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Abstract

Multi-task networks demonstrate state-of-the-art perfor-
mance across various vision tasks. However, their perfor-
mance relies on large-scale annotated datasets, demanding
extensive labeling efforts, especially as the number of tasks
to label increases. In this paper, we introduce an active
learning framework consisting of a data selection strategy
that identifies the most informative unlabeled samples and
a training strategy that ensures balanced training across
multiple tasks. Our selection strategy leverages the incon-
sistency between initial and refined task predictions gener-
ated by recent two-stage multi-task networks. We further
enhance our selection by incorporating task-specific sam-
ple diversity through a novel feature extraction mechanism.
Our method captures task features for all tasks and dis-
tills them into a unified representation, which is used to cu-
rate a training set encapsulating diverse task-specific sce-
narios. In our training strategy, we introduce a sample-
specific loss weighting mechanism based on the individual
task selection scores. This facilitates the individual pri-
oritization of samples for each task, effectively simulating
the sample ordering process inherent in single-task active
learning. Extensive experimentation on the PASCAL and
NYUD-v2 datasets demonstrates that our approach out-
performs existing state-of-the-art methods. Our approach
reaches the loss of the network trained with all the avail-
able data using only 50% of the data, corresponding to 10%
fewer labels compared to the state-of-the-art selection strat-
egy. Our code is available at https://github.com/
aralhekimoglu/mtal.

1. Introduction
Multi-task networks have demonstrated state-of-the-art

(SOTA) performance across a range of vision tasks, in-
cluding semantic segmentation [3,33] and monocular depth
estimation [16, 22]. The performance of these multi-task
networks depends on the availability of labels for multiple
tasks for each sample in a large-scale training dataset. How-
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Figure 1. (a) Initial and refined predictions of a two-stage MTL
network with an MMD-block [30]. The tasks with inconsistent
predictions lack robustness and need to be further trained. (b)
Each sample is visualized as its task predictions. Diverse sample
includes an interesting scenario with people wearing motorcyclist
helmets. In contrast, the similar sample consists of a group facing
the camera, which is similar to samples in the training set.

ever, considering the time and labor costs of labeling, it be-
comes unfeasible to annotate all collected samples. Con-
sequently, a data selection strategy is needed to identify a
subset of unlabeled data for labeling. The core objective of
this work is to address the active learning (AL) problem in
multi-task learning (MTL), where the goal is to maximize
performance across multiple tasks while concurrently min-
imizing the need for large amounts of labeled training data.

Inconsistency-based single-task AL strategies [11, 32]
provide a solution where the selection is based on the in-
consistency in the predictions of a neural network under
different augmentations applied to the same input image.
Building upon this principle, we propose leveraging the in-
herent inconsistency within multi-task refinement networks
[28, 30]. As depicted in Fig. 1a, initial predictions of
these networks are refined using a multi-modal distillation
(MMD) block that shares information between the task pre-
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dictions. We observe that more challenging samples result
in higher levels of inconsistency. Therefore, we formulate
our AL selection strategy by quantifying the inconsistency
between these refinements and the initial predictions.

Diversity-based AL strategies [24] aim to curate a di-
verse training set, where the diversity is defined by the dis-
tance between feature embeddings extracted from a back-
bone neural network. However, adapting this technique to
the high-dimensional intermediate feature maps, typically
found after the backbone layers of multi-task networks, and
further extending it to capture diverse scenarios across mul-
tiple tasks is a non-trivial challenge yet to be addressed.
We introduce a novel solution using intermediary feature
maps obtained from each task-specific head to capture task-
specific diversity. We further distill the multi-task represen-
tation into a compact feature vector using an auto-encoder
architecture [13]. This novel approach allows us to encap-
sulate task-specific information across all tasks within a sin-
gular vector, effectively defining a measure of diversity. As
depicted in Fig. 1b, this strategy allows us to capture dis-
tinctive task-specific scenarios. For instance, the motorcy-
cle helmet introduces a unique challenge for head segmen-
tation, and learning on these task-specific diverse samples
would improve the performance of the network on these
samples in further iterations. Notably, given the visual sim-
ilarities of scenes, conventional strategies might fail to cap-
ture such task-specific information effectively.

In multi-task active learning (MTAL), once samples are
selected, the labeling process occurs simultaneously across
all tasks. However, when the selection scores from multi-
ple tasks are aggregated, a sample having high priority for
one task might not necessarily be equally beneficial for the
learning process of another task. This scenario contradicts
the principles of single-task AL, which centers on both the
selection of samples for labeling and the ordering of sam-
ples based on their informativeness in the learning process.
Training with low informative samples could diminish the
impact of high informative samples, potentially leading to
overfitting on well-learned, robust predictions. To counter-
act this issue inherent in multi-task AL, we present a novel
loss weighting strategy designed to preserve the effect of in-
dividual AL selections for each task by scaling the impact
of samples separately based on the corresponding selection
score. This strategy ensures that the benefits of single-task
AL selection are preserved while concurrently selecting and
labeling samples for all tasks.

Our main contributions are summarized as follows:

• We propose an inconsistency-based selection strategy
that leverages the inconsistencies between initial and
refined task predictions in multi-task refinement net-
works.

• We present a novel feature embedding approach tai-

lored for diversity-based AL that captures the task-
specific characteristics and condenses them into a uni-
fied feature vector.

• We introduce a loss weighting strategy to adjust the
impact of samples based on their selection scores, ef-
fectively simulating the dynamics of single-task AL
during training of a multi-task network.

2. Related work
2.1. Uncertainty-based active learning

Uncertainty-based AL methods rank the pool of unla-
beled samples using an informativeness score to select the
most informative samples for labeling. One common ap-
proach is constructing a committee of models, which makes
multiple predictions for the same input sample. The infor-
mativeness of a sample is then measured based on the level
of disagreement or inconsistency among the predictions
from these committee members. In epistemic uncertainty-
based methods, a committee is formed by training multiple
models with different initial random weights [4] or through
dropout layers, producing diverse predictions in each for-
ward pass [20]. Inconsistency-based methods [8, 11, 32]
generate diverse predictions by applying different augmen-
tations to the same input sample. Golestaneh et al. [11]
utilize horizontal flipping and calculate inconsistency us-
ing KL-divergence between predictions from the original
and flipped images, resulting in a selection score suitable
for dense vision tasks like semantic segmentation. Yoo et
al. [31] proposed a task-agnostic loss-based selection strat-
egy. They integrate an extra head within the network to pre-
dict the target loss for unlabeled samples, and the predicted
loss serves as the selection criterion.

Extending the single-task AL to the multi-task setting
has been primarily explored within the natural language
processing domain. Reichart and Rappoport [23] intro-
duced combining ranks of single-task selection scores by
aggregating them into a multi-task score used for ranking
samples for selection. Ikhwantri et al. [14] selected a ran-
dom task at each AL iteration and used its single-task selec-
tion score to guide the selection of samples for labeling. Re-
cently, Durasov et al. [6] leveraged single-task uncertainty
scores to pick a subset of tasks for which labels are anno-
tated. Despite these advancements, a comprehensive multi-
task selection strategy that considers task interactions and
investigates multi-task diversity remains unexplored.

2.2. Diversity-based active learning

In diversity-based AL [1, 7, 24, 26], the goal is to curate
a diverse training set through the selection of representative
samples that span the entirety of the input space. In the pio-
neering Core-Set approach, introduced by Sener et al. [24],
diversity is defined as the distance between intermediate
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network features extracted for each image. These features
are extracted from the penultimate layer of the image classi-
fication network. Building upon this, Hekimoglu et al. [12]
adapted the core-set diversity to object detection, demon-
strating that using task-specific features improves the selec-
tion performance. The CDAL strategy, introduced by Agar-
wal et al. [1], leverages contextual diversity relative to pre-
dicted classes and has been applied to object detection and
semantic segmentation. Conversely, adversarial diversity-
based approaches [7, 26] involve training a discriminator to
predict whether a given sample belongs to the labeled train-
ing set. Samples with lower similarity to the labeled set are
selected for labeling in the next AL iteration.

To our knowledge, prior work has not extended diversity-
based AL methods to the multi-task setting. Our work seeks
to bridge this gap by investigating how task-specific features
can be extracted for multiple tasks and combined into a uni-
fied diversity-based selection strategy.

2.3. Multi-task learning

Recent works on MTL can be categorized into two cate-
gories: network architectures and loss-weighting strategies.

A common multi-task architecture for computer vision
applications involves a global feature extractor, followed by
task-specific output heads for each task [5,17,18,35,36]. In
cross-talk networks [21], instead of a single shared feature
extractor, ”cross-talk” allows for information flow between
parallel layers of individual task-specific networks. Further-
more, prediction distillation architectures [28,30,34] gener-
ate initial task predictions, then, using task interactions, re-
fine these predictions in the final outputs. As introduced by
Xu et al. [30], PAD-Net operates in two stages. In the ini-
tial stage, a backbone followed by task-specific heads pro-
duces initial task predictions. Then, the second stage uses
an MMD block on these predictions, which distills infor-
mation from other tasks and enforces task consistency to
enhance the final refined predictions.

Strategies for MTL training balance the joint learning
of tasks by a weighing mechanism for combining the loss
of individual tasks. Kendall et al. [15] leveraged the ho-
moscedastic uncertainty to balance the single-task losses.
Similarly, in Dynamic Weight Averaging (DWA), intro-
duced by Liu et al. [17], the learning progression across
tasks is balanced through a weighing term based on the
change of loss for each task. These methods weigh the loss
of each task by a quantity, which remains constant across
diverse input samples for a single task. In contrast, our
proposal weights each sample during training based on the
associated task uncertainty. With this, we simulate an AL
selection for each task individually and bridge the gap be-
tween single-task and multi-task AL.

3. Methodology

The aim of this study is to tackle the AL problem in
the context of multi-task networks. We adopt a pool-based
AL framework, where we iteratively select samples from a
large pool of unlabeled data denoted as U . The selected
samples are subsequently labeled by an annotator and then
integrated into the training dataset T , for further training
in the following iterations. This process continues itera-
tively, with the aim of refining the multi-task network’s per-
formance over time. In our notation, we denote a sample
pair as (x, y), where x is an image, and y is the collection
of multi-task labels {yk | k ∈ K} with ground-truth anno-
tations for each one of the k ∈ K tasks.

Our proposed framework can be integrated into any MTL
architecture. We illustrate our approach using the two-stage
PAD-Net architecture [30] as our multi-task network. PAD-
Net consists of two prediction stages. The first stage gener-
ates predictions for each task using a shared backbone and
task-specific heads. In the second stage, these predictions
are refined through an MMD block, which uses an attention-
guided message-passing mechanism between the initial pre-
dictions to fuse relevant information across tasks.

In Algorithm 1, we present the steps for a single AL iter-
ation in our proposed framework. For every unlabeled sam-
ple, we assign two selection scores: a task-inconsistency
score (Sec. 3.1.1) and a diversity score (Sec. 3.1.2). Then,
we combine these scores into a single selection score
(Sec. 3.1.3). Next, we rank the samples based on this com-
bined score and select the top B samples, where B repre-
sents the AL budget for that iteration. Subsequently, the
newly labeled samples are incorporated into the labeled
training set, which is used to train the network Φ in the fol-
lowing iteration. During the training phase, we scale the
multi-task weight of each sample, as explained in Sec. 3.2,
to imitate single-task AL selection.

Algorithm 1 Single iteration of our AL framework

Require: unlabeled set U , training set T , budget B, net-
work Φ, set of tasks K
for u ∈ U do (Sec. 3.1)

Compute inconsistency score sk(u) (Eq. (2))
Compute diversity score div(u) (Eq. (3))
Compute combined score s(u) (Eq. (4))

end for
S ← Select top B samples from U based on s(u)
Acquire labels YS for samples in S
Augment training set: T ← T ∪ {S, YS}
Train Φ using Eq. (5) on T scaled by sk (Sec. 3.2)
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3.1. Selection strategy

3.1.1 Inconsistency-based selection score

Recent two-stage multi-task networks, incorporating multi-
modal distillation layers like PAD-Net [30], have demon-
strated the potential of leveraging task interactions to refine
the initial task predictions. For instance, if the boundary of
a semantic segmentation prediction does not align with the
boundary identified by an edge detection task, these tasks
exchange information via an attention mechanism, leading
to improved predictions in the second stage.

We base our inconsistency-based selection score on the
robustness of the predictions of a task before and after the
refinement iteration. When the initial and refined predic-
tions for a task show significant disparity, indicating a lack
of robustness, it suggests that the task is not certain for that
sample. Consequently, the respective task head could ben-
efit from learning from that sample. With this motivation,
we propose constructing a committee of refined predictions
and measuring task robustness by quantifying disagreement
among these committee predictions.

To construct the committee of refined predictions, we ex-
tend the PAD-Net architecture by integrating pairwise task
interactions. Specifically, the predictions of each task are
refined by incorporating predictions from all other tasks
through a two-task MMD block. Since the MMD block
is based on a spatial attention mechanism, the interactions
are learnable, enabling the network to disregard irrelevant
task interactions. These additional blocks are only utilized
for selection purposes and introduce no additional compu-
tational overhead during inference since we only utilize the
layers from the original PAD-Net architecture. We refer to
the supplementary for more implementation details.

In Fig. 2, we demonstrate the score calculation process
using the depth estimation task as an illustrative example.
For each task, we refine the initial prediction by incorpo-
rating predictions from all other tasks, yielding K − 1 re-
fined predictions. Together with the initial prediction, this
results in a committee of K predictions. To quantify the
disagreement among these committee predictions, we uti-
lize the corresponding task-specific loss function. Using
the loss allows for an easily applicable and task-agnostic
approach.

Formally, for task k, we calculate the inconsistency score
as the maximum loss between the initial task prediction
ŷk(x) and the refined task predictions ŷkj(x) for all other
tasks j ∈ K, j ̸= k:

ŝk(x) = max
j∈K,j ̸=k

Lk(ŷk(x), ŷkj(x)) (1)

To ensure comparability across tasks with varying score
ranges, we normalize the task inconsistency scores within

Initial Task
Predictions

Backbone

Multi-Modal
Distillation

Multi-Modal
Distillation

Multi-Modal
Distillation

Inconsistency
Calculation

Eq. (1)

y1(x)

y2(x)

y3(x)

y4(x)

y12(x)

y13(x)

y14(x)
Commitee of Refined

Predictions

Figure 2. Visualization of the inconsistency score calculation. For
each task, depth estimation is shown as an example, initial predic-
tion is refined by pairwise initial predictions of other tasks to con-
struct a committee of refined predictions. The inconsistency within
this committee defines the inconsistency-based selection score.

the [0,1] range as follows:

sk(x) =
ŝk(x)− smin

k

smax
k − smin

k

(2)

where smin
k and smax

k respectively represent the minimum
and maximum values of ŝk for task k across all samples.

3.1.2 Task-specific diversity score

In the Core-Set approach [24], diversity is defined by the
distance between images, where the distance is computed
as the Euclidean distance between the intermediate feature
vectors of the penultimate layer in an image classification
network. One straightforward extension of this approach
to the multi-task setting would be to employ the distance
between the intermediate feature maps obtained after the
backbone before the task-specific heads. However, this
high-dimensional representation makes the distance metric
unreliable. Furthermore, recent findings indicate that gen-
eralized backbone features do not effectively diversify task-
specific scenarios. Instead, employing task-specific fea-
tures is shown to yield better overall AL selection perfor-
mance [12]. Consequently, within the multi-task context,
the challenge arises of capturing task-specific features while
summarizing them into a more compact representation.

In Fig. 3, we provide an overview of our diversity-based
strategy. To capture task-specific feature representations,

2506



fbackbone
(CxHxW)

Encoder Decoder

MSE Loss

d(x,x')

ftask-i
(CxHxW)

fcomb
(4*CxHxW)

fencoded
(512-d)

fdecoded
(4*CxHxW)

Auto-Encoder

PAD-Net

Figure 3. Illustration of the proposed feature extraction strategy.
We combine the features from task-specific heads in the PAD-Net
architecture and use an auto-encoder to obtain a representative fea-
ture vector. Then, the distance between samples d is defined by the
distance between the encoded feature embeddings.

we extract intermediary feature maps obtained from the fi-
nal layers of each task-specific head. We then concate-
nate these feature maps to form a unified representation that
captures the relevant task-specific features across all tasks.
However, this combined representation is high-dimensional
and may contain some task-related features redundantly.
For instance, information related to an edge in both edge
detection and semantic segmentation can be distilled into a
more summarized representation. Therefore, to address the
challenges of dimensionality reduction and summarization
of information from different task-specific features, we uti-
lize an auto-encoder architecture.

We encode the concatenated feature maps into an N-
dimensional feature vector and decode them back to the
same representation. Empirically, we determined that a
512-dimensional embedding offers optimal results for our
diversity representation. A detailed ablation study is pro-
vided in the supplementary. To train the auto-encoder, we
use a mean-square error loss between the concatenated fea-
ture map and the decoded output. The auto-encoder is
trained separately from the multi-task network after com-
pleting the AL training phase for the multi-task network.

During the selection phase, we use the encoded features
as our diversity embeddings. These embeddings encapsu-
late task-specific features and are compactly summarized in
a feature vector. The diversity-based selection score for a
sample is defined by the distance between its embedding
and the closest sample in the training set, as follows:

div(x) = min
x′∈T

d(x, x′) (3)

where x represents an unlabeled sample, while x′ iter-
ates over all samples in the training set T . For the choice
of the distance measure d, we conduct an ablation study in
the supplementary with various metrics and empirically find
that the Euclidean distance produces the best performance.

3.1.3 Combined selection score

To effectively address task inconsistency and sample diver-
sity during selection, we combine the two selection scores
to rank the samples for labeling. For the task inconsistency-
based score, we prioritize the sample with the highest in-
consistency by selecting the maximum of the individual task
scores. This score is then multiplied by the diversity-based
score. Formally, the combined score is represented as:

s(x) = div(x) ·max
k∈K

sk(x) (4)

3.2. Training strategy

Within an MTAL framework, samples are assumed to be
labeled for all tasks simultaneously. However, the selection
scores we obtain in Eq. (1) are specific to individual tasks.
Consequently, a sample could be selected for its high in-
consistency score for one task despite having a significantly
lower score for another. Such a selection is counter-intuitive
in the context of AL. Training with samples of lower prior-
ity reduces the significance of the high-priority samples and
poses a risk of overfitting on well-learned samples.

To keep the principles of single-task AL selection in the
multi-task setting, we propose an adaptive training strat-
egy. This approach prioritizes samples as if operating un-
der a single-task AL scenario. To achieve this, we scale
the training influence of each sample based on its task-
inconsistency score. This strategy ensures that the network
does not overly learn from samples with low inconsistency
while giving greater importance to those with high incon-
sistency.

To implement this strategy, we modify the conven-
tional weighted multi-task loss [27] by the normalized task-
inconsistency selection score Eq. (2). The modified loss
function is then defined as:

L(x, y) =
∑
k∈K

sk(x) · wk · Lk(ŷk, yk) (5)

Here, wk represents the task-specific weight parame-
ter (such as DWA [17] or homoscedastic uncertainty [15]),
which controls the relative influence of each task during
training. Meanwhile, we use sk to serve as a sample-
specific scaling factor. We note that while wk remains con-
stant for different input samples of the same task, sk dynam-
ically scales the loss for each sample to mimic the single-
task AL process.

4. Experiments
4.1. Experimental setup

Datasets. We assess the effectiveness of our approach
using two publicly available datasets: PASCAL [10] and
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NYUD-v2 [25]. For the PASCAL dataset, we follow the
split provided by PASCAL-Context [2], resulting in 4,998
training and 5,105 validation images. These are annotated
for tasks including semantic segmentation, human part seg-
mentation, and semantic edge detection. Following the ex-
tension from [27], we also consider surface normals predic-
tion and saliency detection tasks. NYUD-v2 dataset [25]
contains 795 training and 654 validation images that depict
indoor scenes. Labels are available for semantic segmen-
tation and monocular depth estimation. Following [27, 30],
we also include surface normals labels estimated from the
depth maps.

Evaluation metrics. We use the mean intersection over
union (mIoU) (↑) [9] as the evaluation metric for seman-
tic segmentation, saliency estimation, and human part seg-
mentation, the optimal dataset F-measure (odsF) (↑) [19]
for edge detection, root mean square error (rmse) (↓) for
depth estimation and mean error (mErr) (↓) in the predicted
angles to evaluate the surface normals. For the multi-task
performance we use the multi-task loss (↓).

Network details. We adopt the multi-task architecture
PAD-Net, introduced by Xu et al. [30] with HRNet [29]
backbone, and further extend it with our AL framework.
For PASCAL, we follow [28] and use stochastic gradient
descent with momentum 0.9 with a batch size of 8 and a
learning rate of 1e-2. The multi-task weights wk are set as
follows: 1.0 for semantic segmentation, 2.0 for human parts
segmentation, 5.0 for saliency, 10.0 for normals estimation,
and 50.0 for edge detection. For NYUD-v2, we utilize an
Adam optimizer with an initial learning rate of 1e-4 and a
batch size of 6. The multi-task weights are 1.0 for semantic
segmentation, 1.0 for depth estimation, and 10.0 for nor-
mals estimation.

Active learning details. To initiate the active learning
process, we treat all the samples in the training split as the
unlabeled pool and create an initial labeled training set by
randomly selecting 10% of available samples. We start all
the baselines from the same network trained with this ini-
tial dataset. At each AL iteration, we add 10% more sam-
ples from the remaining unlabeled pool to the training set,
guided by the corresponding selection strategy. To simulate
the labeling process, we use the already available annota-
tions. We employ a continuous training strategy, where in
each AL iteration, the network is initialized with the best-
performing weights from the previous iteration. During
each training iteration, the network is trained for 20 epochs.

We report the mean of the respective metric on the vali-
dation sets for each experiment over three independent runs
with different random selections of the initial labeled pool.
We also report the numerical values and variances across
these three runs in the supplementary. All experiments are
conducted using two Tesla V100 GPUs.

4.2. Comparison with state-of-the-art

Baselines. We compare the effectiveness of our MTAL
method against several baseline methods.

• Random. This baseline mimics passive learning, where
each sample receives a selection score generated from
a uniform distribution.

• Core-Set [24]. We use the feature map obtained af-
ter the backbone network and before the task-specific
head as the diversity embeddings. We use the k-
Center-Greedy solver from [24], where we define the
distance to be the Euclidean distance between the fea-
ture maps of different samples.

• LL4AL [31]. We incorporate the loss prediction strat-
egy proposed by Yoo et al. [31]. We extend the net-
work architecture with a loss prediction module for
each task, enabling it to predict the loss of each sam-
ple. Samples with the highest predicted total loss are
selected for labeling.

• EquAL [11]. To compare against single-task selection,
we employ the SOTA AL for segmentation strategy
EquAL [11]. Since there are no specific AL strategies
for the other tasks, we adapt this baseline separately for
each task. We select by only considering the score of a
single task. For example, we denote the corresponding
selection strategy as EquAL-DE for depth estimation.

• RBAL [23]. This baseline ranks each task based on
single-task uncertainty (for our experiments through
EquAL). These ranks are then summed per sample to
generate a combined ranking score.

• PartAL [6]. This method assigns an uncertainty score
per task and, for each sample, only partially labels the
relevant tasks instead of labeling all tasks.

We also include the AP of a ”fully-trained” network,
which is trained on the entire training set, to provide a refer-
ence point for the potential of our network. For more imple-
mentation details, we direct readers to the supplementary.

Results on PASCAL. In Fig. 4a, we compare our
method against the baselines on the PASCAL dataset, us-
ing the multi-task loss. After the initial AL cycle, corre-
sponding to 20% of labeled samples, our method achieves
a 3.9% lower loss than other baselines. As the number
of actively selected labels increases, for example, using
60% of all available data, with 50% actively labeled, our
method demonstrates a 21.8% reduction in loss relative to
the Random baseline and an 8.5% reduction in loss in con-
trast to the second-best baseline, PartAL. Notably, due to
the continuous training strategy, several baselines exceed
the ”fully-trained” performance as they start training with
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Figure 4. Comparison of our proposed method with SOTA AL
methods on the PASCAL dataset. Lines indicate the average re-
sults over three trials. EquAL* represents the single-task EquAL
baseline with the lowest final MTL loss across all tasks.

high-priority samples and iteratively refine their networks
with newly added samples. Our method manages to reach
the loss of a fully-trained network while using only 42% of
the data. In contrast, PartAL requires 48% of the data to
achieve similar performance, representing a 6% saving in
data utilization.

Furthermore, in Figures 4b, 4c, 4d, 4e, and 4f, we present
the individual AL graphs for each task. Our method con-
sistently outperforms both multi-task and single-task AL
strategies across all tasks. This highlights the efficacy of
our approach in terms of maintaining single-task AL per-
formance while leveraging the insights derived from the
proposed multi-task inconsistency and diversity selection
scores.

Results on NYU. We present the multi-task loss for the
NYUv2 dataset for various baselines in Fig. 5. Similar to
PASCAL results, our method consistently outperforms the
other multi-task and single-task baselines across all tasks.
Our method reaches the loss of the fully-trained network
using 50% of available data, corresponding to a 10% data
savings rate, compared to the second-best method, PartAL.
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Figure 5. Comparison of our proposed method with SOTA AL
methods on the NYU dataset. Lines indicate the average results
over three trials. EquAL* represents the single-task EquAL base-
line with the lowest final MTL loss across all tasks.

4.3. Qualitative comparison

Fig. 6 qualitatively compares network predictions trained
with 60% of the data selected by our proposed method and
the PartAL baseline. Our method results in better segmenta-
tion of the intricate details, particularly in some challenging
scenarios, such as a bride’s wedding dress and a sailor’s hat.
This success can be attributed to the effectiveness of our se-
lection strategy, which can identify such diverse scenarios.
Also, due to our inconsistency-based selection strategy, we
showcase better inconsistency between the two tasks, ap-
parent in segmenting the corner of the sailor’s hat.

4.4. Ablation study

Effect of committee size. One of the design choices
in our approach is the utilization of pairwise task interac-
tions to construct a committee with K predictions. To in-
vestigate the influence of committee size on selection per-
formance, we experiment with variations involving triplet
and quadruple connections. Specifically, for the PASCAL
dataset with five tasks, the initial prediction constitutes one
committee member per task. Adding pairwise connections
expands the committee to five predictions (C5). Incorpo-
rating triplet connections introduces six additional mem-
bers (C11), and quadruple connections contribute another
four members (C15). Results from this ablation study, pre-
sented in Fig. 7a, indicate that the performance gain after
five members (C5) is minimal. Therefore, to reduce com-
plexity, we use only pairwise connections.

Different variants of diversity. We compare our
approach to various alternatives diversity-based strategies
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Figure 6. Qualitative comparison of the network predictions
trained with 60% of the data selected by our proposed method and
the PartAL [6] baseline, on the PASCAL dataset.
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Figure 7. Ablation study on: (a) effect of committee size on the
inconsistency-based selection performance, (b) different variants
of the diversity-based selection strategy.

in Fig. 7b. We compare against using the maximum of
single-task diversity scores Max-ST, where for each task,
we use the feature maps in the penultimate layers of the
corresponding task-specific head. Then, we take the maxi-
mum task-specific distances to represent the diversity score.
Additionally, we compare against an adversarial diversity-
based approach VAAL, with the same concatenated feature
maps we feed to our autoencoder as inputs to the VAAL
structure proposed by Sinha et al. [26]. We also introduce a
variant of our approach Ours+ LD, incorporating the dis-
criminator loss from VAAL into our auto-encoder learning
scheme. The results indicate that using combined multi-task
features for diversity (VAAL, Ours) reaches higher perfor-
mance. Moreover, adding the discriminator loss increases
the performance in early cycles but is surpassed after some
iterations. This indicates that the discriminator loss can be
beneficial in early cycles in identifying outliers. However,
as the distribution gap between the labeled and the unla-

beled set closes, discriminating between two close distribu-
tions becomes more ambiguous, and the performance gain
of LD is degraded.

Comparison of loss weighting strategies. In Tab. 1,
we evaluate two performance of two sample-specific loss
weighting strategies in conjunction with two task-specific
loss weighting strategies. We compare the Fixed task-
specific weights, using the weights detailed in Sec. 4.1
against DWA [17]. Additionally, we compare our sample-
specific weighting method, which uses the inconsistency,
against weighting by the loss of a sample, which we calcu-
late using ground-truth annotations after labeling. Results
demonstrate that the best MTL performance is achieved
when combining the Fixed weighting strategy with our pro-
posed inconsistency-based scaling method. Using loss as
the scaling factor results in lower performance regardless of
the task-specific weighting strategy. This suggests that in-
consistency is a more reliable proxy for weighting the sam-
ples during the multi-task training phase.

Weights Seg. Depth MTL
Task wk Sample sk(x) IoU rmse Loss

DWA [17]
- 32.1 0.74 7.68

Loss 32.5 0.72 7.37
Incons. 32.9 0.65 7.25

Fixed
- 32.7 0.78 7.63

Loss 32.3 0.77 7.55
Incons. 33.6 0.67 7.08

Table 1. Ablation study of different MTL loss weighting strategies
on the NYUD-v2. wk and sk(x) represent the task and sample-
specific loss weights in Eq. (5). ”-” denotes no scaling, Loss de-
notes using the ground-truth loss for scaling and Incons. denotes
using our proposed sample inconsistensy score.

5. Conclusion

We introduced a novel AL strategy for multi-task net-
works for vision tasks. Our selection strategy consists of a
task-inconsistency-based selection score and a multi-task-
specific diversity score. We further proposed a novel multi-
task learning training strategy to simulate the effects of
single-task AL in the multi-task setting. Our experiments
on two multi-task datasets demonstrate the effectiveness of
our approach, as it reduces the fully-trained loss by 2.8%
and achieves 10% fewer annotations than the state-of-the-
art baseline. One interesting future direction is to investi-
gate integrating semi-supervised learning techniques, such
as consistency regularization, into our framework to further
reduce the annotation requirements.
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