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Abstract

3D object detection networks tend to be biased towards
the data they are trained on. It has been demonstrated that
the evaluation on datasets captured in different locations,
conditions or with sensors of different specifications than
that of the training (source) data results in a drop in model
performance due to the domain gap with the test (or target)
data. Current methods for adapting to the target domain
data either assume access to source data during training,
which may not be available due to privacy or memory con-
cerns, or require a sequence of LiIDAR frames as an input.
We propose a single-frame approach for source-free, un-
supervised domain adaptation of LiDAR-based 3D object
detectors that uses class prototypes to mitigate the effect
of pseudo-label noise. Addressing the limitations of tradi-
tional feature aggregation methods for prototype computa-
tion in the presence of noisy labels, we utilize a transformer
module to identify outlier regions that correspond to incor-
rect, over-confident annotations, and compute an attentive
class prototype. The losses associated with noisy pseudo-
labels are down-weighed in the process of self-training. We
demonstrate our approach on two recent object detectors
and show that our method outperforms recent source-free
domain adaptation works as well as those that leverage
source information during training. The code will be made
available.

1. Introduction

LiDAR datasets [1, 5,9, 12, 25, 37] have facilitated the
development of extremely effective data-driven perception
algorithms for autonomous driving [20], but come with their
own challenges. The weather conditions and the location of
data capture lead to biases in the dataset due to the specific
dimensions of roads, vehicles, and the driving conventions
of the area [42]. Different LiDAR sensors possess different
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Figure 1. Left: Visual representations of prototype computation.
In the case of noisy labels, features corresponding to mis-labeled
regions that are not discarded by outlier removal contribute to the
class prototype. With the proposed method, only salient region
features are considered for prototype computation. The opacity of
the features represents the attention weights, and the width of the
connecting lines represents the combination weights for comput-
ing the average.

rates of return and produce point clouds with varying den-
sities, leading to another set of inherent biases. This results
in a distribution gap between pointcloud datasets. A 3D ob-
ject detection network [27, 34-36, 48, 54, 56] trained on a
particular dataset will drop in performance when evaluated
on samples from a dataset with a different distribution [42].
We call the training and test datasets in this scenario as the
source and target domain datasets respectively. One may ar-
gue that making use of a large, diverse source domain could
solve this problem, however there will always be samples
from an unseen distribution, and collecting every possible
type of LiDAR scene is impractical at best. The need for
robust perception systems in autonomous driving thus be-
comes extremely important, where there is a high likelihood
of encountering scenes from a different distribution.

Unsupervised domain adaptation has been broadly suc-
cessful in addressing this problem for both 2D [14,24,31]
and 3D [2,21,33,46,51] object detection networks, but de-
pends on annotated source-domain data during adaptation,
limiting its applicability in scenarios where it is unavailable
due to privacy concerns or memory constraints. Recently,
an alternate “source-free” setting for domain adaptation has
been proposed [16, 19, 52], in which the source-trained
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(a) All predictions (b) thresh = 0.7

Figure 2. 3D bounding box predictions of the object detector [35]
trained on Waymo [37] data and tested on KITTI [9]. Ground truth
annotations are in green and predictions are in red. Thresholding
(b) fails to remove all false positives present in (a). Self-training
with these pseudo-labels leads to the reinforcement of errors.

model is adapted by training only on unlabelled target-
distribution samples. pseudo-label based self-training has
been successful in unsupervised and semi-supervised do-
main adaptive works [2,21,45,57] and lends itself to the set-
ting of source-free adaptation. In this approach, the predic-
tions of the source model are utilized as pseudo-labels [18]
to supervise the network on un-annotated target data. How-
ever, current self-training-based methods rely on confidence
thresholding to filter noisy pseudo-labels. As illustrated in
the example from Figure 2, the use of high thresholds (as is
general practice) results in training the model on easy sam-
ples and incorrect labels of high confidence that contribute
to the enforcement of errors during adaptation. We suggest
that a self-training framework that can deal with label-noise
that requires only pseudo-annotated target data is an effec-
tive strategy for source-free domain adaptation.

We propose AttProto, an unsupervised, source-free do-
main adaptation framework for 3D object detection that ad-
dresses the issue of incorrect, over-confident pseudo-labels
during self-training through the use of class prototypes. Ob-
jects belonging to the same object categories share geomet-
ric properties and similar feature representations. Given a
representative class prototype, incorrectly labelled regions
may be discarded based on the distance from the prototype.
In the presence of label noise, standard feature aggregation
methods of prototype computation [13, 15,49, 55] are inef-
fective, since features corresponding to incorrectly labeled
regions could contribute to the final prototype. This is il-
lustrated in the left side of Figure 1. Equal importance is
given to all annotated regions during aggregation, result-
ing in corrupted class prototypes in the presence of noise.
Inspired by the high representative power of self-attention
and recent works that make use of transformers to focus on
salient inputs [8, 40], we calculate an attentive class proto-
type by using a transformer to identify salient regions-of-
interest and combine their associated feature vectors using
prediction entropy weights that represent the uncertainty of
the classification branch for each sample. An illustration
of the proposed prototype computation method can be seen
on the right side of Figure 1. Once the attentive class pro-

totype is calculated, the class predictions corresponding to
incorrect pseudo-labels, which are identified by calculating
the similarity with the class prototype, are down-weighed to
prevent reinforcing errors during self-training. We demon-
strate our result on several domain shift scenarios and com-
pare the performance. Our contributions are as follows

¢ We propose the attentive prototype for learning rep-
resentative class features in the presence of label noise
by leveraging self-attention through a transformer
block and perform source-free unsupervised domain
adaptation of 3D object detection networks that miti-
gates the effect of label noise during self-training by
filtering incorrect annotations.

* We demonstrate our method on two recent object
detectors, SECOND-iou [48], and PointRCNN [35]
for five domain shift scenarios and outperform recent
source-free and standard domain adaptation works.

2. Related Works

3D object detection. The seminal works PointNet [27] and
PointNet++ [28] for the hierarchical feature extraction of
point clouds have spurred numerous deep neural networks
for the task of 3D object detection that can be broadly cat-
egorised as voxel-based methods [17,48, 56], which divide
the pointcloud into volumetric grids before performing fea-
ture extraction, and point-based methods [35, 53] for 3D
object detection, which operate directly each point in the
3D scene. In [48], Yan et al. propose SECOND, a sin-
gle stage, voxel-based method that utilizes 3D sparse con-
volutions and a Region Proposal Network (RPN) head to
predict the location and category of objects in a LiDAR
scene. PointRCNN is a two-stage network that generates
3D bounding box proposals followed by a refinement stage
similar to [30].

Unsupervised domain adaptation. The dominant unsu-
pervised domain adaptation (UDA) approaches for 2D ob-
ject detection are domain adversarial training [6, 32], dis-
tribution alignment [7, 47], and pseudo-label based self-
training [14, 21, 33, 51]. Domain adversarial adaptation
leverages a discriminator to learn a domain invariant feature
space. Domain alignment methods take a more direct ap-
proach, and use distance measurements such as maximum
mean discrepancy [10] to minimize the distribution gap be-
tween domains. The source-free setting rules out domain
adversarial and domain alignment methods since they re-
quire samples from both the source domain and target do-
main. Thus, in this work focus on pseudo-label refinement
through self-training.

Self-training [22] is an UDA method in which unlabelled
target data is used for supervision by annotation with a pre-
trained model. ST3D [51] is a self-training approach for
3D domain adaptive object detection where the network is
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adapted by training with a proposed curriculum data aug-
mentation algorithm using pseudo-labels generated with a
quality-aware memory bank. While showing promising re-
sults in some cases, in others this method is outperformed
by simple pseudo-label based self-training, and depends on
boosting with statistical normalization [42], a weakly su-
pervised method, for its best reported results. The authors
follow up this work with ST3D++ [50] which proposes im-
provements to the quality criterion for memory bank cre-
ation. While improving on performance, the method utilizes
source data during adaptation. In [3], Caine ef al. propose
a method using the base network of Pointpillars [17] that
trains a student network with a combination of source labels
and target pseudo-labels obtained from a teacher network
and filtered by a threshold. However, thresholding meth-
ods for pseudo-label collection from the source model may
lead to training the model with incorrect labels that have
high confidence and discarding correct labels with confi-
dence that falls below the threshold.

Source-free domain adaptation. Source-free approaches
for domain adaptation [16,33,52] only use unlabeled target
data network models pre-trained on the source data during
adaptation. Kundu et al. [16] propose a UDA method which
does not require information about the category-level gap
between domains, and consists of a procurement stage in
which a generative classifier equips the model to reject out-
of-distribution samples, and a deployment stage. Saltori et
al. [33] propose a source-free UDA method on PointRCNN
[35], utilizing a tracking-based scoring system to evaluate
the quality of pseudo-labels at different scales. This method
depends on the use of multiple frames for a single forward
pass through the network.

Prototype learning. Learning representative features of a
class or group of samples has been a well explored problem
in pattern recognition. Originally calculated by aggregat-
ing hand-crafted features to form class exemplars [15], re-
cent approaches use convolutional neural networks for more
representative feature extraction. This method has seen suc-
cess in a variety of tasks, including classification [49], zero-
shot recognition [13], and domain adaptive 2D segmenta-
tion [55]. We argue that when utilizing pseudo-labels, clus-
tering and outlier removal are insufficient in filtering out
noise before the aggregation step, leading to corrupted class
prototypes. We thus propose a transformer-based approach
that leverages self-attention and predictive entropy to gen-
erate attentive class prototypes.

3. Proposed method

Consider an object detector network ¢ trained on
a source dataset consisting of N sample-label pairs
(X5, Y9} = {2F,y7}Y,, where Y contains the anno-
tations of objects in a 3D scene, consisting of the dimen-

sions {l,w, h}, position {c;,cy,c.} and category of each

bounding box. We aim to adapt this network model in
absence of the source data to an unlabeled target dataset

XT = {7}, of size M and corresponding pseudo-
labels Y7 = {y]P s ;Vil generated by thresholding the pre-

dictions of ¢s. The proposed domain adaptation method
consists of a prototype computation and similarity-based re-
finement, implemented with an iterative training strategy. A
visual representation of this framework is seen in Figure 3.

3.1. Transformer for prototype computation

Transformers have proven to be extremely effective for
vision tasks [4,8,23,39,44]. By virtue of the self-attention
mechanism, transformers have the ability to learn long-
range relationships between elements in a sequence [8]. We
leverage this representative power to learn the relationships
between the region features of a given object category to
form a class exemplar, or prototype.

In the presence of noisy labels, learning class repre-
sentations through feature clustering methods like those in
[13,15,49,55] may compute corrupted class prototypes. In
object detection, region features of different classes may
be similar (such as the “Car” and “Truck” categories, see
Figure 2), rendering outlier removal methods ineffective in
cases of mis-classification. We use a transformer module to
determine the useful elements in a sequence for a given task.
We supplement the classifier branch of the object detec-
tion network with a transformer-based classification branch.
The transformer utilizes self-attention to focus on salient
regions-of-interest for prototype computation by learning
the cross-correlation between regions. Transformers have
proven to be very effective at learning global context [29].
We draw parallels to global and local context in transform-
ers for language and consider context here to be the category
of each region. In this case, global context becomes useful
in weeding the uniquely different non-salient features. The
MLP head performs classification of regions of interest to
train the transformer on the objective of classifying region
features.

Consider the set of features of the regions-of-interest
(ROIS) Rfeat = {fi}ien,,, consisting of feature vectors
generated by the object detector ¢ of meaningful 3D re-
gions in the scene. In order to create a representative pro-
totype, we take inspiration from [8] and send the ROI fea-
tures as tokens to a transformer module consisting of a lin-
ear embedding layer and a set of transformer encoders, fol-
lowed by a multi-layer perceptron (MLP) head. The en-
coder contains alternating multi-head attention blocks and
feed-forward blocks, with interspersed normalization layers
and residual connections, as depicted in Figure 3.

The input to the transformer module is the set of N’
“positive” ROI features, that is, features associated with
the object category. These are obtained from the pseudo-
annotations. Due to the noisy nature of the pseudo-label an-
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Figure 3. A visual overview of the proposed domain adaptation framework. The object detector is initialised with the source-trained
model and used for region-proposal and feature extraction by the domain adaptation block. This consists of a transformer module to
generate attentive features (see lower left side), prototype computation, and calculation of the output classification loss weights using

cosine similarity.

notations, the set of features will contain regions associated
with background points or objects outside of the category.
We seek to identify these incorrect ROIs through adaptation.

The input sequence f of ROI features to the transformer
module is of length N/ ., where N/ . < N,,;. Each feature
fi in f (comparable to the image patches in [8]) is sent as
a token to the linear projection layer, which gives a set of
feature embeddings f’ € RY roi XD that are input to a series
of encoders consisting of multi-head self attention layers

[40] and fully connected layers.

The feed-forward block is a two-layers multi-layer per-
ceptron (MLP) with the GELU [ 1] non-linearity function.
Following the forward pass through L such encoders, the
final output of the transformer module is a set of attentive
region features { f4,;}ien: . By virtue of the self-attention
mechanism, we learn the cross-correlation between posi-
tive and negative region features, and in turn the ROIs that
contribute salient information for prototype computation.
The attended region features are passed to the classification
branch. The transformer is thus optimized to perform clas-
sification of ROIs through the detection head under a cross
entropy loss.

Predictive entropy. A classifier supervised with noisy
pseudo-labels will generate predictions with a higher level
of uncertainty. This uncertainty may be quantified as pre-
dictive entropy [26,41]. Using the predictive entropy of
the classifier allows us to disregard regions that the classi-
fier is uncertain about. This uncertainty stems from being
supervised by inconsistent and noisy labels, and thus can
further aid in identifying salient ROIs. As a way to ob-
tain insight on how informative each region feature is for
the bounding box categorization task, we form the atten-
tive class prototype as the weighted average of the attentive

region features f,,, weighted with the predictive entropy
of the classifier branch Cy_ of the object detection network
parameterized by ®. The predictive entropy of a classifier
under a domain shift is a useful metric in estimating the un-
certainty [20]. Instead of directly utilizing the uncertainty
of the model to weigh samples as in [26], we weigh each at-
tentive region feature with the confidence of the associated
prediction. From [4 1], the predictive entropy is given by

H(Y e @) = =3 pa(Y = clz) log{pa (¥ = clz)},

where N, is the number of classes The entropy weights for
each ROI are denoted by the vector E which is obtained by

H(Y |x; D)

The higher the entropy of a prediction, the more uncertain
the network is about the ROI. We wish to down-weigh the
losses associated with high-entropy regions. The attentive
prototype as the entropy weighted average of the attentive
ROI features is thus obtained by

E=1- (1

NT

TO0%
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Computing the final prototype. During the process of
training the object detector for adaptation, samples from
the target dataset X7 = {27}, are sent in mini-batches.
Each attentive prototype computed in an iteration is com-
bined with the prototoype computed in the previous itera-
tion through exponential moving average (EMA). The ini-

tial prototype at the first iteration of the first epoch is simply
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the average of the positive ROI features. The final attentive
prototype at each iteration j is thus given by

Floa = aF o+ (1= a)Fy, 3)

final
3.2. Similarity-based refinement

Once the representative class prototype is obtained, we
use it as a soft-filter to identify region features that are dis-
similar and thus far away from each other in the feature
space. To do this, the distance of each positive ROI in
Ryeqt from its corresponding prototype is calculated using
the metric of cosine similarity such that

i _ Zé{:l F]Einal : fi7k
\/Zkl’(:l(F}Cinal)z\/Zf:l(fi’k)z

where K is the feature dimension and ¢ ranges from 1 to
the number of ROIs, N,.,;. Cosine similarity is chosen due
to the sparse nature of the features. It is a popular met-
ric for measuring the distance between features in a latent
space [13,49,55]. The classification loss corresponding to
each positive region of interest is multiplied by a similarity
weight, computed by taking the softmax of the cosine dis-
tance. The loss corresponding to the classification task in
the object detection network is thus given by,

;zs:Ni( DY Al Y ) O

v icroit jEroi—

d “)

where 5 and y are constants, éi{j corresponds to the
region-wise loss of the bounding box classifier, where ¢ in-
dexes the positive regions and j indexes the negative re-
gions. With this similarity-based down-weighing, the losses
corresponding to regions that have been identified as incor-
rect through prototype matching will be down-weighed and
not contribute to training. As the representative prototype
improves with each epoch, the network becomes better at
soft-filtering incorrect regions and avoids reinforcing the er-
ror in pseudo-labels.

4. Experiments

We demonstrate our domain adaptation framework on
two object detection networks, the voxel based network
SECOND-iou [51], [48], and PointRCNN [35], a two stage
point-based network. In this section, we explain the details
of the experiments and the datasets used.

Datasets. In order to simulate the various domain shifts,
we consider three popular large-scale autonomous driving
datasets with considerable domain gaps among them, the
Waymo Open Dataset [37], the KITTI dataset [9], and the
nuScenes dataset [1]. The largest dataset among these is
Waymo, with more than 230K annotated LiDAR frames

collected across six US cities, of which we use approxi-
mately 50K due to memory constraints in a 40K/10K train-
ing/validation (test) split. We follow the standard sampling
procedure for training with a subset of the Waymo dataset,
and maintain the same splits. The nuScenes dataset con-
sists of 34,149 frames which we utilize in 28K/6K split.
The smallest dataset is KITTI, consisting of 7,481 (3K/3K
split) annotated LiDAR frames collected from Germany.
All training and validation splits used are official and con-
sistent with that used by other works in the 3D object detec-
tion literature. We use an inductive setup, in which test data
is not seen during adaptation.

Object detection networks. The network SECOND-iou
[48,51] is a two stage voxel-based 3D object detector which
uses a PointNet [27] backbone to extract voxel features
from groupings of points and consists of a grouping layer,
a region proposal network (RPN) and an ROI refinement
head. It is a modified version of SECOND [48] proposed
in [51], with the extra refinement head. The region fea-
tures for prototype computation are obtained at the output
of the RPN head, and the classification loss at this stage
is down-weighed during adaptation. PointRCNN is a two
stage point-based network with a similar PointNet backbone
[27] for feature extraction that generates 3D region propos-
als through a bottom-up approach through foreground seg-
mentation. This is followed by a refinement network. We
implement adaptation for PointRCNN in this second stage.
Our method is agnostic to the underlying object detection
network, and only assumes the existence of a region pro-
posal head

Online training procedure. The network is initialized with
the source-trained model and trained the pseudo-annotated
target data. Every k iterations, the network is inferenced
to obtain predictions that are filtered by a low threshold
value ¢, which are then used to update the pseudo-ground
truth annotations. In this way, the network is supervised
by progressively refined pseudo-labels. We follow a similar
thresholding process as [51] during each inference stage.

Implementation details. For the implementation of
SECOND-iou, we use the public pyTorch repository Open-
PCDet [38], and the official code release from [35] for the
implementation of PointRCNN. We perform experiments
with a 48GB Quadro RTX 8000 GPU and a 16GB GeForce
RTX 2080 GPU. The network is trained from scratch and
randomly initialized. During adaptation, the 3D object de-
tection network is initialized with the source trained model
and the transformer module is randomly initialized. We fol-
low the lengths of training recommended by the authors in
the case of each object detector network. Each network is
trained with a cyclic Adam optimizer with an initial learn-
ing rate [ADD].
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Table 1. A tabular comparison of 3D average precision (AP) results of the “Car” object for the adaptation of two object detection networks

SECOND-iou [48], and PointRCNN [

] against recent DA methods. Where the target dataset is KITTI, we evaluate with the official

metric across 3 difficulty categories for an IoU threshold of 0.7. In the case of the nuScenes target dataset, we average across the various
difficulty categories of the official metric. The best results are in bold blue type, the second best results are in red type. The * indicates that

source-data or information was used during adaptation.

SECOND-iou Point-RCNN

Domain Domain AP
Shlft MethOd AP Shlft MethOd easy mod. hard
DT 15.25 DT 13.11 12.10 12.24
W ST 17.80 W ST 21.13 19.29 18.28
ag)mo *SN [42] 18.57 at{)mo *SN 487 471 49.7

nuScenes | ST3D [51] 20.19 KITTI | SFFUDAP [33] | - - -

AttProto 20.38 AttProto 62.11 53.08 46.64
Oracle 32.64 Oracle 81.61 7436 74.49

Domain AP Domain AP
Shift Method easy mod. hard Shift Method easy mod. hard
DT 18.37 17.31 16.09 DT 10.59 10.76 10.64
ST 53.03 37.71 35.18 ST 2221 11.56 11.90
nuScenes SN | 2203 1851 18,04 | HuScenes *SN 60.35 54.82 52.78
KITTI ST3D | 7095 54.13 5178 | KITTI SF-UDA® | 68.80 49.80 45.00
AttProto 71.34 56.51 45.86 AttProto 69.10 60.22 53.16
Oracle 84.86 68.93 67.38 Oracle 81.61 7436 74.49

Table 2. A tabular comparison of 3D average precision (AP@R40)
results of the “Car”, “Pedestrian”, and “Cyclist” categories for the
adaptation of SECOND-iou [48] against recent domain adaptation
methods. We evaluate with the official metric across the difficulty
category “moderate” for an IoU threshold of 0.7. The best results
are in bold blue type, the second best results are in red type. The
+ indicates that source-data was used during adaptation.

L AP
Domain shift Method Car Ped.  Cyc.
DT 58.03 4513 46.08
*SN | 5920 5044 4143
ST3D | 62.19 4833 46.09
Waymo to KITTL | oy 0 | 65,10 53.87 53.43
AttProto | 66.86 55.38  48.46
Oracle | 7345 4133 6032
5. Results

In this section we demonstrate the results of our domain
adaptation framework and compare it against four domain
adaptation methods; Direct transfer (DT): Inference of the
source trained model on target data, Current SOTA: ST3D

[51] by Yang et al. and SF-UDA’D [33] by Saltori et al.
for their corresponding base networks, Statistical normal-
ization (SN) [42]: weakly supervised approach that uses the
target domain bounding-box statistics, Pseudo-label self-
training (ST): Re-training the object detector on thresholded
source-model generated pseudo-labels. For reference we,
also compare with the “oracle” results, which are obtained
by training the detector with the ground truth labels of the
target domain, indicating the possible upper bound of per-
formance after adaptation. While ST3D++ [50] is closely
related to [51], it is not a source-free method, and trains
the network with source-dataset samples along with un-
labelled samples. Nevertheless, we compare our perfor-
mance against this work and find that we outperform it in
several categories. We maintain the experimental settings
of [33,43,51] and demonstrate our results on the “Car” cat-
egory for established domain shift scenarios. For a com-
parison with [50], we demonstrate our framework on more
categories.

5.1. Comparison with state-of-the-art

Quantitative analysis. We report the mean average preci-
sion (AP) of 3D bounding boxes across various difficulty
settings for the domain shift scenarios Waymo — KITTI,
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SECOND-iou [48]

Direct transfer ST

ST3D [51] AttProto

PointRCNN [35]

Direct transfer ST

SN [42] AttProto

Figure 4. A qualitative comparison of our bounding box predictions of the “Car” class for the adaptation of SECOND-iou [48] (rows
1-4) and PointRCNN [35] (rows 5-8), with direct transfer (DT), pseudo-label self-training (ST), statistical normalization (SN) [42], and
ST3D [51]. Ground truth annotations are in green and predictions are in red. Best viewed zoomed in and in color.

Table 3. Ablation results. A comparison of 3D mAP performance
for the “Car” category of the adaptation of SECOND-iou using
different prototype computation methods.

Prototype nuScenes to KITTI
easy mod. hard
Average 65.00 47.55 40.24
Self-attention 65.01 47.54 4243
Transformer 69.26 50.09 45.11
Transformer + entropy weight | 71.56 52.12 45.86

nuScenes— KITTI, and Waymo— nuScenes to be consis-
tent with the reports of [33]. Where the target dataset is
KITTI, we use the official evaluation metrics detailed in [9]
with easy, moderate, and hard difficulty categories based
on the distance and level of occlusion of the object from
the sensor, with an IoU threshold of 0.7. Where the target
dataset is nuScenes, we use the metrics of [1], and average

across difficulties as is done in [51] and [33]. Due to the
lack of a code repository for SF-UDA3P at the time of writ-
ing, we compare with the reported numbers. We implement
our method with SECOND-iou for comparison with ST3D
and with PointRCNN for comparison with SF-UDA3P to be
consistent with their base object detector networks. This
can be seen in Table 1. We demonstrate the best results us-
ing both object detection networks in most categories, beat-
ing the weakly supervised approach of SN as well as [33]
and [51]. In Table 2, we perform domain adaptation for
three object categories “Car”, ‘“Pedestrian”, and “Cyclist”
for the domain shift of Waymo — KITTI and outperform
with the current state-of-the art UDA approaches ST3D and
ST3D++. Despite ST3D++ using source data during adap-
tation, we outperform it in the cases of Car and Pedestrian,
and perform second best in the Cyclist category.

Qualitative analysis. We further demonstrate the effec-
tiveness of our domain adaptation framework with those
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Table 4. A comparison of 3D mAP performance for the “Car” cat-
egory of the adaptation of SECOND-iou with and without updat-
ing the region features with the transformer output values during
classification.

Transformer  EMUOPY  Rol | Waymo to KITTI
weighing update [ casy mod. hard

v v X 7677 6596 61.52

v v v 79.12  66.86 62.29

of recent methods through a visual comparison of the pre-
dicted bounding boxes for the Waymo — KITTI task for
both object detection networks in Figure 4. The problems
of direct transfer (DT) of the source model are localization
and over-confident false positives (see column 1), where ob-
jects such as large vans are incorrectly identified as a “Car”.
This problem is mitigated only partially by pseudo-labelling
methods and by ST3D, and is better addressed by our ap-
proach. We also demonstrate improved localization of cor-
rectly classified objects, as can be seen in row 1.

5.2. Ablation study

We analyze the contribution of the different segments of
our domain adaptation framework. In Table 3, we compare
the 3D AP performance of the network using four differ-
ent prototype computation methods for the SECOND-iou
object detector; (i) Average: Class prototype is computed
by taking the mean of positive region features, (ii) Self-
attention: Prototype is computed by taking the mean of at-
tentive region features, which are the result of sending re-
gion features to a single multi-head self attention block. (iii)
Transformer: Prototype is computed by taking the mean of
attentive region features, which are the result of sending re-
gion features to the transformer module. (iv.) Transformer
with entropy weights: Prototype is computed by taking the
prediction entropy weighted mean of transformer generated
attentive region features. This is the best performing ap-
proach. In Table 4, we demonstrate the importance of up-
dating the region features after the forward pass through the
transformer module. The network benefits from updating
the positive region features with the output of the trans-
former block before the region classification branch, as is
apparent in the relative performance with the Rol feature
update.

In order to visualize the quality of the pseudo-labels at
different stages of training, we plot the confidence score his-
togram of 500 correct (/OU > 0.6) and incorrect pseudo-
labels generated by the source only model and 3 consecu-
tive meta-iterations. In the case of correct pseudo-labels, we
desire that the model generate confident labels with higher
IoU scores (distribution should lean right) and in the case of
incorrect pseudo-labels, be uncertain about generated labels

with low IoU scores (distribution should lean left). We ob-
serve this in the labels generated after adaptation. They are
less noisy than that of the source-generated labels, indicated
by the fact that incorrect samples of meta-iteration 3 tend to
be distributed with lower confidence than that of DT labels.
This shows that the quality of the pseudo-labels improves
after adaptation.

Figure 5. Histogram plot of confidence scores of correct (/OU >
0.6) and incorrect PL at direct transfer of the source-only model,
self-training (ST), ST3D [51], and at each stage of training of the
proposed method.

6. Limitations

Although our proposed approach out-performs exist-
ing source-free and source-trained UDA approaches over-
all, there are cases in which it under-performs, namely in
the “hard” category. “Hard” objects are characterized by
high occlusion, truncation, and far distance from the Li-
DAR sensor, and tend to be underrepresented in the dataset.
Additionally, poor localization performance of the source-
trained network may result in even fewer instances of these
samples in the the pseudo-annotated dataset. Underrepre-
sented samples contribute less to the class prototype, thus
affecting self-training. We plan to target this limitation in
follow-up work by exploring techniques such as label-free
augmentations.

7. Conclusions and future work

In this paper we proposed a source-free domain adapta-
tion framework for unsupervised domain adaptive 3D ob-
ject detectors that uses a transformer module to compute
an attentive class prototype to perform pseudo-label refine-
ment during self-training. Our method outperforms other
recent domain adaptation networks for several different do-
main shifts. We mainly address pseudo-label noise related
to the false positive mis-classification of regions in the 3D
scene, and not the dimensions of the bounding box. A factor
that contributes the drop in performance upon domain shift
is the difference in average size of the vehicles in different
locations [42]. While they address this by the weakly su-
pervised approach of statistical normalization, in the future
we hope to provide a fully unsupervised solution.
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