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Abstract

Spatial localization of 3D sound sources is an important
problem in many real world scenarios, especially when the
sources may not have any visually distinguishable charac-
teristic; e.g., finding a gas leak, a malfunctioning motor,
etc. In this paper, we cast this task in a novel audio-visual
setting, by introducing an acoustic-camera rig consisting
of a centered pinhole RGB camera and a uniform circular
array of four coplanar microphones. Using this setup, we
propose Sound3DVDet – a 3D sound source localization
Transformer model that treats this task as a set prediction
problem. It first learns a set of initial sound source locations
(dubbed queries) from a single view of the microphone array
signal, then feeds the query set to a sequence of Transformer-
like layers for refinement. Each query arising from each
layer repeatedly aggregates sound source cues from other
views. We deeply supervise the initial sound source queries,
intermediate layer queries, and the final output by mea-
suring their respective discrepancy against ground truth
queries via bipartite matching. To evaluate our method, we
introduce a new dataset: Sound3DVDet Dataset, consisting
of nearly 6k scenes produced using the SoundSpaces sim-
ulator. We conduct extensive experiments on our dataset
and show the efficacy of our approach against closely re-
lated methods, demonstrating significant improvements in
the localization accuracy. Code is available at https:
//github.com/yuhanghe01/Sound3DVDet.

1. Introduction

In this work, we propose to accurately detect 3D sound
sources by jointly exploiting multiview audio-visual cross-
modal information. We assume sound sources lie on object’s
physical surface, constantly and repetitively emitting sounds
independently, our goal is to pinpoint its 3D position and
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Figure 1. Sound3DVDet Task Illustration: Multiple 3D sound
sources (red ball) are emitted by visually uninformative objects,
we use an acoustic-camera device to record the multi-view, multi-
modal visual-acoustic scene. Each recording consists of an RGB
image at a known pose (green) and a four-channel microphone
array (magenta). The number of sound sources and their classes
are arbitrary. The sound sources arbitrarily lie on texture homoge-
neous (top row) or discriminative regions (bottom row).

class label by “looking at and listening to” the joint visual-
acoustic scene. Unlike previous works that assume that the
sound is strongly correlated with a visual cue/object (e.g.,
the sound comes from particular objects like a church bell,
a train, or a clock) [30, 66, 67], we assume that the sound
source is only weakly associated with vision. For example,
the sound source is either too small to be visually observable
or the sound is coming from a novel object. There are a
number of real and challenging application scenarios that
meet this setting. For example, industrial gas leakage detec-
tion requires a robot to pinpoint a leak that shows no visual
difference compared with a normal gas pipe - the only clue
is the acoustic emission from the defect. Although we may
have a rough estimation of 3D sound source position (e.g.,
we may know the sound comes from a specific area based on
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some prior knowledge), how to precisely localize this within
a local area remains a challenging task.

In this work, we propose to use an acoustic-camera to
record the local area from multiple views. The acoustic-
camera is a device equipped with a centered pinhole cam-
era and four microphones in a uniform array. The cam-
era and microphones are coplanar and synchronized so that
they record the scene from different viewpoints with known
camera poses. At each viewpoint, the RGB image and the
multi-channel microphone array signal are recorded simulta-
neously. The motivations for using multiview audio-visual
data are two-fold: first, observing the scene both acousti-
cally and visually from multiple viewpoints enables us to
gain a diverse understanding of the sound source; second,
multiview RGB images provide useful cues for localizing
3D sound sources. The fundamental idea is to use multiview
RGB images to set an “on-the-surface” constraint. A 3D
sound source’s location when projected onto different RGB
image planes are “matching points” when this location lies
on the object’s surface. Any position shift off the surface (ei-
ther below or above the surface) leads to the corresponding
projections to be “non-matching” points (see Fig. 3).

Based on the multivew acoustic and visual recordings (see
Fig. 1 for sample visualization), we propose Sound3DVDet,
a novel 3D sound source localization framework that can
efficiently handle arbitrary sources. Drawing inspiration
from the Transformer architecture design [74] and the cur-
rent popular set-based object detection methods [10, 44, 76],
Sound3DVDet treats 3D sound source detection as a set-
prediction problem. It directly predicts a set of 3D sound
source queries from multiview acoustic-camera recordings,
each query corresponds to a potential 3D sound source. To
learn discriminative query representations, Sound3DVDet
first initializes the 3D sound source queries from an indi-
vidual microphone array sound signal by explicitly using
the inter-channel phase difference. Then it refines these
queries using a sequence of Transformer layers by improv-
ing the cross-modal consistency between acoustic cues and
image matching. The final query representations are decoded
into 3D sound source positions and class labels through a
detection head neural network. During training, the pre-
dicted queries are matched with ground truth via bipartite
matching [34] and the whole neural network is optimised by
minimizing the discrepancy between prediction and ground
truth. To further refine 3D sound sources’ locations, we
deeply supervise [35] the learning of queries arising from
all intermediate layers of Transformer, including the initial
queries from the microphone array recording (see Fig. 2).

Since there is no publicly available dataset suitable for our
task, we use the SoundSpaces 2.0 [12] simulator to create
a dataset with 6.2k samples. Experimental results show the
our framework outperforms the comparing methods by 20%,
30% and 0.25 in mAP, mAR and mALE metrics, respec-

tively. In summary, we make the three main contributions: 1.
We propose a novel task: 3D sound source detection from
a moving acoustic-camera with known camera poses. The
acoustic-camera jointly records microphone-array signals
and RGB images. The sound source is assumed to lie on an
object’s physical surface, but may not be visually distinguish-
able. 2. We propose Sound3DVDet, a novel framework to
jointly harness a microphone array and RGB images to ac-
curately detect 3D sound sources. 3. We introduce a new
dataset: Sound3DVDet dataset, using which we provide ex-
periments using our model, demonstrating state-of-the-art
results on sound source localization and classification.

2. Related Work
Sound Source Detection. There are many works focus-

ing on 3D sound source detection purely from microphone
array signals [1,8,9,23,27,29]. They either detect 3D sound
source direction of arrival (DoA) [1,8,27,29] or spatial physi-
cal position [x, y, z] [23,28]. In their setting, they assume the
microphone receivers are stationary while the sound source
can freely move around. This is different from our setting
where we instead assume the microphones are movable and
the number of the static sound sources can vary.

Multiview based Object Detection. Since the seminal
work on DETR [10] that learns object proposals in 2D using
a Transformer, many works have been proposed that extend
the single view used in DETR to multiple views. Extending
the core concept of DETR, DETR3D [76] proposed to use
Transformer based encoder and decoder for 3D detection
with multi-view for learning sparse object queries. Based on
DETR3D [76], huge progress has been made in parameteriz-
ing 3D detection into polar coordinates [14], focusing on a
bottleneck caused by truncated instances with graph struc-
ture learning (GSL) [16], incorporating 2D features from the
image into 3D domain [44,45], and using dense queries with
at predefined spatial locations for each query [33, 40, 81].

Sound Vision Joint Learning. Exploiting the relation-
ship between audio and visual modalities has gained consid-
erable attention recently in various tasks [85]. Among many
tasks, studies that are closely related to ours are audio-visual
separation [2,19,20,22,47,51,86], as well as localization and
navigation [21, 31, 52, 55, 59, 61, 62, 68, 83, 84]. Most works
have made impressive progress in scenarios where audio and
vision are tightly correlated (e.g., that is object of interest is
always in the camera frustum and it sound is audible and the
task is to localize source in 2D space [49, 50, 78]).

Image Feature Matching aims at finding correspon-
dences between images. This line of research could be
broadly divided into detector-based and detector-free meth-
ods. While detector-based methods first detect salient pix-
els (keypoints) for comparison [3–5, 15, 24, 36, 60, 63, 72,
75, 79, 80] , detector-free-based methods try to find denser
correspondences [32, 39, 43, 58, 65, 69–71].
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Figure 2. Sound3DVDet Pipeline Illustration: A. For each single view, we use a learnable sound source query generator (Sec. 3.3) to
jointly obtain the microphone array signal feature embedding and initial sound source queries, pre-trained image model to get RGB image
feature embedding (Sec. 3.4), respectively. Then, we randomly choose a reference view (left-most camera in green color) and flatten its
initial learned sound source queries. The flattened sound source queries serve as Transformer’s tokens and are fed to the detection backbone
for further refinement (Sec. 3.5). In each intermediate layer in the backbone, we aggregate multiview visual sound source cues for each
query by involving “on-the-surface” constraint. This is achieved by first using detection head H to decode each query into world positions
and then projecting this across the multiple views with the known camera poses (sub-figure B). We deeply supervise all sound source queries
during training. During inference, we use the final queries (surrounded by red box) to predict 3D sound sources.

Deeply-Supervised Learning has been extensively ex-
plored [26, 35, 37, 38, 64] during the past several years. The
main idea is to add extra supervision to various intermediate
layers of a deep neural network in order to train deeper neural
networks more efficiently. In our work, we adopt a similar
idea to deeply supervise the training of feature hallucination
and action generation.

3. Multiview based 3D Sound Source Detection
3.1. Problem Formulation

In this paper, we assume a 3D enclosed room environ-
ment with an arbitrary number of point sound sources lying
on indoor objects’ physical surface. These sound sources are
constantly and repetitively emitting anechoic sound wave-
forms. The objects we use are commonly seen indoor objects,
including furniture (chair, cabinet, table, etc.) and architec-
tural structure (wall, door, ceiling, etc.). We also assume
we have a rough estimation of the sound sources locations
either from prior knowledge or other sound source detection
techniques. For example, we may know the sound of gas
leak comes from a particular wall in a specific room, because
the gas pipes traverse along that wall. Moreover, we assume
these sources have no apparent visually distinguishable char-
acteristic, which means that we cannot directly detect them
from images alone.

In this paper, we introduce an acoustic-camera device to
record the local acoustic-visual scene from different view-
points with known camera poses, each single view recording
consists of an RGB image and a microphone array acous-
tic signal. An acoustic-camera is a device consisting of a
pinhole camera and a microphone array that records raw
waveforms from each microphone. A microphone array con-
sists of a spatial arrangement of microphones. As sound
propagates at roughly 330 m/s at room temperature, the re-

ceived sound waveforms by any pair of microphones have
a time-delay (or phase difference) due to their different dis-
tances to the sound source. Using the recorded multi-channel
sound waveforms, the sound sources’ spatial location and
semantic class can be estimated. We use a small array (four
microphones with a 10 cm spacing) in this work which is in-
expensive and easy to use. This gives an azimuthal far-field
angular uncertainty of approximately 10− 15◦ for frequen-
cies in the range of 500 Hz to 2000 Hz with a sampling
frequency of 22050 Hz - see e.g., [6, 13] for more details.
Our aim is to use the movement of the acoustic-camera to
precisely locate the positions of multiple sound-sources in
3D and their class labels.

Formally, let a multiview acoustic-camera recording be
denoted Rav = {(Ai, Ii, Ti)}ni=1, where Ai ∈ R4×w is
the i-th view of four-channel microphone array sound wave-
forms Ai = [ai1, ai2, ai3, ai4], Ii ∈ RC×H×W is the i-th
RGB image (of size 3 × 512 × 512), Ti ∈ R3×4 is the
i-th view camera pose (including both the intrinsic and ex-
trinsic parameters), and n is the number of views. Further,
let M be the number of static sound sources, expressed as
S = {(pk, ck)}Mk=1, where pk ∈ R3 indicates the 3D posi-
tion: pk = [xk, yk, zk] and ck ∈ Z indicates the class label.
Our goal is to design a model Θ to detect 3D sound sources
from multiview acoustic-camera recordings, that is:

Θ({(Ai, Ii)|Ti}Ni=1)→ S. (1)

3.2. Sound3DVDet Framework Overview

Motivated by [10, 44, 76], we treat 3D sound source de-
tection/localization as a set prediction problem. Given multi-
view acoustic-recordings {(Ai, Ii)}ni=1, our Sound3DVDet
model Θ learns a set of sound source queries1 for a reference

1Here and in the subsequent sections, we go by the nomenclature
in [10] and call the target variables as queries, which correspond to neural
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view (e.g., the i-th view) Qi = {Qi1, Qi2, · · · , QiK}. Each
query Qik ∈ Rd is a potential 3D sound source embedding
that can be fed to a detection head network H to be decoded
into its corresponding 3D position and class label. During
training, we adopt bipartite matching (a.k.a Hungarian algo-
rithm) [34] to find the best assignment between queries and
ground truth sound sources, and optimize the whole neural
network Θ with the loss incurred by this bipartite matching.
During inference, the predicted sound source queries are
directly used to output 3D sound sources; we do not assume
to use any post-processing (e.g. non-maximum suppres-
sion (NMS) for detection redundancy removal [42, 56, 57]).

Our Sound3DVDet fully embraces the sound source cues
arising from a single view microphone array signal and mul-
tiview RGB images to detect 3D sound sources. From our
empirical observations, we find that usually the microphone
array signals from a single view can provide coarse esti-
mations to the sound source locations. Leveraging this ob-
servation, we propose to learn initial sound source queries
from such a single view of the microphone array signals by
a query generator network Gmic (see Sec. 3.3), and subse-
quently optimize these initial queries through a backbone
network B (see Sec. 3.5). The backbone neural network
is a stack of L Transformer encoder layers into which the
sound source queries are input as tokens, which then se-
quentially pass through these L layers. The sound source
queries output by a preceding encoder layer is refined by
the subsequent encoder layer via: 1) inter-query interaction
through Transformer multihead self-attention (MHSA) and
feed-forward networks (FFN) and 2) the visual source posi-
tion cues aggregated from the multiview recordings. Since
the same sound source queries are passed through the en-
tire neural network to be refined gradually, we propose to
deeply supervise [26, 35] the queries arising from the differ-
ent intermediate layers. We experimentally find such deep
supervision enables the neural network to learn better sound
source query representations.

In summary, Sound3DVDet Θ consists of a source query
generator Gmic, a detection head H, a backbone B and an
RGB image feature extractor Fim, Θ = (Gmic,H,B,Fim).
While Gmic, H and B are learnable neural networks, Fim is
pre-trained RGB image feature extraction model. Figure 2
shows the pipeline, which works as:

1. At each iteration, Sound3DVDet takes as input a multi-
view acoustic-camera recording {(Ai, Ii)}ni=1. The mul-
tiview images I are fed to Fim to get the image feature
maps. The multiview microphone array signals A are fed
to Gmic to obtain initial sound source queries Qinit.

2. Go through all initial queries, each time select one ref-
erence view Qinit,r (e.g. the r-th view, r = 1, · · · , N )
and pass it to B for refinement. For each intermediate

representations of the sound sources.

output in B, we aggregate source cues from multiview
RGB images.

3. During training, we deeply supervise all source queries:
1) from query generator Gmic. 2) from intermediate
queries in B. 3) from the final output queries in B. Dur-
ing inference, we use the final output queries in B to
predict 3D sound source locations and their labels.

3.3. Source Queries from Microphone Array Signal

A single-view microphone array signal (four-channel
sound waveforms) contains enough information for esti-
mating a 3D sound source’s spatial position and class la-
bel. Specifically, the class label is encoded in each sound-
channel waveform’s time-frequency (TF) representation and
the spatial position is encoded in the inter-channel phase
difference (a.k.a time-delay). Following the common prac-
tice [1, 8, 23], for each single-channel one dimensional
sound waveform, we first apply the short time Fourier trans-
form (STFT) to transform it into a 2D TF representation
and then convert it to log-mel scale. To extract the inter-
channel phase difference, we compute the generalized cross-
correlation phase transform (GCC-Phat [7], represented as a
2D map) feature between any microphone pair. GCC-Phat
has been widely used for microphone array signals [1,8,9,73].
In our case, we create 6 GCC-Phat maps as we compute
it for all potential microphone pairs from the four micro-
phones (

(
4
2

)
= 6). By concatenating the 6 GCC-Phat

maps with the four TF representation maps, we obtain a
10-channel 2D feature map, Fmic ∈ R10×H1×W1 (in our
case, H1 = W1 = 256).

The source query generator Gmic takes as input the 10-
channel feature map Fmic, and applies a sequence of 2D
convolutions to consecutively reduce the feature spatial res-
olution while increasing their channel size. The resolution
reduction is achieved by setting the 2D convolution stride=2.
In our case, we treat the last layer output as the initial source
queries Qinit. At the same time, we take the penultimate
layer output as the microphone array signal feature embed-
ding fAi

. We will use such microphone array signal embed-
ding in one of our ablation studies to test if further aggre-
gating multiview acoustic signal improves the performance.

Qinit,i, fAi
= Gmic(Fmic,i), Fmic,i ← Ai, i = 1, · · · , N

(2)
where Qinit,i is the i-th frame sound source queries. Dur-
ing training, we iterate over all views, each time treat the
investigating view initial queries as the reference queries
Qinit,r and flatten into tokens before feeding to backbone B
for further refinement.

3.4. Visual On-the-Surface Constraint

Since we do not assume the 3D sound source has any
obvious visual entity in each single view image, we cannot

5499



3D scene view cam. left

Cam
era#
2

cam. right

above on below

Figure 3. Visual On-the-Surface Constraint: While a 3D sound
source’s projections onto images are visually close matching points
if the source lies on the surface (red ball), the projections becomes
non-matching points once the source is shifted to either above
(green) or below (blue) the surface.

directly detect the sound source in each image. Thus, to
make audio-visual learning feasible and use the multiview
visual information, we propose to impose an “on-the-surface”
constraint on the sound sources – that is, the sound sources
are assumed to lie on the physical surface of some object
seen in RGB images from all views. Such an assumption
allows for an elegant formulation of an audio-visual location
consistency. Specifically, if a 3D sound source lies on an
object’s surface, its projections onto the multiview RGB
images are “matching points” [16,44,76]. Any position shift
away from the surface (either below of above the surface)
makes the projections less likely to be “matching points” (see
Fig. 3 for illustration). The task then becomes finding a way
that is capable of accurately measuring the “matchness” for
projections from multiview RGB images.

Unlike traditional image matching methods [60,72,77,80,
87] that focus on finding corresponding points in discrimina-
tive image regions, we proceed in the opposite way to decide
the “matchness” for multiview 2D pixels from the projec-
tions of the predicted locations of the sources. Furthermore,
these 2D pixels can lie in regions that may be textured, dis-
criminative, or homogeneous in the 2D images. Therefore,
the resulting RGB image embedding needs to be representa-
tive enough in providing matching information across multi-
ple views, regardless of the positions of the matching points.
To this end, we depend on the pre-trained feature matching
model LoFTR [65] to obtain feature embedding for each
RGB image. LoFTR [65] is trained for feature matching
in a coarse to fine manner, it is capable of finding match-
ing points even in texture homogeneous regions. Benefiting
from this advantage, we are able to reasonably measure the
matchness for projections on texture homogeneous area (like
walls). We extract its coarse-level representation as the ini-
tial embedding (of size 256×64×64), and further introduce
an extra Fully-connected layer (FC) to further adjust the

embedding to fit our scene dataset (also increase the feature
size from 256 to 512),

fI = FC(LoFTR(I)) (3)

where fI ∈ R512×64×64 (I ∈ I). Fim = FC(LoFTR(·)).
We find that adopting the pretrained model for feature match-
ing gives better performances than using the ImageNet [18]
pretrained model (e.g., ResNet50 [25], see Experiment). We
provide more discussion on how LoFTR helps set “on-the-
surface” constraint in supplementary material.

3.5. Transformer-based Detection Backbone

The initial source queries from the r-th reference view
are fed to the detection backbone B for further learning. The
backbone network B consists of L standard Transformer
encoder layers, each of which contains a multi-head self-
attention (MHSA) and feed forward network (FFN). The
queries, working as Transformer tokens, are optimized in two
ways: (i) for a single view source, the multihead attention
allows the queries to interact among each other allowing
implicitly modeling of the dependency and audio dynamics
of sound sources within one view, and (ii) the cross-view
consistency, allowing all queries arising from Transformer
intermediate layers to actively aggregate source cues from
crossmodal multiview RGB images,

Ql+1,r = Bl(Ql,r|fI ,H, T ), l = 1, · · · , L− 1 (4)

3.6. 3D Sound Source Detection Head

The source detection head H decodes any query fea-
ture (e.g., ql ∈ Ql) into its designated sound source 3D
position p and class label c,

[pi,k, ci,k] = H(Qi,k), k = 1, · · · ,m (5)

where pi,k and ci,k indicates the k-th predicted sound source
3D position expressed in the i-th camera coordinate system,
ci,k is the class label. In our implementation, H consists of
two parallel fully-connected layers to regress 3D position
and predict class label separately.

3.7. Source Multiview Visual Cue Aggregation

We aggregate multiview RGB images informed sound
source cues to improve the sound queries learning. Such
aggregation encourages the queries to predict accurate sound
source 3D positions because it directly uses the decoded 3D
position (via the detection head H in Eqn. 5) to aggregate
source cues. Specifically, given one query Ql,k arising from
the k-th query feature in the l-th detection backbone layer
in Eqn. 4, we first apply the detection head H to decode
Ql,k into its corresponding 3D position pl,k expressed in
the reference camera coordinate system (the r-th camera
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Input: Multiview data {(Ai, Ii)|Ti}Ni=1, Network
Θ = (Gmic,H,B,Fim)

Qinit ← Gmic(A), Eqn. 2; fI ← Fim(I), Eqn. 3;
for r = 1, · · · , N do

for l = 1, · · · , L− 1 do
Ql+1,r ← Bl(Ql,r|fI ,H, T );

end
end
Output: S ←H(QL)

Algorithm 1: Sound3DV Algorithm Pipeline.

system), and then project it to j-th novel view RGB image
plane to get its 2D position [ux,j , uy,j ] through the camera
poses. Afterwards, we adopt bilinear interpolation ϕ to
index the cross-view sound source visual clue fI,r←j based
on [ux,j , uy,j ].

fI,r←j = ϕbilinear(fIj )[ux,j ,uy,j ], j = 1, · · · , N. (6)

If [ux,j , uy,j ] is within the j-th RGB plane, we adopt bi-
linear interpolation in Eqn. 6 to get the feature, otherwise
the feature is set 0. Moreover, since the spatial resolution of
RGB feature embedding map is much smaller than the origi-
nal RGB image (RGB image size is 512× 512), we follow
DETR3D [76] to normalize the valid [ux,j , uy,j ] (those lie
within the RGB image plane) into [−1, 1] before performing
bilinear interpolation. Given all the aggregated multiview
RGB image informed source clue features, we merge them
into the query through elementwise-add before feeding to
next Transformer layer,

Ql,k ← Ql,k +

N∑
j=1

fI,r←j (7)

Specifically, given one query Ql,k arising from the k-th
query feature in the l-th detection backbone layer in Eqn. 4,
we first apply the detection head H to decode Ql,k into
its corresponding 3D position pl,k,i in the i-th reference
camera coordinate system, which is then projected into j-
th (j ̸= i) novel view camera coordinate system pl,k,j =
Tipl,k,i. We finally acquire 2D position in image plane
[ux, vy] by performing perspective projection on pl,k,j with
known intrinsic parameters of i-th camera.

3.8. Deeply Supervise All Intermediate Queries

In Sound3DVDet, the source queries repetitively appear
at different intermediate layers (see Fig. 2). We propose
to deeply supervise all intermediate sound source queries
learning by directly feeding all of them to detection head
H to predict 3D sound source’s position and class label,
respectively. We then use bipartite matching [34] loss to
supervise all predictions learning. Specifically, we deeply
supervise three main sound source queries: the initial queries

given by query generator Gmic; intermediate queries from
each of the L layers in the backbone network B and the final
queries from the last layer of B.

For bipartite matching, since the number of sound
source queries is usually larger than the ground truth
sound source number (M < K), we explicitly pad
no-source category ∅ to the ground truth sound sources
to reach the number K. Bipartite matching is then ap-
plied to find a one-one correspondence σ∗ between pre-
diction and ground truth by taking sound source po-
sition closeness and label classification score into ac-
count, σ∗ = argminσ∈P

∑K
k=1−1{Ck ̸=∅}p̂σ(k)(Ck) +

1{Ck=∅}Lpos(Pk, P̂σ(k)), where p̂σ(k) and P̂σ(k) indicate
the predicted label classification probability and 3D position,
respectively. P denotes the permutation set. Lpos is the L1

loss for position regression. After finding the best corre-
spondence σ∗, we can then compute the final set prediction
loss by combining the classification cross-entropy loss and
L1 position regression loss L =

∑K
k=1− log p̂σ∗(k)(Ck) +

1{Ck=∅}Lpos(Pk, P̂σ∗(k)). The whole algorithmic visual-
ization is shown in Algorithm 1.

L =

initial queries︷ ︸︸ ︷
L(Qinit) +

interm. queries︷ ︸︸ ︷
L−1∑
l=1

L(QBl
) +

final queries︷ ︸︸ ︷
L(QBL

) . (8)

4. Experiments

Dataset Creation: Given the novelty of our prob-
lem setup, currently we do not have any publicly avail-
able datasets that fit our experimental setup. To this end,
we use the SoundSpaces 2.0 [12] simulator to synthesize
a new dataset. We load Matterport3D dataset [11] in
SoundSpace 2.0. Matterport3D contains large-scale (with
average room area >100 m2) and complex indoor room
scenes, with which we are able to synthesize data with large
visual and acoustic diversity. Specifically, we place mul-
tiple point sound sources (source emits sound waveform
isotropically) on the surface of 6 commonly seen objects:
wall, chair, table, door, ceiling, cabinet. Each sound source
emits sound independently. Around the object, we let an
agent holding an acoustic-camera to record the object from
multiple viewpoints. In our implementation, the multiview
acoustic-cameras are recorded roughly at the same height
because the agent holds the acoustic-camera at a fixed height
position (in our case, at a height of 1.5 m).

Specifically, given an object, we randomly place n (1 ≤
n ≤ 10) sound sources on its surface and ensure any two
sources are at least 0.3 m apart (no overlap). Each sound
source randomly emits one sound class out of five sound
class corpus: telephone-ring, siren, alarm, fireplace and
horn-beeps. The sampling frequency is 21k Hz. By varying
the number of sound sources, views and sound classes, we
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Table 1. Overall quantitative result across all object categories and
sound classes.

Methods mAP (↑) mAR (↑) mALE (↓)
SELDNet [1] 0.101± 0.003 0.531± 0.000 0.912± 0.001
EIN-v2 [8] 0.111± 0.003 0.612± 0.001 0.877± 0.001
SoundDoA [27] 0.123± 0.001 0.701± 0.001 0.820± 0.003
Sound3DVDet 0.308± 0.011 0.998± 0.000 0.588± 0.001

Table 2. Quantitative result comparison between texture homoge-
neous and texture discrinativative projections of sound sources.

Methods Texture Homogeneous Texture Discriminative
mAP mAR mALE mAP mAR mALE

SELDNet [1] 0.107 0.532 0.910 0.100 0.528 0.934
EIN-v2 [8] 0.115 0.620 0.882 0.117 0.600 0.862
SoundDoA [27] 0.125 0.703 0.821 0.122 0.698 0.820
Sound3DVDet 0.308 0.996 0.585 0.293 0.993 0.591

can flexibly test their individual impact on sound source de-
tection performance. To further test the impact of visual dis-
criminativeness of the RGB image on detection performance,
we divide the sound sources into two main categories accord-
ing to their position in the images: texture-homogeneous area
in which the sound source lies around a textured homoge-
neous area like wall and table surface, texture-discriminative
regions in which the sound source lies around regions like
corners. More discussion on the creation of the data set is
provided in the Supplementary Material. In summary, we
have created 5,000/1,250 for train/test, respectively.

Evaluation Metrics: Motivated by existing works on
sound event detection [23, 29, 48, 54] and 2D/3D object
detection [10, 41, 76], we propose three main evaluation
metrics: mean average precision (mAP) and mean average
recall (mAR) and mean localization error (ER), to evaluate
the performance from various perspectives. It is worth not-
ing that our Sound3DVDet directly outputs all sound sources
without any post-processing involved.

We first evaluate within each class separately. Given the
detected sound source set and ground truth set for a particu-
lar class, we first apply bipartite matching algorithm [34] to
assign each detected sound source to one ground truth sound
source (in some cases, some detections remain unassigned if
the detections outnumber the ground truth, and vice versa).
After assignment, a detection is a true positive iff it is within
a distance threshold with its assigned ground truth, other-
wise a false positive. Given a particular threshold, we can
accordingly compute the precision and recall. In our case,
rather than fixing one distance threshold, we instead compute
across a set of discrete thresholds and further get the average
precision (AP) and average recall (AR) by averaging across
all distance thresholds. Finally, we average across all classes
to get the mean average precision (mAP) and mean average
recall (mAR). mAP and mAR are two widely adopted eval-
uation metrics in object detection [10, 29, 41, 76]. In our
case, we find that mAP and mAR are relatively dependent
on the distance threshold we choose, they do not directly
give an understanding how close the predicted sound sources

Table 3. Ablation Study on overall quantitative result across all
object categories and sound classes.The top1/top2/top3 performing
methods are labelled in red, green and blue color respectively

Methods mAP (↑) mAR (↑) mALE (↓)
S3DVDet ResNet50 0.236± 0.002 0.977± 0.006 0.580± 0.011
S3DVDet noDeepS 0.167± 0.007 0.994± 0.001 0.616± 0.004
S3DVDet noMVSup 0.253± 0.018 0.981± 0.000 0.603± 0.002
SDVDet mvSound 0.264± 0.032 0.994± 0.002 0.592± 0.008
S3DVDet wMVIS 0.289± 0.006 0.997± 0.000 0.595± 0.002
Sound3DVDet 0.308± 0.011 0.998± 0.000 0.588± 0.001

Table 4. Ablation Study on quantitative result comparison between
texture homogeneous and texture discrinativative projections of
sound sources.

Methods Texture Homogeneous Texture Discriminative
mAP mAR mALE mAP mAR mALE

S3DVDet ResNet50 0.235 0.953 0.583 0.240 0.943 0.579
S3DVDet noDeepS 0.171 0.988 0.617 0.164 0.977 0.613
S3DVDet noMVSup 0.254 0.952 0.608 0.168 0.980 0.607
S3DVDet mvSound 0.274 0.993 0.590 0.253 0.984 0.593
S3DVDet wMVIS 0.297 0.994 0.593 0.280 0.989 0.597
Sound3DVDet 0.308 0.996 0.585 0.293 0.993 0.591

are to the ground truth. To this end, we further embrace
the localization error (LE) metric that are initially used in
sound event detection [23,48,54]. LE builds on true positive
detections, but it goes further to consider the exact the dis-
tance between prediction and ground truth. Following mAP
and mAR, we first compute average LE across all distance
thresholds and finally compute mean average LE (mALE)
across all classes. In this work, we adopt three distance
thresholds: [0.5 m, 0.8 m, 1.2 m].

Comparison Methods: There are no existing methods
that directly work on our proposed problem. We thus propose
to compare with three typical microphone array signals based
sound source detection baselines: SELDNet [1], EIN-v2 [8]
and SoundDoA [27]. SELDNet serves as the baseline for
various microphone array based sound source detection, it
combines CNN and GRU [17] to detect sound sources; EIN-
v2 [8] and SoundDoA [27] are two more recent work, they
further adopt Transformer [74] and permutation invariant
training [82] to detect sound source.

Implementation Details We implement Sound3DVDet
with PyTorch [53] and train it on NVIDIA A40. The
model parameter size is 19.9 M. We adopt the AdamW opti-
mizer [46], with an initial learning rate 0.0001 and decays
every 100 epochs with a decaying rate 0.5. We train each
model variants three times independently, and report the
mean and variance for each metric separately. We train all
models 100 epochs. The source code is given in the sup-
plementary material. We compare with them to test the
necessity of involving RGB image and further multiple view
recording for 3D sound source detection.

4.1. Experiment Results

Our quantitative results are given in Table 1, from which
we can clearly observe that Sound3DVDet outperforms all
the three comparing methods by a large margin. On aver-
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Figure 4. Qualitative Detection Result Visualization: We visualize the position of one detected sound source position by different methods
as well as its ground truth position. We recommend to zoom in for better visualization.

age, Sound3DVDet outperforms the three comparing meth-
ods by 20% on mAP, 30% on mAR and 0.25 on mALE.
It thus shows our proposed framework works well on 3D
sound source detection. We also note that all methods have
achieved a much higher mAR than mAP, which means set-
based prediction strategy is capable of predicting enough
sound sources in each camera view.

The performance in terms of texture difference is shown
in Table 2. We can observe from this table that 1) the three
comparing methods show inconsistency w.r.t. the texture
difference, which is reasonable because they do not explicitly
depend on vision information to detect 3D sound sources; 2)
Sound3DVDet can still achieve reasonably good performance
in texture homogeneous area with small performance drop.

4.2. Ablation Studies

We present five ablation studies. The quantitative results
are provided in Table 3 and Table 4.
1. Pre-trained Image Matching Feature VS. Classifica-
tion Feature. As an alternative, we adopt ImageNet [18]
pre-trained ResNet50 [25] (S3DVDet ResNet50) to replace
LoFTR [65]. This replacement helps to test what RGB
image feature is better for providing “on-the-surface” con-
straint. From Table 3 and 4, we can see that such replace-
ment leads to obvious performance drop in mAP (≈ 0.6)
and mAR (≈ 0.2). It thus shows pre-trained image matching
model is better at setting “on-the-surface” constraint, espe-
cially in texture homogeneous area. This is also echoed in
Table 4, in which we have observed performance drop in
detection in texture homogeneous area.
2. Without Deep Supervision When removing the deep
supervision from the initial sound source queries and detec-
tion backbone intermediate layers (S3DVDet noDeepS), we
have observed significant performance drop (mAP ≈ 1.4,
mAR ≈ 0.02, mALE ≈ 0.3), which shows deep supervision
strategy is vital to enforce the whole framework to learn
more representative sound source queries representation.
3. No Multiview Supervision in which we just rely on
single view (microphone array and RGB image) to predict
3D sound sources with cross-view visual feature aggrega-
tion (3DVDet noMVSup). However, the deep supervision

module is still kept. We have observed significant overall per-
formance drop. The performance drop becomes significant
when the sound sources lie around texture discriminative
area. It thus shows multiview supervision is an essential
component of Sound3DVDet.
4. With Multiview Sound, in which we replace the image
feature embedding by the learned microphone array signal
embedding (Eqn. 2). It helps to test if it is a better choice
to use cross-view image supervision than microphone-array
signal. We call this variant S3DVDet mvSound. From these
two tables 3,4, we can clearly see that replacing image with
microphone array signal supervision leads to significant per-
formance drop.
5. With Multiview both Image and Sound. In the above
test, we show aggregating cross-view acoustic feature leads
to inferior performance, but what if we combine image
and sound? To this end, we propose a Sound3DVDet vari-
ant (S3DVDet wMVIS) that jointly aggregates cross-view
image feature and acoustic feature. We have observed per-
formance drop, but the performance drop is not that obvious
than other Sound3DVDet variants, which in turns shows the
importance of involving multiview image feature for 3D
sound source prediction.

The ablation studies show the necessity of each compo-
nent of Sound3DVDet. More ablation studies are provided in
Supplementary material. We further qualitative visualization
in Fig. 4, from which we can see the two Sound3DVDet vari-
ants and the comparing SELDNet [1] predict sound source
incorrectly that either lies in the air or on different object
surface. Our proposed framework Sound3DVDet can predict
the 3D sound source that is closest to the ground truth.

5. Conclusions and Limitations
In this work, we show how to use multiview acoustic-

camera recordings to assist localize invisible 3D sound
sources. A limitation is that we assume the space between
the sources and acoustic-camera is unoccluded, which may
not reflect the real settings. Another limitation is that we do
not consider situation where the sound sources are moving
and dynamic. Using real robotic acoustic-camera is also
planned for the future.
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