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Abstract

Image anomaly localization (IAL) is widely applied in
fault detection and industrial inspection domains to dis-
cover anomalous patterns in images at the pixel level. The
unique challenge of this task is the lack of comprehen-
sive anomaly samples for model training. The state-of-
the-art methods train end-to-end models that leverage out-
lier exposure to simulate pseudo anomalies, but they show
poor transferability to new datasets due to the inherent
bias to the synthesized outliers during training. Recently,
two-stage instance-level self-supervised learning (SSL) has
shown potential in learning generic representations for IAL.
However, we hypothesize that dense-level SSL is more com-
patible as IAL requires pixel-level prediction. In this paper,
we bridge these gaps by proposing a two-stage, dense pre-
training model tailored for the IAL task. More specifically,
our model utilizes dual positive-pair selection criteria and
dual feature scales to learn more effective representations.
Through extensive experiments, we show that our learned
representations achieve significantly better anomaly local-
ization performance among two-stage models, while re-
quiring almost half the convergence time. Moreover, our
learned representations have better transferability to un-
seen datasets. Code is available at https://github.
com/terrlo/DS2.

1. Introduction

Image anomaly localization (IAL) has received much re-
search interest in recent years owing to its wide application
in industrial inspection and fault detection domains [2, 15].
The main objective of IAL is to discover regional anoma-
lous patterns, but it poses unique challenges as regional
anomalies are often tiny and subtle, and can take on dif-
ferent forms, rendering it impossible to build an exhaustive
anomaly training set presenting all possible anomalous pat-
terns [22]. Therefore, many early works formulated the task
in an unsupervised setting [14, 19, 28], where the model is
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Figure 1. An illustration of the difference between instance-level
pretraining and dense-level pretraining. In instance-level pretrain-
ing, the visual features of an image are pooled in the spatial di-
mension before loss calculation, whereas in dense pretraining, the
spatial information is preserved. We hypothesize that dense pre-
training is more compatible with the IAL task as it requires pixel-
level discrimination.

trained on normal images only. However, as an unsuper-
vised setting usually trains a generative model, the learnt
boundary between normal and abnormal embeddings is not
discriminative enough [9].

In the last few years, self-supervised learning (SSL) has
shown to be effective in learning discriminative representa-
tions in tasks with no access to a large quantity of labeled
data [5, 11, 32]. SSL achieves this goal by designing a pre-
training task which exploits the intrinsic structures from the
unlabeled data. The benefit of learning discriminative rep-
resentations with SSL makes it a suitable method for the
IAL task. Training an end-to-end SSL model for IAL is
a prevalent choice [19, 24, 33]. A well-designed end-to-
end model can achieve great localization performance on
the target dataset as the feature extractor and the classi-
fier are updated synchronously with the same training loss.
Nonetheless, as its classifier is biased towards the target
dataset, an end-to-end model needs to train a separate model
for each new dataset. In addition, these end-to-end mod-
els often utilize outlier exposure, where they create anoma-
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lous training samples by first inspecting the common pat-
terns of real anomalies in the test set, and then designing
a simulation process that edits normal images into pseudo-
anomalous ones that reflect the common anomaly patterns.
However, the simulated anomaly distribution can be incon-
gruous with real anomalies from new datasets, thereby fur-
ther hampering their transferability.

Recently, two-stage SSL models show potential in learn-
ing generic representations for the IAL task. For example,
Sohn et al. [27] designed a two-stage framework, where in
the first stage, SSL is used to learn image representations,
and in the second stage, a simple density estimator is fitted
using the representations from the first stage, which func-
tions as a one-class classifier. The framework proves to
achieve good performance on the IAL task. Following their
two-stage framework, Li et al. [18] introduced CutPaste,
which relies on outlier exposure to simulate anomalies and
then trains a classifier to distinguish normal images from
pseudo-anomalous ones. However, the pretraining tasks
in both works are instance-level-based, which concentrate
on learning high-level semantic information from the entire
image. As a result, these models are unable to provide ade-
quate pixel-wise discriminative insight. To compensate for
this, these models need to be trained for a long period to
learn competent representations for the IAL task. We argue
that IAL is fundamentally a dense prediction task because
it requires pixel-wise anomaly prediction, so it interests us
to formulate IAL as a dense pretraining problem. An illus-
tration of the difference between instance-level and dense-
level pretraining is shown in Figure 1.

To this end, we introduce a new two-stage, dense pre-
training model without outlier exposure, called Dual Scale
Dual Similarty (DS2). Our model is motivated by a dense
model PixPro [32], which was originally designed for ob-
ject detection and semantic segmentation. We tailor it to
learn representations for the IAL task. As the localized
anomalies in an image are often tiny and subtle, the IAL
task requires the model to heed nuances in the image by
learning high-quality representations. Therefore, our DS2
first tightens the positive-pair selection criterion to reduce
the amount of noisy positive pairs learnt by the model.
Next, as this tightened positive-pair criterion can result in
information loss during pretraining, we devise additional
feature-wise top-1 similar pair as the auxiliary positive-pair
criterion to compensate for the information loss. Finally,
as localized anomalies can appear in various sizes, we tap
into the inherent advantage of dense pretraining by adopting
multi-scale features from the feature extractor to guide the
model to learn multi-scale representations. Figure 2 depicts
an overview of our dense pretraining model DS2.

We summarize the contributions of our work as follows:

• We propose a dense pretraining model DS2 and com-
pare it with the SOTA instance pretraining models for

the IAL task under the two-stage framework. We
find that DS2 achieves better localization performance
(at least 1.6% improvement in AUC compared to the
SOTA instance pretraining baseline [27], and 3.9% im-
provement in AUC compared to CutPaste(3-way) [18]
under the “one-for-all” setting) while substantially re-
duces the pretraining time.

• Compared with the SOTA self-supervised end-to-end
models, our pretrained DS2 has stronger transferability
to new datasets when given no fine-tuning. This indi-
cates our model is a suitable choice as an off-the-shelf
baseline model for rapid IAL task on new datasets.

• Our experiments demonstrate that DS2 has other mer-
its such as stable performance, high robustness towards
small training dataset size and small batch size.

2. Related Work
We first briefly review some previous works on unsuper-

vised IAL task in Section 2.1, and then discuss two different
approaches for self-supervised IAL task—end-to-end and
two-stage—in Section 2.2.

2.1. Unsupervised Image Anomaly Localization

With the introduction of industrial defect datasets such
as MVTec AD [2], the Image Anomaly Localization (IAL)
task has attracted increasing research interest. Many early
works resort to unsupervised setting for this task [3,7,8,14,
17, 23, 26, 28, 30, 31, 34, 35].

Among them, one popular method is to build a recon-
struction model with an auto-encoder (AE) [7,14,17,26,28,
31, 34, 35]. As the AE is trained to reconstruct normal im-
ages only, it is assumed that abnormal images will be poorly
reconstructed during inference. However, this assumption
does not always hold true as the downsampling rate in AE
influences its reconstruction ability for both normal and ab-
normal patterns. Knowledge distillation is another common
method [3, 8, 23] where a compact student network distills
representations from a teacher network pretrained on some
other vision task. During training, the student only learns
representations of normal images from the teacher, so dur-
ing inference, the student and the teacher are expected to
produce significantly different representations for anoma-
lous regions.

2.2. Self-supervised Image Anomaly Localization

End-to-end Framework. Applying self-supervised
learning for image anomaly localization has established it-
self as a new research topic over recent years [18,19,24,27,
33]. Among them, training an end-to-end self-supervised
model with outlier exposure is a prevalent choice in the IAL
research field [19, 24, 33], where the classifier is co-trained
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with the feature extractor and preserved for anomaly scor-
ing during inference. The task is to learn which regions
(pixels) in the image are contaminated by the simulated
anomalies. Liznerski et al. [19] added confetti noise to the
normal images and trained a hypersphere classifier to lo-
calize the anomalies. Zavrtanik et al. [33] turned to Perlin
noise images [21] for anomaly simulation and trained an AE
to discriminate normal and abnormal regions in an image.
Schlüter et al [24] argued that discontinuity in the simulated
anomalous images will cause overfitting issue. To circum-
vent it, they used Poisson image editing [20] to seamlessly
blend an anomalous patch with a normal image such that
the created anomalous image looks smooth.

Two-stage Framework. Different from end-to-end
models, Sohn et al. [27] established the two-stage frame-
work for self-supervised IAL task. In the first stage, a self-
supervised pretraining task is conducted to train a model
that produces visual representations for the input image;
then in the second stage, the representations of normal pat-
terns are fitted by a density estimator, which is then evalu-
ated against each test image to determine its anomaly score.
In their work, they applied instance-level pretraining tasks
such as rotation prediction [10], vanilla contrastive learn-
ing [5], and their novelly proposed distribution-augmented
contrastive learning [27]. Following Sohn et al. [27], Li et
al. [18] came up with a new pretraining task named Cut-
Paste, which utilizes the outlier exposure strategy, where it
cuts out a portion of the image and pastes it back to some
random location in the same image. The pretraining goal
is to train a feature extractor and a classifier that effec-
tively differentiate between normal and pseudo-anomalous
images. After pretraining, the classifier is discarded and
the representations from the feature extractor are fitted by
a density estimator. Their pretraining task is categorized as
instance-level as the input to the classifier is the average-
pooled feature embedding of the input image.

Our proposed DS2 follows the two-stage framework.
However, we argue that instance pretraining is sub-optimal
for the dense-prediction IAL task, whereas dense pretrain-
ing can be more effective given the nature of the problem.
Additionally, our DS2 does not rely on outlier exposure.

3. Dual Scale Dual Similarity (DS2)
In this section, we formally introduce our DS2, a two-

stage transferable dense representation learning model for
IAL. Given that PixPro [32] achieves good performance on
semantic segmentation and object detection, we adopt it as
the baseline pretraining model and tailor it to learn repre-
sentations for the IAL task. Next, we explain how PixPro
works, and then how we tailor it to our problem. Our final
dense pretraining model DS2 is illustrated in Figure 2.

For an input image x, the model first applies two separate
data augmentation processes t, t′ ∼ T , where T is a series

of data augmentation methods such as horizontal flip, Gaus-
sian blurring, etc., and obtains two views t(x) and t′(x). The
first view t(x) passes through the online branch, which con-
sists of a backbone network f , a projection head network
g, and a Pixel-to-Propagation Module (PPM). The second
view t′(x) passes through the momentum branch, consist-
ing of a backbone network f ′ and a projection head g′, of
which the weights are updated by moving average [12]. The
backbones f and f ′ are ResNet-18 [13] in our study, and the
projection heads g and g′ are two 1 × 1 convolutional lay-
ers with batch normalization and ReLU layer in-between.
The PPM module is a self-attention module that adds spa-
tial smoothness to the learnt representations.

Assuming the online branch’s output feature map is
Ω1 ∈ Rh×w×dω and the momentum branch’s is Ω2 ∈
Rh×w×dω , the PixPro loss is formulated as

LPixPro = −
∑

yi∈Ω1,zj∈Ω2

1[(i,j)∈p+]cos(yi, zj), (1)

where yi ∈ Rdω is a feature vector from Ω1 and zj ∈ Rdω

is a feature vector from Ω2. The notation 1[(i,j)∈p+] is eval-
uated to 1 if dense feature vectors yi and zj are a positive
pair, and to 0, otherwise. The feature vectors yi and zj are
considered as a positive pair if their geometric distance (Eu-
clidean distance in the input image space) is smaller than the
positive-pair distance threshold δ.

As the PixPro model was not initially proposed for our
IAL task, in Sections 3.1–3.3, we introduce our strategies to
tailor it towards our task. We first choose highly selective
positive pairs to reduce the amount of noisy information.
Then, we adopt an additional feature-wise top-1 similar pair
to complement this highly selective positive-pair criterion.
Finally, we utilize multi-scale feature maps to learn repre-
sentations of different scales.

3.1. Highly Selective Positive Pair

The PixPro model was initially proposed for downstream
tasks such as semantic segmentation and object detection.
In those tasks, a semantic region or an object usually spans
a non-trivial proportion of an image, and the model does not
need to differentiate finer discrepancies within a semantic
region or an object, allowing positive pairs to be established
from a long distance. A semantic segmentation example is
illustrated in Figure 3 (left): most of the semantic regions
have a non-trivial size, allowing a distant pair like regions
A and B to be regarded as a positive pair. On the contrary,
for IAL task, the model needs to differentiate different parts
of an object to better localize anomalies. For example, Fig-
ure 3 (right) shows a screw with localized defect in the head
(encircled by a red ellipse). The region A and B represent
screw thread and screw head, respectively. In order to better
localize the anomaly in screw head, the IAL model should
learn separate normal representations for screw thread and
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Figure 2. An overview of our dense pretraining model DS2. It contains an online branch (top) and a momentum branch (bottom). Two
positive-pair selection criteria are adopted: the geometrically proximate pair (green pair) and the feature-wise similar pair (yellow pair).
Also, our model utilizes two scales of feature maps, as indicated by c4 and c5 in the figure.
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Figure 3. Semantic segmentation (left) [16] vs. anomaly localiza-
tion (right).

screw head. Therefore, point A and B should not be con-
sidered as a positive pair in the IAL task. To validate our
hypothesis, we train the model with different positive-pair
distance thresholds (δ = 0.7 and 0.1), and then find one
normal-screw image and one faulty-head-screw image. For
both images, we crop nine patches around the screw head
and embed them with the trained backbones. To see how
separated the embeddings of normal and faulty screw heads
are, we visualize them using iVAT [29], which reveals clus-
ter tendency among data. Darker squares in iVAT indicate
higher cluster tendency. As shown in Figure 4, with tighter
threshold (δ = 0.1), we can more clearly observe two clus-
ters (highlighted by red squares), meaning the normal and
faulty embeddings are better separated. Given these obser-
vations, we reckon our dense pretraining model needs to
adopt highly selective positive pairs (δ = 0.1) for the IAL
task. In this way, we reduce the amount of noisy positive
pairs fed to the pretraining model.

3.2. Additional Top-1 Similar Pair

One issue with using highly selective positive pairs is
that it inhibits the formation of a positive pair when two
regions in an image are geometrically distant but share
similar semantic information. One example is illustrated
in Figure 2: the two yellow-box regions contain similar
patterns—part of a circuit board with a vertical groove in
the middle. Nonetheless, they do not qualify for the highly

Figure 4. iVAT visualization of normal and faulty screw head’s
embedding from backbone f trained with δ = 0.7 and δ = 0.1.
Darker square indicates higher cluster tendency.

selective positive pair criterion due to their large geomet-
ric distance. To address this problem, we propose to utilize
the information from the feature maps of the backbone net-
works f and f ′. Specifically, we denote the feature map de-
livered by online backbone f as Θ1 ≡ f(t(x)) ∈ Rh×w×dθ

and the feature map by momentum backbone f ′ as Θ2 ≡
f ′(t′(x)) ∈ Rh×w×dθ . A feature vector from Θ1 is denoted
as pi ∈ Rdθ and a feature vector from Θ2 is denoted as
pj ∈ Rdθ . We hypothesize that if the two regions contain
similar semantic information, the backbone networks would
encode them to similar feature vectors. As such, we aim to
find the vector pair (p∗i , p

∗
j ) that has the highest similarity

among all vector pairs {pi, pj | i, j ∈ h× w} and treat this
pair as the additional positive pair for the loss calculation.
Mathematically, we extend the definition of positive pair to

p+DS2 = {(i, j) | dist(i, j) < 0.1 or
(i, j) := argmax

i,j
(sim(pi, pj))}. (2)

3.3. Multi-scale Pretraining

Anomalous patterns in images come at different sizes,
and some previous works [14, 23, 26] showed effective-
ness of using multi-scale features to address this challenge.
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Algorithm 1 DS2 pretraining procedure (one iteration)

Inputs: input image x; data augmentations t, t′ ∼ T ; backbone
networks f , f ′; projection heads for conv4 gc4 , g′c4 ; projec-
tion heads for conv5 gc5 , g′c5 ; pixle-to-propogation module
PPM. ▷ apostrophe ′ denotes momentum branch

Output: final training loss LDS2.
1: Θc4

1 ,Θc5
1 ← f(t(x)); Θc4

2 ,Θc5
2 ← f ′(t′(x))

2: For each scale s ∈ {c4, c5}, create positive-pairs set
p+DS2, which records the index pairs (i, j) satisfying
the condition {(i, j) | dist(i, j) < 0.1 or (i, j) :=
argmax

i,j
(sim(pi, pj)), where pi ∈ Θs

1, pj ∈ Θs
2}

3: Ωc4
1 ← PPM(gc4(Θ

c4
1 )); Ωc5

1 ← PPM(gc5(Θ
c5
1 ))

4: Ωc4
2 ← g′c4(Θ

c4
2 ); Ωc5

2 ← g′c5(Θ
c5
2 )

5: LDS2 = − 1
2

∑
s∈{c4,c5}

∑
yi∈Ωs

1,zj∈Ωs
2

1
[(i,j)∈p+

DS2
]
cos(yi, zj)

Compared with instance representation learning, dense rep-
resentation learning is naturally compatible with leverag-
ing multi-scale features. As such, we exploit the feature
maps from the last two convolutional blocks (i.e., conv4
and conv5) of the backbone network. The conv4’s feature
map has larger spatial resolution so that each feature vector
captures fine-grained information, whereas conv5’s feature
map is smaller and each feature vector encodes higher-level
information.

We attach separate projectors to process the feature maps
from conv4 and conv5 as they have different spatial resolu-
tions. In the online branch, once the two feature maps, Θc4

1

and Θc5
1 , are processed by the projectors, they are further

processed by the same PPM module and generate two out-
put feature maps Ωc4

1 and Ωc5
1 . The multi-scale pretraining

extends the loss function Eq. (1) into

LDS2 = −1

2

∑
s∈{c4,c5}

∑
yi∈Ωs

1,zj∈Ωs
2

1[(i,j)∈p+
DS2]

cos(yi, zj),

(3)
where s denotes the feature map scale and we use two scales
in our model.

The pretraining procedure of our DS2 model in one iter-
ation is summarized in Algorithm 1.

4. Experiment
To validate the performance of our dense pretraining

model DS2, we first compare it with SOTA self-supervised
IAL models that follow the two-stage framework. In this
scenario, our baselines are: (1) the best-performing instance
pretraining models reported in [27], including RotNet(MLP

head), SimCLR [5], and DistAug; (2) CutPaste(3-way) [18],
which uses outlier exposure for data augmentation. Next,
we compare DS2 with end-to-end self-supervised IAL mod-
els to evaluate their transferability on new datasets given
no fine-tuning or retraining. In this scenario, we adopt
FCDD [19] and DRÆM [33] as our baselines.

We discuss the experiment setup in Section 4.1, compare
DS2 with two-stage baselines in Section 4.2, and compare
DS2 with end-to-end baselines in Section 4.3. Finally, we
offer some deeper insights of the model through ablation
studies in Section 4.4.

4.1. Experiment Setup

Here we provide a high-level description of the evalua-
tion datasets and the evaluation protocols used in our exper-
iments. More details on the implementation of DS2 and the
usage of the evaluation datasets can be found in the supple-
mentary material.

Datasets. When comparing DS2 with other two-stage
models, we adopt the widely-used MVTec AD [2] as
the benchmark dataset. We pretrain one model using all
the training images regardless of their categories. When
comparing transferability of DS2 with end-to-end models,
we evaluate them on three datasets: MVTec LOCO [1],
KSDD2 [4], and MTD [15]. All of them are proposed as im-
age anomaly localization benchmarks with pixel-accurate
ground-truth masks.

Evaluation. Following [18, 27], we use a simple gen-
erative classifier, which is a Gaussian Density Estimator
(GDE) [25] in our case, to evaluate the learnt representa-
tions. We follow the baselines by resizing each image into
256 × 256 and cropping patches of 32 × 32 with a stride
of 4, resulting in 57 × 57 patches per image, each with an
anomaly score. For pixel-level localization, we upsample
the patch scores into 256 × 256 with a Gaussian kernel. The
localization performance is measured with Area Under the
Receiver Operating Characteristic Curve (AUC) score, as
this is the commonly used metric in the baselines.

4.2. Comparison with Two-stage Models

Overall Quantitative Results. Here we compare the
quantitative results of our DS2 to the two-stage baselines.
Following [18, 27], we run our DS2 model five times with
different seeds and report the mean and standard deviation
scores. We also include PixPro [32] as a baseline here for
the purpose of validating our model adaptation method’s ef-
ficacy. The results are reported in Table 1.

When we apply PixPro, with backbone architecture
switched to ResNet-18 to match all the baseline models,
its performance (88.9 AUC) is not optimal. By incorporat-
ing all the adaption methods introduced in Sections 3.1–3.3,
our DS2 model achieves 94.6 AUC in the overall localiza-
tion score. This demonstrates the efficacy of our adapta-
tion strategies. Our DS2 also significantly outperforms all
the instance pretraining baselines reported in [27]: SimCLR
(85.6 AUC) and DistAug (90.4 AUC), and RotNet(MLP head)
(93.0 AUC). This finding demonstrates that dense pretrain-
ing learns better-quality visual representations for the IAL
task than instance pretraining does.
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Gran OE Model object texture all
Ins. ✗ RotNet(MLP head) [27] 96.4±0.4 86.3±2.0 93.0±0.9

Ins. ✗ SimCLR [27] 91.7±1.0 73.4±1.8 85.6±1.3

Ins. ✗ DistAug [27] 94.4±0.5 82.5±1.5 90.4±0.8

Ins. ✓
CutPaste(3-way)
(category-wise,
reported in [18])

95.8±0.1 96.3±0.1 96.0±0.1

Ins. ✓
CutPaste(3-way)

(one-for-all,
our re-implementation)

93.5±0.4 85.1±0.7 90.7±0.5

Dns. ✗ PixPro [32] 92.5±0.3 81.7±0.4 88.9±0.2

Dns. ✗
DS2(ours)

(one-for-all) 96.5±0.1 90.8±0.4 94.6±0.1

Table 1. The localization performance of different two-stage pre-
training models on MVTec AD. The best localization results are
bold-faced. (Gran: Granularity; Ins.: Instance Pretraining; Dns.:
Dense Pretraining; OE: Outlier Exposure)

Meanwhile, CutPaste(3-way) [18] outperforms our DS2
according to their reported results (96.0 AUC). However,
we need to note that the CutPaste paper pretrains a separate
model for each MVTec category (“category-wise”), while
our method pretrains one holistic model for all categories
(“one-for-all”). For a fair comparison, we re-implemented
the CutPaste(3-way) following the exact design choices as re-
ported in the original paper (refer to our supplementary ma-
terial), and pretrain CutPaste(3-way) under the “one-for-all”
setting with five random seeds, and report the mean and
standard deviation scores. The high-level results are shown
in Table 1, and the category-level results are in Table 2.

The results show that, under the same “one-for-all” pre-
training setting, our DS2 outperforms CutPaste(3-way) in
most of the categories. In terms of the overall performance,
CutPaste(3-way) can only achieve 90.7 AUC, which is much
lower than DS2 (94.6 AUC). Besides, the localization per-
formance of CutPaste(3-way) has a large variance among dif-
ferent categories. Particularly, it performs poorly on the
grid category (69.0 AUC). As CutPaste resorts to outlier ex-
posure, this could indicate that its performance is impacted
by the distribution gap between simulated and real anoma-
lies. In contrast, our DS2 does not make assumptions of real
anomalies, therefore achieving a balanced outcome among
all the categories, with the majority of categories having
localization scores above 90.0 AUC, and all the categories
scoring above 80.0 AUC.

Performance Reliability and Pretraining Time. In
terms of performance reliability, we find that DS2 offers
steadier performance, as its performance’s standard devi-
ations are always smaller than those instance pretraining
models from [27] and our re-implemented CutPaste(3-way).

Category CutPaste(3-way)
(one-for-all)

DS2
(one-for-all)

carpet 92.7±1.9 92.3±1.1

grid 69.0±0.8 84.5±0.8

leather 91.6±2.0 98.9±0.1

tile 85.6±1.5 88.1±0.7

wood 86.8±1.1 89.9±0.2

texture 85.1±0.7 90.8±0.4

bottle 96.6±0.2 97.6±0.1

cable 88.0±2.8 96.4±0.2

capsule 94.8±0.5 96.6±0.2

hazelnut 97.7±0.1 97.6±0.1

metal nut 89.2±2.2 96.6±0.2

pill 94.6±0.9 92.2±0.3

screw 96.3±0.1 97.1±0.1

toothbrush 92.4±0.6 97.1±0.2

transistor 94.0±0.5 97.0±0.1

zipper 91.3±0.9 96.6±0.1

object 93.5±0.4 96.5±0.1

overall 90.7±0.5 94.6±0.1

Table 2. A category-level localization performance comparison
between CutPaste(3-way) and our DS2 under the “one-for-all” set-
ting. The best localization results are bold-faced.

Regarding pretraining time, although we pretrain DS2
for 400 epochs, its performance usually converges around
epoch 200, whereas the baselines from [27] require 2048
epochs to pretrain. As for CutPaste(3-way), when using two
A100-40GB GPUs, it takes around 32.5 hours to pretrain
the “one-for-all” model, while our DS2 only takes about 9
hours under the same setting. Additionally, since CutPaste
runs a fixed number of steps (256) per epoch instead of run-
ning through all the training images in each epoch, when
pretrained in the “category-wise” setting, it requires on av-
erage the same amount of pretraining time as in “one-for-
all” setting for each of the 15 MVTec categories, which is a
huge demand on computational resources.

Given these findings, it can be observed DS2 model is the
best option when performance reliability and computational
resources are the primary concerns.

Qualitative Results of DS2. Here we provide some
qualitative results of successful and failed localization cases
by our DS2 model in Figure 5. As can be seen, DS2 is good
at discerning irregular patterns in objects, such as the bent
lead in the transistor and the broken teeth in the zipper, etc.
It is also capable of discovering alien patterns in texture im-
ages, such as the thread in the grid. Nevertheless, the learnt
representations are also susceptible to perturbations in the
image. For example, the tile and pill images have many
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Figure 5. Localization visualization of DS2. The first two columns
show successful cases and the last column shows failed cases of
our model. The gt stands for ground truth, where anomalous parts
are highlighted by a red mask.

random noises, and our model mistakes them as anomalies.
Besides, it has difficulty discovering subtle deformation in
texture images, such as the bent grid and the tiny x-shape
metal in the carpet. More qualitative results can be found in
the supplementary file.

4.3. Transferability of DS2 over End-to-end Models

To prove that our DS2 has stronger transferability to new
datasets without any fine-tuning than end-to-end models do,
we compare DS2 with the FCDD [19] and DRÆM [33],
the localization scores of which on the MVTec dataset are
92.0 AUC and 97.3 AUC, respectively. We train them from
scratch in the “one-for-all” setting, using their default de-
sign choices. We do not include NSA [24] in this study be-
cause NSA trains an individual model for each MVTec cat-
egory with very different hyperparameter settings based on
authors’ visual inspection, so it is nearly impossible to train
an “one-for-all” NSA model without compromising the fair-
ness. We directly apply the trained DS2, FCDD and DRÆM
on three new datasets (MVTec LOCO [1], KSDD2 [4],
MTD [15]) without any fine-tuning. As the results in Ta-
ble 3 show, DS2 outperforms FCDD and DRÆM on all the
tested datasets in this scenario. Their performance gap is
large on the MVTec LOCO dataset, which contains assorted
defect types. On KSDD2 and MTD, where the anomaly
types are limited, DS2 still has an edge over them. The
visualization examples shown in Figure 6 demonstrate that,
when coupled with a new classifier, the pretrained represen-
tations of DS2 are more capable of localizing anomalies on
a new dataset.

One may question that the new classifier gives DS2 a
boost as it is exposed to the normal training images of the
new datasets whereas end-to-end models are not. To as-
certain if the superior performance of DS2 is wholly owing
to the new classifier, we adapt FCDD and DRÆM to the
two-stage pipeline: we take the representation from an in-
termediate layer and feed it into the same classifier archi-

Dataset Ctg. FCDD FCDD
(two-stage)

DRÆM DRÆM
(two-stage)

DS2

LOCO [1]

bb 34.0 80.8 61.0 87.7 79.5
jb 80.6 97.2 68.4 92.4 96.0
pu 73.6 89.4 78.8 85.8 88.7
sb 45.3 88.3 81.2 73.3 87.6
sc 79.1 93.6 29.1 77.4 95.3

overall 62.5 89.8 63.7 83.3 89.4
KSDD2 [4] 76.2 68.6 78.0 38.1 81.3
MTD [15] 52.3 57.4 54.9 52.8 60.7

Table 3. The transferability of DS2 and end-to-end models on
new datasets without fine-tuning. The best results are bold-faced.
(Ctg.: Category; bb: breakfast box; jb: juice bottle; pu: pushpins;
sb: screw bag; sc: splicing connectors)

tecture used by DS2. For FCDD, it is the output before the
last convolutional block and, for DRÆM, it is the bottle-
neck layer of its discriminative sub-network. The adapted
models are named FCDD(two-stage) and DRÆM(two-stage), re-
spectively, and their results are reported in Table 3. The
two-stage design improves their performance on the MVTec
LOCO dataset by a large degree: the FCDD(two-stage) im-
proves by 27.3 AUC and the DRÆM(two-stage) improves by
19.6 AUC. This shows that the two-stage framework has an
advantage over end-to-end models in terms of transferabil-
ity to new datasets. Nonetheless, the adapted models do
not enjoy similar improvement on the other two datasets—
MTD and KSDD2. For these two datasets, only FCDD(two-

stage) improves by 5.1 AUC on MTD and, in all other cases,
their performance degrades. A common trait of MTD and
KSDD2 is that they contain only grayscale images. As
FCDD and DRÆM’s anomaly simulation process involves
color overlay, they assume real anomalies deviate from nor-
mality in color to some degree. This assumption works
well with colorful images (e.g., MVTec LOCO), but is less
agreeable with grayscale images. We conjecture that, al-
though their end-to-end co-trained classifier can salvage this
unfit assumption, in the two-stage adaptation, the new clas-
sifier’s performance hinges on how discriminative the in-
termediate feature representations are between normal and
abnormal patterns. As such, due to the unfit presumption of
real anomalies, their performance drops on these grayscale
datasets. In contrast, our DS2 integrates no prior assump-
tion of real anomalies during pretraining so its representa-
tions are more transferable to novel anomaly patterns.

Given the generalizability of DS2, we suggest that, in
the case where training resources or training time is limited,
DS2 can be used as an off-the-shelf baseline model for rapid
anomaly localization tasks on new datasets.
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Figure 6. Localization visualization of FCDD, DRÆM and DS2
on new datasets without fine-tuning. The gt stands for ground
truth, where anomalous parts are highlighted by a red mask.
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Figure 7. The localization performance of DS2 with various
dataset sizes for pretraining.

4.4. Ablation Studies

We conduct various ablation studies to test DS2’s robust-
ness under different settings. All ablation studies are con-
ducted with three different seeds, and we report the mean
and standard deviation values. The detailed results for abla-
tion studies (b)-(e) can be found in the supplementary file.

(a) Robustness to Training Dataset Size. We pretrain
DS2 with different percentages of training images from
each class of MVTec AD. In the first experiment, we pre-
train the model for 400 epochs using 20%, 40%, 60%, 80%,
and 100% of training images, respectively. The results are
shown in Figure 7(a). We observe that the localization score
decreases incrementally as we reduce the training dataset
size. When we use only 20% of training images, the local-
ization performance is around 92.2 AUC, which is 2.4 AUC
lower than full-dataset pretraining (94.6 AUC), but still
higher than three of our full-dataset-trained baselines: Sim-
CLR (85.6 AUC), DistAug (90.4 AUC), and CutPaste(3-way,

one-for-all) (90.7 AUC), and not far from RotNet(MLP head) (93.0
AUC). We then study whether longer pretraining (1,000
epochs) can compensate for the reduced size (20%) of train-
ing images, and the result in Figure 7(b) shows that the
model can achieve 94.1 AUC with 1000-epoch pretraining,
which narrows the performance gap with full-dataset 400-
epoch pretraining to 0.5 AUC. This shows that our DS2

model is robust to small training datasets and is befitting in
situations where the amount of training samples is limited.

(b) Incorporating Instance Branch. We are interested
in testing if incorporating an instance branch would bring
benefit to our DS2. To this end, we incorporate several
instance pretraining models, including BYOL [11], Mo-
CoV2 [6], and the two top-performing models in [27]: Rot-
Net(MLP head) and DistAug. In terms of the loss coefficient,
we use 0.5 for each branch, i.e., loss = 0.5× loss(instance) +
0.5× loss(dense). The results show that including an instance
branch hampers DS2’s performance, which demonstrates
that DS2 already learns good representations for the IAL
task without incorporating any instance pretraining.

(c) Impact of Color Augmentation Choice. With ran-
dom resized crop and horizontal flip as the default geomet-
ric augmentation, we test with different combinations of
color augmentation methods. The results show that color
jitter is essential for good performance, and in general, us-
ing fewer color augmentation gives better result.

(d) Impact of Batch Size. We choose batch sizes from
the set {32, 64, 128, 256, 512}. The results show that DS2’s
performance is stable across various batch sizes. When the
batch size is as small as 32, its overall score (94.2 AUC)
drops only by 0.4 AUC compared to the optimal value.

(e) Impact of Feature Map Scales. We examine if DS2
learns better representations with more scales of feature
maps. To this end, we pretrain the model with ResNet’s
conv5’s feature map only (c5), ResNet’s conv4-5’s fea-
ture maps (c4c5), and ResNet’s conv3-5’s feature maps
(c3c4c5). The results show that using c4c5 feature maps
gives the best result. The additional conv3 feature map does
not bring extra performance gain. Therefore, we adopt the
c4c5 in our DS2 model.

5. Conclusion

We present DS2, a two-stage dense representation learn-
ing model for the IAL task. Our studies demonstrate that
its learned representations are compatible with the dense
IAL task and show strong transferability to new datasets.
When compared to instance pretraining, DS2 can learn bet-
ter representations for IAL task with much faster conver-
gence speed; when compared to end-to-end models, DS2
has stronger transferability towards new datasets without
fine-tuning. Additionally, DS2 provides other benefits such
as steadier performance and high robustness towards small
training sets and small batch sizes. In future works, we aim
to further improve the model’s discriminative ability on sub-
tle defects by incorporating new self-supervised tasks.
Acknowledgments. This research was undertaken using
the LIEF HPC-GPGPU Facility hosted at the University of
Melbourne. This Facility was established with the assis-
tance of LIEF Grant LE170100200.

1120



References
[1] Paul Bergmann, Kilian Batzner, Michael Fauser, David Sat-

tlegger, and Carsten Steger. Beyond dents and scratches:
Logical constraints in unsupervised anomaly detection and
localization. International Journal of Computer Vision,
130(4):947–969, 2022. 5, 7

[2] Paul Bergmann, Michael Fauser, David Sattlegger, and
Carsten Steger. Mvtec ad–a comprehensive real-world
dataset for unsupervised anomaly detection. In CVPR, pages
9592–9600, 2019. 1, 2, 5

[3] Paul Bergmann, Michael Fauser, David Sattlegger, and
Carsten Steger. Uninformed students: Student-teacher
anomaly detection with discriminative latent embeddings. In
CVPR, pages 4183–4192, 2020. 2
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