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Abstract

Eye contact is a crucial non-verbal interaction modal-
ity and plays an important role in our everyday social life.
While humans are very sensitive to eye contact, the ca-
pabilities of machines to capture a person’s gaze are still
mediocre. We tackle this challenge and present NITEC,
a hand-annotated eye contact dataset for ego-vision in-
teraction. NITEC exceeds existing datasets for ego-vision
eye contact in size and variety of demographics, social
contexts, and lighting conditions, making it a valuable
resource for advancing ego-vision-based eye contact re-
search. Our extensive evaluations on NITEC demonstrate
strong cross-dataset performance, emphasizing its effec-
tiveness and adaptability in various scenarios, that allows
seamless utilization to the fields of computer vision, human-
computer interaction, and social robotics. We make our
NITEC dataset publicly available to foster reproducibility
and further exploration in the field of ego-vision interac-
tion1.

1. Introduction

Eye contact plays a crucial role in our everyday social
interactions and is one of the most important mechanisms
in non-verbal interactions [8, 18]. It serves as signal to ini-
tiative for communication [13], regulating interactions (e.g.,
establishing and maintaining joint attention [24, 37]) and to
facilitate communication goals. The effects of eye contact
among humans are also observed in human-robot interac-
tion scenarios. In these settings, when individuals establish
eye contact with a humanoid robot, it elicits similar types of
automatic affective and attentional responses as they would
during eye contact with another human [5, 15, 44]. More-
over, eye contact with a robot shows positive impact on
its level of likability and attribution of human-likeness to

1https://github.com/thohemp/nitec

Figure 1. Typical discussion scenario in an office, where eye con-
tact plays a crucial role to manage the interaction. With the aid of
our NITEC dataset, machines are able to reach this communication
level to achieve more intuitiveness in human-machine interactions.

a humanoid robot [19] and can even effect a humans’ hon-
esty [34].

Humans possess a remarkable ability to perceive eye
contact accurately, even in challenging conditions. How-
ever, the robust detection of eye contact in machines, par-
ticularly in the domain of human-robot interaction, has been
largely unexplored, presenting a persistent and formidable
challenge. We argue that one of the main reasons for this
is the lack of rich and high-quality datasets to effectively
train neural networks to detect eye contact robustly in un-
constrained settings.

We strive to bridge this gap by introducing a new
dataset, called NITEC, a dataset by the Neuro-Information
Technology group for Eye Contact detection in real life
scenarios. NITEC provides hand-annotated labels for face-
based eye contact detection from ego-perspective to target
interaction scenarios in near- to midfield distances (e.g.,
see Figure 1). It is based on four other datasets for dif-
ferent computer vision tasks, namely WIDER FACE [38],
Gaze360 [14], CelebA [23], and Helen [21], that are partly
re-annotated and combined to a new, well-curated dataset,
that surpasses other current datasets in size, variety, and
quality. In multiple experiments, we show that common
CNN architectures trained on our dataset show striking
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generalization capabilities and outstrip other models on
their own datasets. Further, we analyze the qualitative
performance of our baseline models (with ResNet18 and
ResNet50 backbone) and study the face area and the strict-
ness for the classification of eye contact. To summarize, our
contributions are as follows:

• We introduce and publicly release NITEC, a rich and
large-scale eye-contact dataset for ego-vision interac-
tion with 36,000 hand annotated samples.

• We evaluate our dataset in numerous quantitative ex-
periments yielding state-of-the-art results using com-
mon classification models trained on NITEC

• We conduct qualitative evaluations to gain further in-
sights about the spatial classification behavior and
its corresponding consistency, highlighting the impor-
tance of eye contact prediction models

2. Related works
There have been numerous research approaches tackling

human-robot eye contact using dedicated gaze interaction
systems [19, 20, 25, 29, 32, 35, 41]. Most of these systems
focus on realistic robot behavior, while the human’s gaze
is perceived by hardware-based Eye-Trackers [33, 39] that
are not applicable to real life scenarios. Other image-based
approaches focus mainly on gaze vector predictions or head
pose estimation to identify the current focus of attention,
where eye contact can be formulated as a subtask by defin-
ing the specific gaze angle [2]. However, we will show in
the following sections that gaze predictions as well as head
pose estimation models are barely sufficient to fulfill this
task.

Eye contact as a classification task has recently drawn
significant interest in the automotive area to estimate pedes-
trian’s attention and awareness of the traffic situation.
Onkhar et al. [28] presented a method for deriving eye
contact in traffic using a head-mounted eye-tracker for the
pedestrian and an in-vehicle stereo camera. Mordan et
al. [27] introduced an end-to-end multi-task CNN for multi-
attribute pedestrian analysis, including eye-contact, based
on the JAAD dataset [30]. Another dataset called ”LOOK”
for pedestrian eye contact detection was introduced by
Belkada et al. [4], who proposed a body pose-based classi-
fication approach. This is caused by the fact that in the au-
tomotive application, most pedestrians are perceived from
far distance, where faces alone cannot be captured with suf-
ficient features. Smith et al. [36] presented one of the early
works for near- to midfield ego-vision eye contact classifi-
cation based on a specifically created gaze datasets. Ye et
al. [40] presented another learning-based method, that cou-
ples a head pose-dependent appearance model with a tem-
poral Conditional Random Field. But similar to gaze pre-

dictors, head-pose is not a reliable and precise eye con-
tact indicator. Chong et al. [6] created a new image-based
dataset with more than 4,000,000 samples to train neural
networks that help identify the main gaze patterns for the
diagnosis of Autism Spectrum Disorder. While their dataset
remains non-public, Zhang et al. [42] and Mitsuzumi et
al. [26] published ego-vision based eye contact annotations
for existing datasets along their model proposals. However,
we will show that these datasets are not sufficiently sized
and qualitative enough to build robust models upon them,
leaving a gap for ego-vision based eye contact detection.
We strive to close this gap by introducing NITEC, a manu-
ally annotated dataset , that encompasses various scenarios,
diverse environments, and different difficulty levels.

3. NITEC Dataset
In this section, we will give a detailed insight of the cre-

ation procedure and structure of our NITEC dataset. We
begin with a short analysis of existing datasets, followed
by details of the collection of NITEC and its annotation
pipeline. Finally, we will give a short comparison of the
final NITEC with other published datasets.

3.1. Existing datasets

To the best of our knowledge, there are only two pub-
licly available datasets, that have been labeled with eye
contact classes for near- and midfield detection range:
DEEPEC [26] and OFDIW [42]. DEEPEC provides manu-
ally annotated images provided by the datasets LFPW [3],
Helen [21], AFW [17], and IBUG [31], which sum up to
4,150 samples. The dataset is split into 53% eye contact
samples and 47% samples with averted gaze. The source
datasets are originally used for facial analysis and pro-
vide high-resolution, mostly non-occluded faces in uncon-
strained settings. OFDIW is split into an eye contact dataset
for humans and eye contact dataset for animals. The human
dataset consists of 16,548 samples with images collect from
the LFW dataset [12], which was originally published for
face recognition tasks. A third — not publicly available —
dataset was introduced by Chong et al. [6], who conducted
a study with human subjects that resulted in 4,339,879 an-
notated frames (281,152 with eye contact) for training and
353,924 annotated frames (25,112 with eye contact) for val-
idation.

3.2. Data composition

Our objective was to create a comprehensive dataset for
eye contact estimation in-the-wild, that provides large diver-
sity and variability. Therefore, we selected publicly avail-
able images from four different datasets with complemen-
tary characteristics: WIDER FACE [38], Gaze360 [14],
CelebA [23] and Helen [21]. WIDER FACE is a large-
scale in-the-wild dataset, primarily created for face detec-
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tion tasks. It contains images with varying scene con-
text including multiple persons, where the predominantly
small resolution of faces makes the classification of eye
contact particularly challenging. Gaze360 is a gaze esti-
mation dataset capturing 238 subjects in indoor and out-
door environments. In sum, it provides 172,000 samples
with a wide variety of gaze directions combined with a large
range of head poses. CelebA is a large-scale celebrity face
dataset that focuses on face attributes. This leads to im-
ages with feature-rich faces and challenging gaze directions
(e.g., slightly next to the camera). Finally, Helen is another
dataset for face feature analysis without celebrities setting
providing various images gathered from flicker with ex-
traordinary range of appearance variation, including pose,
lighting, expression and occlusion.

3.3. Annotation procedure

Our NITEC dataset contains in total 35,919 hand-
annotated samples, where 13,829 samples are from WIDER
FACE, 7,214 are from Gaze360, 12,226 are from CelebA
and 2,650 are from Helen. Except for Gaze360, all sam-
ples were manually annotated using a dedicated annotation
tool that provides highlighted face crops based on a Reti-
naFace [7] face detector. Thus, the annotators were able to
incorporate the context outside the facial region into their
decision-making process. The annotators were asked to
subjectively decide if the selected face appears to have eye
contact with the camera/annotator or not. If uncertain, faces
could be skipped and excluded from the dataset. The dataset
has been split into 29,003 training images and 6,916 test im-
ages, leading to a split ratio of roughly 80/20. The labeling
of the training set was distributed among two annotators,
while for the test set, every sample was labeled by three an-
notators, where the majority vote determined the final label
decision. Table 1 gives an overview about the type of con-
flicts for each sub sets. It reports a conflict rate of roughly
15% for WIDER FACE and CelebA, and about 8% for He-
len samples. Interestingly, in the latter two cases the ma-
jority vote determined in 90% an eye contact sample, while
for WIDER FACE most conflicts were selected to be no-eye
contact.

In contrast to the other datasets, Gaze360 provides 3D
gaze vector annotations. We leverage this data, by convert-
ing the 3D gaze direction into a 2D vector, consisting of
two angles yaw and pitch, and a unit vector for length. We
then collected samples from the training and test set, where
yaw and pitch would be between the strict thresholds of -
5 and 5 degrees, indicating eye contact with the center of
the camera. Likewise, we randomly sample the same num-
ber of samples with a gaze direction above the threshold for
generating non-eye contact samples.

Dataset No. of Samples Conflicts [%] Eye contact in conflicts [%]

NITEC-WIDER FACE 2829 15.6 24.7

NITEC-CelebA 2430 17.4 92.0

NITEC-Helen 525 8.2 88.4

NITEC 5784 15.7 59.1

Table 1. Evaluation of the mutual annotated test sets by three an-
notators with the number of annotated samples, the share of anno-
tation conflicts and share of label decision based on majority vote.
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Figure 2. Comparison of our proposed dataset with two other pub-
lic datasets in size and label distribution.

3.4. Dataset comparison

Our NITEC dataset will be freely available and will in-
clude the precise position of the facial region in the original
image, as well as the annotations provided by the annota-
tors. The test scripts, such as for Figure 5, will also be pro-
vided for use in research. Table 2 and Figure 2 show a com-
parison of our proposed dataset with the two other public
datasets. With around 36,000 samples, our NITEC dataset
is more than double the size of OFDIW that contains 16,648
samples. The third dataset, DEEPEC, consists only of 4,150
samples and is therefore the smallest one. However, with a
label split of 47.5% eye contact samples and 52.5% it is the
most balanced candidate, followed by our NITEC dataset
with 40.5% eye contact. The slight overhang of non-eye
contact samples is introduced by the WIDER FACE sub-
set, where only approximately every fifth sample is labeled
with eye contact, based on the subset ratio. This is caused
by the nature of the WIDER FACE dataset, that contains
mainly faces captured from far distances, where the person
is not aware of the camera. We chose this dataset with the
intention to reduce false positive in the target models for
cases where target faces are feature-poor. The remaining
NITEC subsets are fairly balanced around 50%. However,
the OFDIW dataset has a similar label distribution com-
pared to our WIDER FACE subset with unbalanced 23%.
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Dataset No. of Samples (Eye Contact [%])

Train Test
∑

OFDIW 11,511 [22.7] 4,137 [23.93] 16,648 [23.0]

DEEPEC 4,150 [47.5] 4,150 [47.5]

NITEC-WIDER FACE(Ours) 11,000 [23.2] 2,829 [20.0] 13,829 [22.6]

NITEC-CelebA (Ours) 9,829 [49.5] 2,397 [63.4] 12,226 [52.2]

NITEC-Helen (Ours) 2,125 [52.0] 525 [57.1] 2,650 [53.0]

NITEC-Gaze360 (Ours) 6,049 [50.5] 1,165 [50.6] 7,214 [50.5]

NITEC (Ours) 29,003 [39.9] 6,916 [43.0] 35,919 [40.5]

Table 2. Comparison of our proposed dataset with other public eye
contact datasets with corresponding label distribution.

4. Experiments
We conduct several experiments to analyze the perfor-

mance and quality of our NITEC dataset. We begin with
a quantitative analysis by comparing the performance of
baseline models over multiple dataset to study the cross-
dataset generalization. In a second experiment, we com-
pare these models with other eye contact detection models
and other gaze prediction and head pose based approaches.
Finally, we conduct an intra-dataset experiment to evalu-
ate the impact of each of our NITEC datasets component on
the overall performance. While for our NITEC and OFDIW
the train and test sets are predefined, there is no definition
for DEEPEC. Therefore, we randomly split DEEPEC into
80/20 ratio for training and testing. In additional qualita-
tive evaluations, we analyze the performance on different
exemplary images and assess the prediction pattern.

4.1. Experimental setup

To train our baseline models for the binary classification
between eye contact and non-eye contact, we chose the pop-
ular and simple ResNet [10] and SWIN-Transformer [22]
backbone with two output neurons. The input consists of
the cropped faces, and we limit the augmentation to random
cropping and random horizontal flip. The model is trained
for 20 epochs, using binary cross-entropy loss function with
Adam optimizer [16], with a learning rate of 0.0001 (0.001
for the SWIN-Transformer) and a batch size of 80. This
way, we obtain a standardized model with focus on the
training data to enable optimal comparisons.

4.2. Cross-dataset evaluation

Comparing the available datasets specifically designed
for eye contact detection (OFDIW, DEEPEC, and our
NITEC dataset), the models were trained on the respective
training sets of each dataset, and their results were com-
pared on all test sets of the datasets and sub-datasets shown
in table 3. We follow the strategy by Belkada et al. [4] and

employ the average precision as the main metric, comple-
mented by the F1-Score, to provide insights into the clas-
sification model’s ability to accurately classify positive in-
stances while minimizing false positives and false nega-
tives. Examining the results of ResNet18 reveals a clear
distinction between models trained on different training
datasets. DEEPEC consistently performs the worst on all
test datasets, showing significant differences compared to
the other models (which could be attributed to the size of the
training dataset). The OFDIW ResNet18 model also per-
forms consistently worse than the NITEC ResNet18 model,
even on the test data of the OFDIW dataset itself. Given the
relatively poor performance of all models on the OFDIW
dataset, it is likely that the OFDIW dataset is plagued by
significant label noise. Analyzing the test datasets where
the differences between models are most prominent, it is ev-
ident that the results on the particularly challenging WIDER
FACE dataset not only perform worse compared to other
test datasets but also exhibit significant variations between
models, with the NITEC model consistently outperforming
the others. Similarly, on the challenging CelebA dataset,
which contains difficult gaze angles passing closely by the
camera. As these results hold for both average precision
and F1-score, the NITEC dataset enables better general-
ization of the relevant features for eye contact data com-
pared to the other datasets. These findings can be extended
to the more complex ResNet50 models. Here, too, the
NITEC-trained model outperforms the others, except for the
DEEPEC test dataset, where the model trained on DEEPEC
data achieves a slightly better average precision, while the
F1-score remains higher for the NITEC model. Comparing
the ResNet18 models with the ResNet50 models reveals that
the larger models do not yield significant improvements (ex-
cept for a slight improvement in DEEPEC), but rather lose
robustness. It is assumed that the ResNet50 models overfit
on the datasets of this size due to faster convergence within
20 epochs.

Through a qualitative investigation, as visually depicted
in Figure 3, it becomes evident that ResNet18 harnesses im-
age information more effectively in different domains. The
analysis of Figure 3 a) reveals that ResNet18 incorporates
more extensive facial regions, enabling the integration of
nuanced aspects such as head pose. Moreover, pertinent so-
cial cues like social smiles and diverse facial expressions
find consideration within ResNet18, particularly when ocu-
lar recognition poses challenges. It is noteworthy, however,
that these considerations are contingent upon the conjunc-
tion with ocular data, as evident in Figure 3 b). Conversely,
ResNet50 at times exhibits an inclination to overly rely on
distinct ancillary attributes, inadvertently leading to the un-
derestimation of the significance of ocular information. The
ResNet50’s focus primarily centers on individual salient in-
dicators for assessing eye contact, yet often without robust
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Training Dataset Method Eye Contact Classification (AP) ↑ [F1-Score ↑]

OFDIW DEEPEC NITEC-WF [38] NITEC-Gaze360 [14] NITEC-CelebA [23] NITEC-Helen [21] NITEC

OFDIW [42] ResNet18 57.4 [33.1] 70.8 [61.2] 44.3 [37.2] 76.3 [19.9] 91.6 [76.7] 92.1 [75.4] 80.4 [61.2]

DEEPEC [26] ResNet18 31.2 [16.3] 69.6 [62.7] 27.4 [23.9] 57.8 [27.7] 80.4 [42.1] 88.6 [74.5] 62.0 [39.9]

NITEC (Ours) ResNet18 59.5 [55.3] 72.4 [73.3] 57.0 [59.8] 93.0 [86.6] 96.0 [90.2] 95.6 [89.5] 88.9 [83.6]

OFDIW [42] ResNet50 55.2 [40.0] 68.8 [59.3] 41.3 [38.7] 68.5 [19.2] 90.4 [73.7] 90.1 [72.7] 75.8 [59.0]

DEEPEC [26] ResNet50 31.2 [10.7] 75.7 [65.8] 26.3 [17.7] 54.3 [22.5] 83.1 [38.8] 93.0 [74.5] 63.1 [37.1]

NITEC (Ours) ResNet50 57.2 [53.6] 73.8 [71.7] 57.2 [57.0] 89.7 [84.5] 95.2 [90.6] 96.7 [90.5] 87.9 [83.0]

Table 3. Comparison of different datasets using simple baseline models based on ResNet18 and ResNet50. Eye contact classification is
evaluated using the average precision (AP) metric and F1-Score. Each model is trained as a simple classifier for 20 epochs on the training
set of each dataset and tested on all other combinations of test sets.
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Figure 3. Visual Comparison of Gradient Class Activation Maps
[9] between ResNet18 and ResNet50 on images from the CelebA
dataset [23]. It is evident that ResNet18 processes more sec-
ondary information and utilizes more comprehensible image re-
gions. (HP) refer to head pose estimation model, (G) refer to gaze
estimation models.

integration with other facial features, shown in Figure 3 c).
Notably, these delineated image regions pertaining to the
eyes manifest a greater degree of isolation from the broader
facial context, which regrettably engenders occasional fal-
libility in recognition, consequently resulting in the neglect
of other pertinent data points.

This observation also indicates that eye contact detection
tasks can be accomplished with simple architectures, high-
lighting the quality of the dataset, which seemingly captures
relevant features for eye contact detection in various scenar-
ios and enables efficient training.

In Table 4, we conduct another quantitative experiment.
Here, instead of average precision, we measure the accu-
racy along with the F1 Score to include additional non-eye
contact models in the comparison. For head pose-based eye
contact prediction, we employ the 6DRepnet [11], a leading
model for image-based head pose estimation. For the gaze
direction-based approach, we utilize the L2SC-Net [1]. For

further comparison, we include the Gaze360 [14] gaze di-
rection model. Both models were trained on the Gaze360
dataset. Additionally, we include the model proposed by
Chong et al. [6] as a comparative benchmark.

For the head pose and gaze direction models, we follow
the same procedure as for the Gaze360 data labeling and
define predictions as eye contact when the yaw and pitch
angles are between -5 and 5 degrees. All other predictions
are defined as non-eye contact. In two additional iteration,
we increased this threshold to 15 and 25 degrees.

The results indicate that head pose models are not suit-
able for eye contact prediction. Although an accuracy of
over 70 percent can be achieved on the OFDIW and WIDER
FACE subsets, the accuracy should be interpreted with cau-
tion, as the label distribution for these two sets are over 70%
(see also table 2). The results of the F1-score indicate that
neither the recall nor the precision can achieve compati-
ble measures. L2SC achieves similar accuracy results but
reaches double-digit values in the F1-score, showing better,
yet not satisfying results. The results of Gaze360 resemble
those of 6DRepNet at a threshold of 5. However, when the
threshold is increased to 15 or even 25 degrees, all three
methods show a significant improvement for the F1-score
that saturates between a threshold of 20 and 30 degrees.
This can be attributed to the fact that the prediction errors
of the gaze direction and head pose models are larger than
the considered intervals for eye contact. This behavior is
further analyzed in section 5.1.

The model by Chong et al. [6] was trained on the largest
amount of data by far. This is evident in its consistently
robust accuracy and F1-scores. While it outperforms the
on OFDIW and DEEPEC trained models on the NITEC
test sets, it falls behind both models on the OFDIW and
DEEPEC test sets. Especially for the OFDIW datasets, the
accuracy and F1-Score remains low, which supports our as-
sumption in section 4.2 about its excessive label noise.

However, for NITEC-trained models based on ResNet
and the SWIN-Transformer-tiny [22] architectures achieve
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Method Backbone Eye Contact Classification (Accuracy) ↑ [F1-Score] ↑

OFDIW DEEPEC NITEC-WF [38] NITEC-Gaze360 [14] NITEC-CelebA [23] NITEC-Helen [21] NITEC

(HP) 6DRepNet [11]-5 ResNet50 75.4 [3.6] 54.1 [3.1] 79.6 [2.4] 50.4 [5.9] 36.4 [1.3] 43.6 [3.9] 57.0 [2.7]

(HP) 6DRepNet [11]-15 ResNet50 60.9 [28.8] 55.1 [33.5] 74.5 [22.3] 59.5 [48.2] 47.9 [42.9] 49.9 [35.7] 60.9 [39.0]

(HP) 6DRepNet [11]-25 ResNet50 50.0 [33.8] 54.7 [49.5] 70.8 [37.3] 61.0 [56.8] 61.0 [69.4] 59.0 [61.8] 64.9 [59.4]

(G) L2SC-Net [1]-5 ResNet50 72.0 [18.6] 53.4 [24.8] 79.1 [15.7] 54.5 [21.6] 46.7 [34.1] 51.0 [30.4] 61.6 [27.9]

(G) L2SC-Net [1]-15 ResNet50 59.4 [39.7] 59.4 [57.8] 74.0 [41.3] 68.6 [62.5] 66.0 [73.9] 70.3 [72.2] 70.1 [64.9]

(G) L2SC-Net [1]-25 ResNet50 46.7 [41.2] 56.7 [62.5] 66.0 [45.1] 77.3 [78.9] 69.5 [79.5] 73.9 [79.3] 69.8 [71.1]

(G) Gaze360 [14]*-5 RS18-LSTM 53.9 [11.0] 75.1 [3.7] 79.2 [4.2] 49.8 [2.3] 38.5 [9.4] 45.9 [12.3] 57.6 [7.3]

(G) Gaze360 [14]*-15 RS18-LSTM 56.2 [42.0] 68.3 [20.6] 75.3 [25.8] 57.2 [32.8] 52.9 [51.9] 57.0 [50.4] 63.1 [43.1]

(G) Gaze360 [14]*-25 RS18-LSTM 57.9 [31.3] 57.1 [57.2] 68.6 [35.9] 63.3 [54.9] 64.4 [71.8] 66.9 [71.2] 66.1 [60.7]

Chong [6]* ResNet50 59.3 [47.8] 68.2 [45.9] 68.3 [45.9] 76.1 [73.9] 75.3 [79.9] 81.9 [83.8] 73.1 [70.2]

OFDIW [42] ResNet18 79.3 [33.1] 67.6 [61.2] 81.7 [37.2] 54.4 [19.9] 74.8 [76.7] 76.6 [75.4] 74.3 [61.2]

OFDIW [42] ResNet50 79.7 [40.0] 66.5 [59.3] 80.5 [38.7] 53.8 [19.2] 71.7 [73.7] 74.1 [72.7] 72.5 [59.0]

DEEPEC [26] ResNet18 75.3 [10.7] 67.5 [62.7] 77.7 [23.9] 53.4 [27.7] 51.2 [42.1] 74.7 [74.5] 64.2 [39.9]

DEEPEC [26] ResNet50 75.3 [10.7] 70.0 [65.8] 77.6 [17.7] 49.8 [22.5] 50.3 [38.8] 79.4 [79.5] 63.6 [37.1]

NITEC (Ours) ResNet18 80.6 [55.3] 74.3 [73.3] 84.3 [59.8] 87.1 [86.7] 88.1 [90.3] 88.6 [89.5] 86.4 [83.6]
NITEC (Ours) ResNet50 77.8 [53.6] 72.2 [71.7] 82.8 [57.0] 85.1 [84.5] 88.3 [90.6] 89.3 [90.5] 85.6 [83.0]

NITEC (Ours) SWIN-Tiny 79.0 [55.7] 74.2 [71.5] 84.1 [60.6] 87.8 [87.8] 85.6 [88.1] 86.7 [87.9] 85.4 [82.6]

NITEC (Ours) SWIN-Small 80.0 [53.9] 73.0 [70.0] 82.9 [57.4] 81.0 [78.8] 86.5 [88.7] 85.9 [87.1] 84.1 [80.4]

NITEC (Ours) SWIN-Base 80.1 [44.1] 72.4 [67.1] 83.4 [52.8] 84.5 [83.1] 74.3 [75.3] 80.2 [79.8] 80.2 [73.0]

Table 4. Comparison of different models for eye contact classification, including head pose based and gaze based estimation methods. The
used metrics are accuracy and F1-Score (in square brackets). Models with * are provided by the original authors.

the best results by a significant margin and, thus, can pre-
vail also in this comparison as the most efficient and well-
generalized model. We argue that to achieve superior results
for the small and base SWIN architecture, more training
data is required than the NITEC dataset currently offers.

4.3. In-dataset evaluation

Table 5 presents the results of our in-dataset evaluation
of the NITEC dataset. In this evaluation, we trained the
ResNet18 baseline model on the train set of each subset and
tested it on all other test sets. For evaluation, we used aver-
age precision as the primary metric, supplemented with the
F1-Score in parentheses. The model trained on the CelebA
subset shows the strongest performance of subsets, as it
outperforms not only on its own test set, but also on the
WIDER FACE and Helen test set. Remarkably, the model
trained on the complete dataset surpasses all other models,
showcasing the synergistic effect of the composition of data
from the different datasets. This highlights the complemen-
tary nature of our chosen subsets for NITEC, ultimately re-
sulting in improved generalization performance.

5. Qualitative analysis

For qualitative analysis, we five exemplary images
and applied the ResNet-18 baseline models for NITEC,
OFDIW, as well as the Chong et al. and the gaze-based
L2SC-Net model (with a threshold of 5). The results are

Eye Contact Classification (AP) ↑ [F1-Score] ↑

Train/Test WF Gaze360 CelebA Helen NITEC

WF 52.8 [46.5] 75.7 [35.5] 82.1 [56.8] 87.4 [73.4] 76.6 [54.0]

Gaze360 38.8 [35.8] 87.4 [82.7] 80.5 [66.9] 84.3 [66.7] 75.5 [64.6]

CelebA 53.4 [55.0] 77.4 [52.0] 91.8 [86.0] 93.0 [86.1] 81.3 [74.1]

Helen 43.0 [39.8] 65.5 [36.7] 78.0 [61.0] 84.1 [74.9] 69.5 [54.6]

NITEC 57.0 [59.8] 93.0 [86.6] 96.0 [90.2] 95.6 [89.5] 88.9 [83.6]

Table 5. NITEC subset evaluation based on the ResNet18 model.

illustrated in Figure 4. It exemplifies that OFDIW and
L2SC are incapable to detect most of the eye contact faces,
while OFDIW even misclassified low-quality faces (second
and third row). NITEC and Chong, however, are able to
correctly determine the eye contact candidates in row two
and four. Particular difference between these two models
are shown by more difficult samples given in row three
and five. Here, Chong predict False-Positives for heavily
blurred faces in the background, while our NITEC model
tends for more strict decisions. The reason for this could
lie in the choice of WIDER FACE, which we selected with
the intention of suppressing potential false positives in chal-
lenging images. However, in some cases this can lead to
False-Negatives as shown in row five with the girl in the
front. This effect is further analyzed in section 5.1.
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(a) NITEC (b) Chong et al. [6] (c) OFDIW [42] (d) L2SC-Net [1]

Figure 4. Exemplary qualitative results of eye contact classification for NITEC, Chong, OFDIW and the gaze-based L2SC model.

5.1. Prediction distribution analysis

Figure 5 shows another qualitative comparison of eye
contact/non eye contact prediction on the MPIIFaceGaze
dataset [43] using baseline models by Chong et al. [6],
Gaze360 [14], and our NITEC dataset. The MPIIFaceGaze
dataset consists of 37,788 facial samples, with subjects fo-
cusing on the camera level evenly distributed within a rela-
tively small range around the camera, excluding above the
camera, resulting in a lack of information in that area. Addi-
tionally, the subjects have a similar distance from the cam-
era. In figure 5, the predicted values are aggregated using
a k-nearest-neighbors algorithm (k=100) and represented
with their specific gaze target locations relative to the cam-
era and the prediction values represented in color. The com-
parison includes the arithmetic mean, median, and variance.
When observing the means and medians for the Chong et al.
and our NITEC model, a downward shift of the main region
classified as eye contact by the model is noticeable. How-
ever, examining the Gaze360 model reveals no such shift

when considering only gaze direction. This indicates that
the discrepancy lies not in the MPIIFaceGaze dataset or its
evaluation but rather in the training data of the models. This
can be explained by perceiving eye contact even when the
whole face is observed. As the data is hand-annotated, with
the eyes located in the upper third of the face, the shift oc-
curs in the region where eye contact is detected. The graphs
for the mean and median also demonstrate that the models
gain more confidence as the actual focal point approaches
the camera on the horizontal axis and reaches higher val-
ues when approaching just below the camera on the ver-
tical axis. Both the Chong et al. model and our NITEC
model exhibit a uniform decline in predicted eye contact
values with increasing distance from the main eye contact
region (both in mean and median). However, compared to
Chong et al., our NITEC model is more conservative. Only
6.7% of the values predicted by the NITEC model exceed
0.75, whereas Chong et al.’s model has 35.7% of the val-
ues are above 0.75. On the other hand, 56.6% of the val-
ues predicted by the NITEC model are below 0.25, whereas

4443



Figure 5. Qualitative comparison between different datasets using simple baseline models on the MPIIFaceGaze dataset [43]. The methods
considered are Chong et al. [6] with a ResNet50 model, the Gaze360-LSTM trained on the Gaze360 dataset [14] with a classification
threshold range of -15 to 15 degrees to qualify as eye contact, and our NITEC baseline with a ResNet18 model. For the arithmetic mean
and the median, a value of 1 indicates predicted eye contact, while 0 indicates no eye contact prediction.

Chong et al.’s model has only 7.4% of the data points pre-
dicted below 0.25. This allows for greater adaptability of
the NITEC model to practical conditions by selecting a
threshold for detection. Comparing the mean and median
reveals that the models decisions tend to lean towards the
extremes, and the transition between eye contact and non
eye contact is slower when considering average values than
what the model would predict in the majority of cases, as
evident in the subgraphs for the median. Another impor-
tant measure for the models generalization capabilities is
the scatter in predictions. Therefore, the variance within
the regions derived from the k-nearest-neighbors algorithm,
based on each set of 100 samples, is also shown. It can be
observed that the variance is very low in the regions where
the models assume eye contact (remind NITEC being more
conservative than Chong et al.) and in the regions where
no eye contact is predicted. As expected, the variance in-
creases in the transitional areas. Overall, it becomes appar-
ent that models trained directly on eye contact demonstrate
significantly smaller variance, indicating higher robustness
than the models trained solely on gaze direction. Similar to
the quantitative analysis, it becomes evident that eye con-
tact detection presents unique challenges that cannot be ad-
equately addressed with existing gaze direction approaches.
This is primarily attributed to the significant prediction er-
ror and the associated variance. This justifies the need for

a dedicated dataset and specialized models for eye contact.
These models offer more flexibility in adjusting the thresh-
old to the specific application field of eye contact and pro-
vide significantly higher robustness.

6. Conclusion

In this paper, we introduced our hand-annotated NITEC
dataset for image-based eye contact detection from ego-
centric perspective. By publicly releasing NITEC we aim
to enhance research on nonverbal interaction in the field
of human-machine interaction, striving to improve intuitive
communication and to reduce misunderstandings. Through
multiple quantitative evaluations, we have demonstrated the
quality of the dataset, showcasing the exceptional general-
ization performance even with small baseline models. In
future work, we aim to further investigate this behavior and
link it with a dedicated user study to gain a better under-
standing of the subjective perception of eye contact.
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