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Figure 1. A Point Cloud and Query Points from a regular grid are passed to the Occupancy Predictor to infer the volumetric model of a

deformed object.

Abstract

In deformable object manipulation, we often want to in-

teract with specific segments of an object that are only de-

fined in non-deformed models of the object. We thus require

a system that can recognize and locate these segments in

sensor data of deformed real world objects. This is nor-

mally done using deformable object registration, which is

problem specific and complex to tune. Recent methods uti-

lize neural occupancy functions to improve deformable ob-

ject registration by registering to an object reconstruction.

Going one step further, we propose a system that in addition

to reconstruction learns segmentation of the reconstructed

object. As the resulting output already contains the infor-

mation about the segments, we can skip the registration pro-

cess. Tested on a variety of deformable objects in simulation

and the real world, we demonstrate that our method learns

to robustly find these segments. We also introduce a sim-
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ple sampling algorithm to generate better training data for

occupancy learning.

1. Introduction

Our research is driven by the demands of robot-assisted

surgical applications. These include the ability to find and

interact with specific segments, for example to grasp or cut

them. Soft organs are highly deformable, which makes

these interactions challenging. To find segments of inter-

est, current work focuses on registering a known segmented

model to sensor data. The known models can be obtained

from a medical CT, where the segments are then defined

manually.

Instead of using deformable registration methods, we

propose a method to directly reconstruct deformable ob-

jects with all their segments from depth images. The seg-

mented reconstruction can then be used instead of a regis-

tered model for planning the interactions.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Emerging object reconstruction methods learn a contin-

uous object representation to create voxel or surface meshes

at any resolution. For example, neural occupancy func-

tions [21, 28] or Signed Distance Function (SDF)s [30, 36].

Labeled points in 3D space are used to train such continu-

ous representation. However, the impact of generation and

distribution of these points is rarely detailed or investigated.
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Figure 2. Three ways to represent objects: using a regular grid

of voxels, using two Triangle Meshes, and using an Occupancy

Function. In this example, the Occupancy Function outputs values

of 0, 1, or 2 for every point depending on its location. The shape of

the object is implicitly defined by the boundaries between regions

of the same value.

Binary neural occupancy is usually defined as a function

in 3D space that takes on discrete values 0 and 1 to indi-

cate if the point is inside or outside of a solid object, i.e.

obinary : R
3 → {0, 1}. We consider an extension to this

definition to include multiple class labels omulti : R
3 →

{0, 1, ..., n}, where n is the number of segments. Fig. 2

illustrates how an occupancy function encodes an object in

comparison to voxel and triangle models. We consider 0
to be the label for empty space. Objects are implicitly de-

fined by the boundaries between the clusters of points with

the same occupancy value. A multi-class occupancy func-

tion with 0, · · · , n labels can be used to represent an object

with n segments. By conditioning this multi-class occu-

pancy function on sensor data, it can be used to reconstruct

objects in different deformation states.

Contribution We train a neural system end-to-end for 3D

reconstruction and segmentation using and demonstrate its

ability to reconstruct objects accurately from a single-view

point cloud, despite deformations and occlusions. Our con-

tributions include:

1) Extending binary occupancy functions over continuous

domains to multi-class occupancy.

2) Developing an algorithm with few hyperparameters for

generating high-quality training data for occupancy learn-

ing.

3) Provide an alternative to traditional deformable object

registration methods.

2. Related Work

2.1. Semantic Scene Completion

Semantic Scene Completion (SSC) provides a labeled

3D environment model based on sensor data. This model

can be used for tasks such as autonomous navigation. Based

on a single depth image, Song et al. [37] predict semantic

labels for a voxel grid.

To improve SSC, multi-modal (color and depth images)

sensor data can be used [24]. Cai et al. [3] further improve

SSC by extracting object instances from the scene and prop-

agating the object details back up to the scene.

When labeling a voxel grid using convolutional archi-

tectures, there is a trade-off between spatial resolution and

memory requirements. For example, based on a depth im-

age, Song et al. [37] use a limited resolution of (240×144×
240) to approximate the structure of a room. Rist et al. [33]

use a continuous representation that is not based on vox-

elization for semantic scene completion. Thereby, surpass-

ing previous voxel-based methods in geometric accuracy.

2.2. Shape Reconstruction by Learning Implicit
Functions

A central challenge in utilizing neural networks for 3D

reconstruction is choosing a shape representation. Sev-

eral representations, including voxel grids [7, 14, 39], dense

point clouds [11, 25, 27, 43, 45], polygonal meshes [5, 8, 13,

15,17–20,26,35], and manifold atlases [2,9,12,16,41] have

been proposed. Each of these have unique advantages and

disadvantages.

Voxel-based methods suffer from memory constraints.

Point cloud methods do not define any surfaces, so they

have to be approximated. Polygonal mesh and manifold at-

las methods often output meshes with degenerate geometry

or holes. Mesh learning is complex as it involves defining

problem specific loss functions and strong regularizers.

Recent work investigates continuous reconstruction

methods that circumvent these challenges. Continuous

methods represent surfaces as decision boundaries. There

is no direct output of a mesh or model. The object is en-

coded implicitly in the weights of a neural network. For

any point in space, the network predicts if it is inside or out-

side of an object. Therefore, the object can be retrieved at

any resolution. By using equidistant query points, a voxel

model can be obtained. Marching cubes along the decision

boundary can be used to create a triangle mesh.

Popular continuous representations are occupancy and

SDF networks. Occupancy networks [28] divide the object

space into clusters. The decision boundaries between the

clusters represent the surfaces of the object.

Alternatively, a SDF can be used [30]. A SDF provides

the distance to an object’s surface from any point in space.

The sign indicates if the point is inside or outside of an ob-
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ject. All points with a distance of 0 define the surface of the

object. Meta-learning allows faster adaptation to a specific

object instances [36]. SDF have also been used to represent

deformable objects [26].

A SDF, like an occupancy function, divides a space into

insides and outsides. There are scenarios where this is not

possible. For example, walls scanned by a LiDAR sensor

have a thicknesses that can not be inferred. Chebane et al.

[6] learn an Unsigned Distance Function (UDF). This UDF

can represent thin surfaces such as a plane.

Lamb et al. [23] propose a hybrid approach that com-

bines occupancy, signed distance field, and normal estima-

tion methods, leading to improved reconstruction accuracy.

Williams et al. [40] propose predicting an implicit sur-

face using a trained kernel. They demonstrate that neural

kernel fields can effectively reconstruct shapes when the

kernel possesses an appropriate inductive bias.

2.3. Point Cloud Encoders

Object reconstruction usually depends on sensor infor-

mation, including RGB images, depth images, or point

clouds. Image data, RGB and depth, obtained from cam-

eras contain camera dependent distortion, such as perspec-

tive distortion. Objects further away from the camera oc-

cupy less pixels in the depth image. Projecting a depth im-

age back into 3D space creates a point cloud. In this point

cloud, the scale of equally sized objects in the fore- and

background are the same.

Working with point clouds presents unique challenges,

as any function applied to a point cloud should remain in-

variant to the point order [31].

PointNet++ [32] is a popular hierarchical architecture

that is capable of recognizing structures at various size

scales. PCNN [1] extend convolutional operations to point

clouds, outperforming PointNet++ in segmentation and

classification tasks. Zhao et al. [44] adapt self-attention net-

works for point cloud processing. Their Point Transformer

network and its successor Point Transformer v2 by Wu et

al. [42] consistently surpasses PointNet++ in segmentation

and classification tasks.

Test-time optimization with autodecoders has gained

traction in this field [4,30,36] as an alternative to point order

invariant encoders. In test-time optimization, the encoder is

replaced with an optimization of a commutative loss func-

tion acting on the points. The commutative property ensures

the point order invariance.

Point Cloud Encoders are also investigated for applica-

tions in occupancy learning Jia et al. [21] successfully uti-

lize an altered PCNN with an additional sampling opera-

tor to learn occupancy functions from point clouds. The

method was applied to improve deformable liver registra-

tion by registering to a reconstruction instead of the raw

sensor data [22].
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Figure 3. The Occupancy Predictor estimates the occupancy value

ŷo, signed distance ŷd and direction ŷn to the nearest surface. The

Point Cloud is passed to a Point Cloud Encoder to obtain the la-

tent representation (f1, · · · , f1024). From Query Points a random

point x is taken and encoded by a Positional Encoder. The encoded

x and the latent representation of the Point Cloud are concatenated

and passed to the MLP which estimates ŷo, ŷd, and ŷn.

3. Method

3.1. Occupancy Predictor

The Occupancy Predictor (OP) is an approximator for an

occupancy function as illustrated in Fig. 2. Receiving the

position of a query point, the OP is trained on estimating

the occupancy value of the point. To train the OP, pairs of

position and occupancy are used.

By using only pairs of position and occupancy the OP is

limited to learning only a single shape. To learn multiple

shapes or objects, the OP requires information about which

object to estimate. A simple solution is to pass an additional

value to the OP to identify the object by. The training data

then consists of (position, occupancy, identifier) triplets.

Instead of manually provided identifiers, depth images

from a camera may be used for an end-to-end solution. A

depth image is transformed into a Point Cloud so the OP

does not need to compensate the perspective distortion of

the camera. We use a Point Cloud Encoder (PCE) to pro-

duce a latent representation that is used as the identifier. The

PCE handles varying Point Cloud sizes while also being in-

variant to point order.

Sitzmann et al. [36] suggest that learning auxiliary tasks

can be beneficial to representing objects implicitly. Ther-

fore, instead of only estimating the occupancy of a point, the

OP predicts the distance and direction to the nearest surface

as an auxiliary task. The resulting loss function is:

Loss = CrossEntropy(Yo, Ŷo) + λ · L1(Yd, Ŷd)

−MeanCosineSimilarity(Yn, Ŷn) (1)

λ = 100 was chosen heuristically such that all loss com-

ponents are in the same order of magnitude. We found that

clamping the distance values as suggested by DeepSDF [30]

did not yield any significant benefits during training.

The latent representation of the observed Point Cloud is

concatenated with the encoded position of a query point to
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create a query vector. The query vector is then passed to

an MLP to predict occupancy, distance, and direction to the

nearest surface. The MLP has 7 fully-connected layers with

512 neurons each. Batch normalization is applied after ev-

ery layer, and a skip connection concatenates the query vec-

tor with the activations after 4 layers.

Neural networks tend to learn low-frequency represen-

tations [29, 38]. We therefore use the positional encoding

β as proposed in NeRF [29] to transform the query point

positions into a higher dimensional space

β(x) =
�

sin(20πx), cos(20πx), ...,

sin(2L−1πx), cos(2L−1πx)
�

(2)

to improve the reconstruction of high-frequency detail. Fre-

quency encoding increases sensitivity to small changes in

position, as the high-frequency components will still pro-

duce a significant signal change. For example, compare the

L1 distance of original values |0.07 − 0.09| = 0.02 with

the distance for encoded values |sin(25 · 0.07) − sin(25 ·
0.09)| ≈ 0.53.

The inputs to the OP are normalized based on the sensor

data. As the sensor data does not encompass the complete

object, but all parts of the object will be queried, there will

be points outside of the normalization range (see output of

Joint Normalizer in Fig. 5). Positional encoding uses sinu-

soidal functions that are 2π-peroidic. To ensure that queried

points can be encoded uniquely, we also use negative expo-

nents for β. We chose frequency encoding because it allows

this simple modification to encode points outside of the nor-

malization range.

The architecture of the OP is illustrated in Fig. 3. All

hyperparameters are defined in Appendix B.

3.2. Data Generation

We create a synthetic dataset of 10 deformable objects

with a varying number of segments. The key features that

are represented in the data are 1) high-frequency detail, 2)

self-occlusion, and 3) deformations. For a detailed descrip-

tion of the objects, see Appendix B.

Each example in our dataset consists of a Point Cloud

and Query Points. Examples are created by first randomly

sampling a camera perspective and a deformed state of the

object. Camera perspectives are sampled inside a spherical

workspace and are always aimed at the object. The camera

captures a depth image that is converted into a Point Cloud

using the camera’s intrinsic parameters. Query points are

generated with a sampler that scans over the deformed ob-

ject and transforms them into camera space. As both the

Point Cloud and the Query Points are in camera space, all

reconstructions are in the camera space and therefore al-

ready registered to the camera. Each query point has a po-

sition (x, y, z), an occupancy value o, and a distance d and

a direction (nx, ny, nz) to the nearest surface. As the last

step, the Point Cloud and Query Points are jointly centered

and scaled. The translation t and the scaling factor s are

computed using only the Point Cloud. Only the Point Cloud

will be known at inference time with real-world sensor data.

With c being the center of the Point Cloud:

t = −
1

2
(maxxi +minxi,max yi +min yi, · · · )

s =
1

max (|maxxi − cx|, |max yi − cy|, · · · )
(3)

An overview of the data generation process is given in

Fig. 5.

Sampling Method for Query Points To improve surface

reconstruction quality, it is desirable to concentrate query

points near segment boundaries. Jia et al. [21] achieves this

by sampling points on all object surfaces and adding a small

random offsets along the surface normal. This method re-

quires accurate normals in the model, which are not always

available. The magnitude of the random offset also intro-

duces an object-specific hyperparameter that needs man-

ual tuning. Additionally, this method introduces local den-

sity biases in locally convex (over-sampled) and concave

(under-sampled) regions.

We propose an algorithm, SortSample, for generating

Query Points that benefit the learning of 3D reconstructions

of multi-segment objects, regardless of segment thickness

or surface area-to-volume ratio. SortSample samples points

uniformly within each segment’s bounding box, extended

by 50% in all dimensions. We separate points inside the seg-

ment (added to Sinside) from points in empty space (added to

Soutside), discarding points that are outside the sampled seg-

ment but within other segments. Once Sinside and Soutside

contain at least n points, we sort the lists based on their

distance to the segment’s surface and select the nearest k

points.

Setting n = k typically includes all inside points and

outside points up to a distance determined by the geome-

try of the object. Choosing n = 2k leads to points that are

closer to the surface. Using n = 2k can increase the com-

putation time needed to generate the dataset noticeably as

more samples are drawn and discarded.

SortSample ensures that the generated query points are

concentrated around decision boundaries. SortSample does

not require hyperparameter adjustments based on scale or

segment surface area-to-volume ratio and is straightforward

to implement. While watertight meshes are necessary for

occupancy testing, well-behaved normals are not required

for SortSample. SortSample is neither locally nor globally

bias for single segment objects. If there are many segments,

there will still be higher point density for smaller objects,

introducing a local bias towards them.
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Figure 4. All scenes used to create the training and test data. Each scene contains objects with at least two moving or deforming segments,

as indicated by color. In this illustration the camera is fixed. In the last row, the images of the previous rows are overlayed.
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Figure 5. 2D simplification of the dataset generation process, where different camera and object configurations are captured. For each

sample, the Camera is positioned randomly within a spherical workspace around the deformable object. The depth image is transformed

into a Point Cloud using the Camera’s intrinsic parameters. Simultaneously, the Sampler takes points from the Sampling Bounding Box of

the deformable object to create the Query Points. Each query point has a position (x, y), occupancy value o (indicating in which segment

the point resides), signed distance d and direction (nx, ny) to the nearest surface. Point Cloud and Query Points are then jointly scaled and

re-centered to fit inside the square [−1, 1]2 that encloses the observed Point Cloud.

In our final dataset, we randomly sample an additional

nuniform points within the joint boundaries of all segments

to ensure the network learns to classify regions far from the

decision boundary.

4. Experiments

4.1. Overview

We evaluate different Point Cloud Encoders, loss func-

tions, and the impact of positional encoding to find the best

performing variant of our system. Performance is evaluated

by Intersection over Union (IoU) to quantify reconstruc-

tion and Mean Intersection over Union (mIoU) to quantify

segmentation quality. For Point Cloud Encoders, we com-

pare PointNet++, the autodecoder of DeepSDF, and Point

Transformer. For this, we extended DeepSDF to perform

segmnetation, see Appendix B. For the loss function, we in-

vestigate the importance of the individual components (CE,

L1, and cosine) of our composite loss function. We show

that PointNet++ as the Point Cloud Encoder, the loss func-

tion without the cosine component, and position encoding is

the best-performing variant. Using our this best-performing

variant, we evaluate 1) the reconstruction accuracy on syn-

thetic and real-world objects, 2) the value of SortSampling,

3) the importance of frequency based positional encoding.

Experiments that investigate the effect of noise on recon-

struction accuracy and the metric used for measuring the

reconstruction quality can be found in Appendix C and B,

respectively.

4.2. Reconstructions and Segmentation of Synthetic
Objects

The object reconstructions and segmentations on syn-

thetic data are visualized in Fig. 6. Most objects are re-

constructed with an mIoU of between 0.93 and 0.73, with

the exception of the Rope object, where the relatively high

IoU of the base segment is contrasted by the low IoU of

the rope segments. IoU values are typically close to mIoU

values, which indicates that the reconstruction task is more
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Object Point Cloud Reconstruction Reconst. Error Segmentation Seg. Error Reference

Human

IoU: 0.894 mIoU: 0.837

Robot

IoU: 0.882 mIoU: 0.864

Stanford

Bunny

IoU: 0.971 mIoU: 0.917

Lizard

IoU: 0.752 mIoU: 0.749

Rope

IoU: 0.815 mIoU: 0.375

Figure 6. Examples of reconstructions generated by conditioning on the input Point Cloud. The Reconstruction is the sum of all points

that are not classified as empty space. Reconstruction Error identifies over-reconstruction and under-reconstruction when compared with

the reference. Segmentation colors each predicted class. Segmentation Error between predicted Segmentation and Reference. IoU and

mIoU values are averaged over all examples in the test data, not just the rendered examples. Remaining objects are listed in Appendix A.

challenging than the segmentation. Despite deformations,

occlusions, and complex geometries, the system produces

highly accurate 3D reconstructions.

4.3. Reconstruction and Segmentation of Real-
World Objects

The object reconstructions and segmentations on real-

world data are visualized in Fig. 7. We test the system’s

capability to reconstruct real-world objects using the Lizard

object (all attributions in Appendix B). Lizard was chosen

due to its ability to be 3D printed and deformed while also

allowing manual registration of its rigid segments. We cap-

ture Point Clouds of 15 deformed states with a Zivid One+

(Zivid, Norway) camera. Background points that are not

part of the lizard are removed and the point density is re-

duced from approximately 600, 000 to around 600 points

with the Subsampling method of the open-source appli-

cation CloudCompare. For IoU calculation, we manually

register the original 3D model to the full-resolution Point

Cloud, aligning each rigid segment individually. Our sys-

tem is trained on synthetic data and tested on real world

data, which yielded a mIoU of 0.526 and an IoU of 0.530.

These scores were considerably lower than the 0.752 and

0.759 on synthetic data. Although the network accurately

managed the overall reconstruction and segmentation, it

struggled to precisely reconstruct the segments.

PC Segmentation Reference Re. Error

Figure 7. Example of a reconstruction generated by using a sub-

sampled version PC of a real-world point cloud (top) as input to

the network trained on synthetic data. The lizard is approximately

30 cm long. Re. Error identifies over-reconstruction and under-

reconstruction when compared with the reference. All reconstruc-

tions are shown in Appendix D.
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4.4. Variants and Ablations

Point Cloud Encoder Architecture and Loss Function

The mIoU and IoU of different variants of PCEs and loss

functions are shown in Figure 8.
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Figure 8. IoU and mIoU for each model architecture and loss func-

tion on selected scenes. It is not possible to train the DeepSDF

with only CE loss, so these values are omitted. The L1 loss does

not optimize class probabilities required for mIoU, so these values

are also omitted.

The factor with the strongest influence on both mIoU and

IoU is the Point Cloud Encoder. PointNet++ significantly

outperformed both Point Transformer and DeepSDF’s

autodecoder. PointNet++ produces high-frequency de-

tails present in the training data. The autodecoder of

DeepSDF [30] proved to be sensitive to both the type of

object and the hyperparameters, and required considerably

more epochs to train (1000 vs. 300).

Figure 9 shows that all of these variants are able to infer

the overall structure of objects.

The loss function has a smaller effect on the reconstruc-

tion quality. For PointNet++, adding the L1 component to

the loss increases the mIoU to 0.422 compared to 0.361
with CE loss alone for the Rope object. The benefit is less

mIoU:

0.749

mIoU:

0.363

mIoU:

0.166

PointNet++ PointTransformer DeepSDF

0.837 0.397 0.245

Figure 9. Comparison of reconstructions of the Lizard (top row)

and Human (bottom row) scenes provided by different models

trained with CE+L1 loss. The significant difference in mIoU

between the models is due to the high-frequency details, which

PointNet++ is better able to capture. All models are able to infer

the overall structure of the scenes.

pronounced for other objects. When using only CE loss in

combination with positional encoding, floating periodic ar-

tifacts far from the actual reconstruction can be observed.

CE loss operates on class label probabilities and does not

inherently enforce boundedness. In contrast, L1 loss pe-

nalizes large prediction errors and thus tends to encourage

more bounded outputs. Our results of adding a cosine dis-

tance (CD) term to the loss also align with those of Lamb

et al. [23] that report a small benefit. However, we argue

that the minor advantage in quality is outweighed by the

additional computation and memory requirements. When

using only the L1 loss, the reconstruction is not segmented.

DeepSDF [30], see DeepSDF with L1 in Figure 9, was out-

performed by a large margin by PointNet++ with L1 loss

in this task. Overall, CE+L1 loss produces more consis-

tent results compared to either CE or L1 loss in isolation. In

summary, the best variant uses a PointNet++ as Point Cloud

Encoder and is trained on the CE+L1 loss with enabled Po-

sition Encoding.

Query Point Generation We investigate the effect of dif-

ferent sampling methods to generate Query Points. Volume

Uniform sampling draws points uniformly within the ex-

tended bounding box of each segment. 256 samples are

drawn for each segment. Label Uniform sampling generates

points uniformly inside the segment, and then again uni-

formly outside the segment within the extended bounding

box. 256 samples are drawn for each segment, 128 samples

inside and 128 samples outside.

The different methods are illustrated in Fig. 10. In con-

trast to Volume and Label Uniform, SortSample does not
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Table 1. Reconstruction error, IoU, and mIoU using 3 sampling

methods. IoU and mIoU are averaged over all examples in the

test data. The first row shows over-reconstruction and under-

reconstruction for the Engine object.

Method → Volume Unif. Label Unif. SortSample

Engine

Engine 0.926 0.698 0.915 0.686 0.931 0.729
Human 0.849 0.778 0.800 0.713 0.894 0.837
Lizard 0.672 0.676 0.679 0.681 0.752 0.749

Object ↑ IoU mIoU IoU mIoU IoU mIoU

S
o
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Figure 10. Sample distributions using different sampling methods

on 2D toy scenes. Only SortSample results in a dataset that is

unbiased between red and blue classes both globally and locally

near object boundaries.

cause local or global biases.

Tab. 1 shows IoU and mIoU for Engine, Human, and

Lizard using all 3 sampling methods. SortSample results in

datasets that promote improved reconstruction quality. The

improvement is most noticable for more complex objects

such as the Lizard. Volume Uniform sampling outperforms

Label Uniform sampling as it avoids introducing a local bias

in point density at the boundaries. The rendered reconstruc-

tion shows that Label Uniform sampling results in a bal-

looning effect (over-reconstruction) of structures.

Positional Encoding The results of using a frequency-

based encoding are shown in Tab. 2. The use of positional

encoding improves the quality of reconstructions by an av-

erage of 2%. The results indicate that objects with more

intricate details such as Lizard benefit from the positional

encoding, while less detailed objects such as Human and

Robot do not.

Table 2. mIoU with positional encoding (PE) and without.

Scene Shapes Rope Human Lizard Robot

PE 0.791 0.375 0.837 0.749 0.864

Without 0.772 0.354 0.835 0.737 0.860

5. Discussion and Conclusion

In this work, we present a system for registered and

segmented 3D reconstruction of deformable objects from

single-view point clouds. We introduce a simple sampling

method for generating Query Points without hyperparame-

ter tuning. This sampling method produces suitable training

data regardless of the surface-area-to-volume ratio of ob-

ject segments. Furthermore, we present a system for learn-

ing segmented objects implicitly through a multi-class oc-

cupancy function. The system supports using an arbitrary

neural network as a point cloud encoder. The system is eval-

uated on synthetic data of a novel suite of 10 deformable

objects and data from a real-world experiment. The system

is able to reconstruct occluded and high-frequency features.

Segments are clearly defined and there are only minimal

segmentation errors. Trained on synthetic data, the system

is able to reconstruct real-world objects with some degrada-

tion in performance (mIoU of 0.526 versus 0.752). Point-

Net++ considerably outperforms Point Transformer and the

autodecoder of DeepSDF as Point Cloud Encoders. Com-

bining cross-entropy loss (Occupancy) with L1 distance

loss (SDF) is superior to either loss function in isolation.

Positional encoding benefits objects with high frequency

details, but we argue that the evaluated objects did not con-

tain enough details to make full use of it.

A major limitation of the proposed method is the require-

ment for watertight meshes for occupancy testing using ray

casting. This prohibits the use of some publicly available

mesh datasets. In addition, realistic deformations must be

modeled by hand or simulated. Future work will address the

ability of a single model to generalize across many objects.
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