± 0.8 17.2 ± 0.7 ODA
20.1 ± 0.4 16.5 ± 0.9 - 20.4 ± 1.0 23.9 ± 1.1 19.9 ± 0.8 CODA

S11

6.4 ± 1.0 6.6 ± 1.4 9.4 ± 0.7 32.4 ± 0.6 7.9 ± 1.2 6.9 ± 1.3 Supervised
4.7 ± 1.2 5.2 ± 1.4 6.6 ± 0.6 30.1 ± 0.3 4.1 ± 0.5 4.4 ± 0.7 Dual-model-DINO
4.5 ± 0.4 4.7 ± 0.7 6.9 ± 1.6 31.6 ± 0.8 4.4 ± 1.0 4.4 ± 1.0 Dual-model-CB
4.7 ± 0.2 4.9 ± 0.3 7.8 ± 1.4 - 7.0 ± 0.0 5.6 ± 0.6 TTT

10.6 ± 0.2 14.8 ± 0.9 17.5 ± 1.1 - 17.7 ± 1.3 11.0 ± 0.3 ODA
21.5 ± 0.5 16.5 ± 1.4 22.1 ± 0.9 - 23.8 ± 1.6 11.9 ± 1.2 CODA

we deploy the dual model and evaluate its performance with
and without adapting the feature extractor on the test source.
Finally, we incorporate online self-supervised domain adap-
tation to address batch effects and assess its effectiveness.
The results of our main experiments can be found in Table
2 and Figure 7.

In our experiments, we consider the following models
and baselines:

• Supervised A standalone DEIT-S trained in a super-
vised fashion on the source data, applied to domain-
shifted target data.

• Dual-model-DINO A DEIT-S feature extractor with
a DEIT-S classifier stacked on top. The feature ex-
tractor is self-supervised with DINO and the classifier
is trained in a supervised manner, with the feature ex-
tractor being frozen, both on the source data.

• Dual-model-CB The same as above, but in addition
to DINO we use cross-batch image pair sampling, as
described in section 3.

• ODA Online domain adaptation – this is the same as
Dual-modal-DINO but the feature extractor is adapted
to the target data using self-supervision.

• TTT Similar to ODA but using MAE instead of DINO
and updating the feature extractor one image at a time.

• CODA Cross-batch Online Domain Adaptation – this
is the same as Dual-modal-CB but the feature extractor
is adapted to the target data.

Baseline performance We begin our evaluation with the
standalone DEIT-S classification models. When the models
are trained and evaluated on the same data source, as shown
in Table 2, the performance ranges from 30.1 to 40.5 with a
mean of 36.5% when including all sources, in terms of MoA
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accuracy. This represents the situation when there is no do-
main shift and we have access to labels. When these mod-
els are applied to other splits (introducing a domain shift
and no access to labels), a significant drop in performance
is observed, with values ranging from 5.9 to 19.5 (first row
of each non-diagonal element of Table 2 and the first bar in
Figure 7 in Appendix). The substantial domain shifts cause
the models to be reduced in accuracy by up to 84%.
Performance of the dual model Replacing the baseline
with the dual model yields a performance similar to that
of the standalone model on the in-domain data. Some-
what surprisingly, these models exhibit lower performance
compared to the standalone models when applied to out-of-
domain sources. The accuracy ranges from 4.7 to 14.8, as
indicated in the second row of each non-diagonal element
in Table 2 (and the second bar in Figure 7 in the Appendix).
Performance when updating the feature extractor Both
the standalone and dual models fail to generalize to new
HCI data sources. However, the situation changes dramati-
cally when we employ online domain adaptation (ODA) on
the feature extractor of the dual model when we apply it
to new sources. As illustrated Table 2 (fifth row of each
non-diagonal element of the source split) and the fourth
bar in Figure 7 in the Appendix we observe a substantial
performance improvement compared to both the standalone
model and the dual model without updated feature extrac-
tor. The out-of-domain MoA accuracy for ODA ranges
from 10.6 to 27.2 (a mean increase of 174.8% ± 32.5 over
the baseline) surpassing the performance of the standalone
model – although still not reaching the level achieved when
testing and evaluating within the domain.
Performance when employing cross-batch learning In-
troducing cross-batch consistency learning (CBCL) for self-
supervision of the dual model’s feature extractor brings
additional improvements in both in-domain and out-of-
domain scenarios. CODA combines CDCL with online do-
main adaptation (ODA), yielding an enormous performance
boost over the baseline as shown in Figure 7 in the Ap-
pendix (last bar) and the last row of Table 2. CODA yields
MoA accuracy ranging from 11.9 to 36.7, in many cases,
the out-of-domain performance is comparable to the per-
formance achieved when training and testing are conducted
within the same domain – in some cases even exceeding
that (e.g. S3!S8 with CODA yields 33.9 while the S8!S8
baseline is 31.0). The average performance boost of CODA
over the baseline is 232.6% ± 63.6. CDCL is also helpful
when used without online domain adaptation, although it
provides less of a performance boost than ODA. As seen in
row three of the non-diagonals in Table 2 and the third bar
in Figure 7 in the Appendix.
MAE Performance The idea of using separate models for
feature extraction and classification, followed by feature ex-
traction alignment was inspired by [13], where they use
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Figure 4. Effect of Data Granularity. (Accuracy) Investigating the
performance impact when using ODA on different subsets (plate,
batch, source) of the target domain. Single plate/ batch denotes
the scenario where ODA is applied on a single plate or batch and
then evaluated on the full target source. All plate/ batch denotes
the scenario where ODA is applied on a single plate or batch and
tested on the same subset.

MAE [16] for self-supervision. However, the performance
of MAE in HCI data have been shown to be inferior to
DINO, while also it does not allow for training with cross-
batch examples [21]. For completeness, we report in Table
2, Table 3 and in the Appendix the results when using MAE
instead of DINO. In domain MAE performs slightly worse
than DINO. However, in the ODA and TTT setup MAE fails
to approach DINO performance – even without CB training.

5.1. Analysis and Ablation Studies
In this section, we delve into further analysis and con-

duct ablation studies to gain a deeper understanding of the
performance of CODA and the other models introduced in
our experiments.
Generalization across similar microscopes In order to
gain further insights into the generalization capabilities of
the different models, we conducted experiments using two
additional data sources, S7 and S10, as test sets. These
two sources share more similarities in terms of microscope
setup with S5, compared with S3, S8, and S11. If the mi-
croscope setup was the primary factor influencing general-
ization, we would expect to observe improved performance
as the similarity (domain distances) between the sources in-
creases [24]. However, upon examining the results in Table
2, we found no significant performance improvements for
models trained on S5 and tested on S7 and S10 (S5!S7
and S5!S10). Surprisingly, the performance in S5!S8
was actually higher, despite the use of distinct microscope
types and illumination methods. This suggests that the im-
pact of source-to-source variability on the model’s gener-
alization performance cannot be solely attributed to differ-
ences in imaging settings – but rather to small differences
in the protocol, reagents, or the environment.
Effect of Data Granularity In our main experiments, we
investigated the effectiveness of adapting the feature extrac-
tor to the full test source dataset, resulting in significant per-
formance benefits, as shown in Table 2 and Figure 7. How-
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Dual-Model-DINO (S3!S3) Dual-Model-DINO (S3!S5) ODA (S3!S5)

Dual-Model-CB (S3!S3) Dual-Model-CB (S3!S5) CODA (S3!S5)

Figure 5. Feature embeddings. UMAP visualization of the feature
space, showing the impact of distribution shift and the effects of
feature extractor alignment. The first column shows the features
in S3, column two and three shows S5.

ever, in real drug discovery scenarios, data is generated in
separate experimental batches, introducing batch variabil-
ity. In order to process the data as it arrives, an online ap-
proach is desirable. Moreover, we expect batch-level vari-
ability to be particularly pronounced, as it involves control-
ling confounding environmental variables such as incuba-
tion time, reagent concentration, and device usage. There-
fore, applying ODA at the batch level may prove advanta-
geous compared to applying it across multiple batches.

To assess the performance of ODA and the baselines
at different granularities, we conducted transfers from
S3!S11, S5!S11, and S8!S11, while varying the level
of granularity at which the models were applied: plate,
batch, and source. S11 consists of seven distinct plates be-
longing to four batches, and we applied ODA, along with
the baseline models, separately for each plate and batch, re-
sulting in a total of 11 settings (4 batches and 7 plates). We
used the same setup as described earlier, with the mini-batch
size reduced to 64 to accommodate the smaller dataset size
when training on individual batches and plates. The results
are illustrated in Figure 4.

Overall, ODA proves beneficial at all three levels of
granularity (source, batch, and plate). Interestingly, align-
ing per batch yields the best performance, while plate-level
alignment is slightly better or on par with full source train-
ing. This observation supports the known variability be-
tween batches, affirming the advantage of aligning within a
group of similar variability. Additionally, since the same
number of iterations is performed regardless of whether
ODA is applied at the source or batch level, there is no ad-
ditional cost associated with applying it to smaller subsets.
In fact, it can be considered preferable as it facilitates easier
parallelization.

Table 3. Generalization performance (Accuracy) from S3 to S7
and S10, between DINO and MAE.

Model type S3 ! S7 S3 ! S10

Dual-model-MAE 14.2 ± 0.8 8.9 ± 0.5
Dual-model-DINO 14.8 ± 0.5 9.5 ± 0.8
ODA-MAE 17.8 ± 1.1 11.1 ± 0.4
ODA 27.2 ± 0.6 17.3 ± 1.0

ODA using only a single plate or batch While aligning
the feature space at the batch level proved to be the most ef-
fective non-cross-batch strategy, aligning features for each
new batch or plate can be time-consuming (although it is
still relatively low in time and cost compared to the experi-
mental and imaging pipeline). To evaluate the feasibility of
aligning the feature extractor when working with subsets of
the data, we repeated the experiment described in the pre-
vious paragraphs. However, this time we evaluated each of
the models on the full source dataset, rather than only on
the subset it was aligned on. That is, we performed ODA
on a single plate or batch, and applied this model to the rest
of the out-of-domain data. The results of this experiment
are shown in Figure 4. We observed a slight but notice-
able drop in performance when models were evaluated on
the full source dataset compared to when they were evalu-
ated only on the subset they were aligned on. Nevertheless,
the overall benefits of ODA were still maintained, as even
aligning with a random plate led to substantial performance
improvements over the supervised baseline.
How ODA/CODA changes the feature space To gain a
deeper understanding of how online alignment using ODA
or CODA affects the feature space, we conducted a thor-
ough analysis. We visualize the feature space of the dual
model in Figure 5 and performe Centered Kernel Alignment
(CKA) [8] analysis pre- and post-alignment in Figure 6.

In Figure 5 we provide a UMAP of the embeddings of
the CLS token to visualize the feature space. When tran-
sitioning from the in-domain to the out-of-domain setting
(left and middle column), we observe a significant shift in
the feature space for both the Dual-Model-Dino and Dual-
Model-CB. In the in-domain setting (S3!S3, left pan-
els), clear structures are present. Note that Dual-Model-
DINO (S3!S3) is over-clustered because it has picked
up on batch effects, an undesirable property. When ap-
plied to out-of-domain data (without adaptation, in the
middle panels) S3!S5 the models struggles to distinguish
any mechanisms-of-action. After applying ODA or CODA
(right panels S3!S5), the structure in the feature space is
restored, allowing for better differentiation of MoA classes.

We further examined feature similarity within the feature
extractor across different layers using CKA analysis. The
results (Figure 6) revealed noticeable differences in feature
representation pre- and post-alignment. This indicates that
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weights throughout the feature extractor are updated dur-
ing alignment, particularly for high-level features. It is pos-
sible that biological variations between source setups are
challenging to adapt to using low-level features. Given the
strong predictive performance of ODA and CODA models
on out-of-domain data, as well as the good fit of the adapted
features to the pre-trained task model, we focused on com-
paring the feature similarity between CODA before and af-
ter adaptation (S3!S5). We compare how closely aligned
the pre- and post-aligned features resemble those learned
in the in-domain setting. Figure 6 (top right) demonstrates
a clear diagonal correlation between the post-alignment
model and its S5 Dual-model-CB counterpart, suggesting
that CODA training successfully learns features similar to
those learned in the in-domain setting. When examining the
CLS feature similarity (Figure 6 bottom right), the trend is
clearer, and the strength of the similarity seems to be some-
what maintained, even at the high-level features. Interest-
ingly, without aligning the feature extractor, the CLS rep-
resentations remained similar across different depths of the
feature extractor (Figure 6 bottom center), indicating that no
high-level features are distinguishable in the new domain.
This suggests that the domain shift is so severe that the
learn features are no longer useful, potentially explaining
why performance degradation is seen without alignment.

6. Discussion
Our empirical findings consistently support our initial

expectations and highlight the limitations of standalone
models in generalizing to new High Content Imaging (HCI)
sources. In contrast, the dual model, with its adaptive capa-
bilities, demonstrates a significant ability to reduce gener-
alization gaps. The dual model’s bifurcated structure, con-
sisting of separate feature extraction and task-specific com-
ponents, facilitates a more straightforward adaptation to do-
main shifts. This design allows the task-specific features to
remain intact while effectively adapting the feature extrac-
tor to new data characteristics.

The incorporation of CDCL into the self-supervised fea-
ture extraction process further strengthens the model’s abil-
ity to mitigate batch effects, enhancing its overall robust-
ness. CDCL ensures consistent representations across dif-
ferent batches, leading to substantial improvements in the
model’s generalization capabilities.

Our work highlights the critical importance of the train-
ing methodology employed in instructing the feature extrac-
tor via self-supervision. With the increasing development of
innovative self-supervised methods, we anticipate the emer-
gence of more advanced domain adaptation strategies in the
near future. These strategies are expected to effectively ad-
dress the current generalization gap in HCI, enabling more
efficient and robust applications in this field.

Aside from the performance benefits demonstrated in

Figure 6. CKA. Feature similarities in S5 for all tokens (top) and
CLS tokens (bottom) of the feature extractor. (left) CODA be-
fore and after adaptation. (middle) CODA before adaptation vs. a
Dual-Model-CB trained in S5. (right) CODA after adaptation vs.
a Dual-Model-CB trained in S5.

our work, it is worth noting that methods like CODA that
can adapt online to domain shifts are of critical importance
in HCI and drug discovery, where sources of variation are
high and unpredictable. As such, online domain adaptation
methods like CODA will be essential in mitigating these
sources of variation that are ultimately beyond our control.

7. Conclusion
Our findings emphasize the limitations of standalone

models when applied to novel High Content Imaging (HCI)
data sources and highlight the effectiveness of the dual
model approach in reducing generalization gaps. The dual
model’s bifurcated structure, comprising self-supervised
feature extraction and task-specific components, enhances
adaptability to new domain shifts. Furthermore, the in-
tegration of Cross-Domain Consistent Learning enhances
the model’s robustness and consistency across different
batches, thereby improving its generalization capabilities.
The advancement of sophisticated self-supervised methods
is expected to drive progress in online domain adaptation
strategies, ultimately addressing the prevailing generaliza-
tion gap in high content imaging. Overall, our method of-
fers a viable strategy to mitigate batch effects and distri-
bution shifts caused by differences in experimental settings
and apparatus, leading to improved generalization perfor-
mance in the HCI domain.
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