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Figure 1. Our PromptonomyViT (PViT) adds a set of multiple prompts to a video transformer to capture inter-task structure and solve a downstream
task. We consider the setting where automatically generated synthetic scene data for scene-level tasks (e.g., depth, semantic segmentation) is used for
improving an action recognition model on real data. Our PViT model utilizes a multi-task prompt learning approach for video transformers, where a
shared transformer backbone is enhanced with task-specific prompts (colored squares). The task prompts predict the synthetic labels for each task,
and a CLS token (blue square) is used to predict the action recognition label. The use of task-specific prompts allows the model to benefit from
task-related information.

Abstract
Action recognition models have achieved impressive results

by incorporating scene-level annotations, such as objects,
their relations, 3D structure, and more. However, obtaining
annotations of scene structure for videos requires a significant
amount of effort to gather and annotate, making these methods
expensive to train. In contrast, synthetic datasets generated by
graphics engines provide powerful alternatives for generating
scene-level annotations across multiple tasks. In this work,
we propose an approach to leverage synthetic scene data
for improving video understanding. We present a multi-task
prompt learning approach for video transformers, where a
shared video transformer backbone is enhanced by a small

*Equal contribution. The order of authors is determined by a coin flip.

set of specialized parameters for each task. Specifically, we
add a set of “task prompts”, each corresponding to a different
task, and let each prompt predict task-related annotations.
This design allows the model to capture information shared
among synthetic scene tasks as well as information shared
between synthetic scene tasks and a real video downstream
task throughout the entire network. We refer to this approach
as “Promptonomy”, since the prompts model task-related
structure. We propose the PromptonomyViT model (PViT), a
video transformer that incorporates various types of scene-level
information from synthetic data using the “Promptonomy”
approach. PViT shows strong performance improvements on
multiple video understanding tasks and datasets. Project page:
https://ofir1080.github.io/PromptonomyViT

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Video understanding is a key challenge for machine vision

and artificial intelligence. It is intuitively clear that video mod-
els should benefit from incorporating spatio-temporal scene-
level information including objects, their relations, sizes of in-
stances, 3D structure of a scene, its layout, depth and more.
Indeed, several recent studies have explored the use of scene-
level information for a variety of video tasks, such as action
recognition [21, 26, 40, 65], action detection [50, 112], 3D
understanding [1, 18, 76], and structured representations for
videos [3,33,34,40,41,46,97,102]. However, collecting and an-
notating real large-scale video datasets [36,52] requires an exten-
sive amount of effort and a large budget. This is especially true
for complex labels such as 3D structure and segmentation maps.

In the absence of real-world data, synthetic datasets gener-
ated by graphics engines [29,84] provide a powerful alternative
for automatically generating scene-level annotations. Graphics
engines can be used to generate a large amount of various
types of labeled examples of scene-level information. However,
learning from synthetic data requires models that can capture
those aspects of the synthetic data that are relevant for down-
stream tasks, and overcome domain gap issues. An additional
challenge is how to benefit from multiple types of scene labels
(e.g., depth, normal, segmentation maps, 3D joints positions,
and more). In this work, we propose a novel approach that can
utilize synthetic data of various sources with multiple types of
scene annotations to enhance video understanding models.

Our approach employs Vision Transformers (ViT) [25],
which have recently emerged as the leading model for
many vision applications [2, 13, 27], including for video
understanding [5,40,60,103]. Our key insight is that ViT can be
naturally extended to multiple synthetic sources through the use
of prompt learning. The key idea of prompt learning methods
is to augment the transformer input with a set of additional
learnable parameters. The notion of prompt learning has been
used successfully in NLP [56], and more recently in machine
vision [113,114]. Inspired by this, we present a prompt learning
approach for video transformers, where a shared backbone is
enhanced by a small set of specialized parameters for each task.
More specifically, we add a set of “task prompts”, each dedi-
cated to a unique task. With this design, it is possible to capture
information shared among synthetic tasks as well as information
shared between synthetic tasks and a real video downstream
task, even without applying any domain gap techniques.1

The “task prompts” construction can be viewed as imple-
menting “streams of information”, each stream representing
a task. This facilitates incorporating information from other
tasks into the downstream task, starting from early layers and
propagating into the spatio-temporal representations throughout
the network. We refer to our prompt-per-task approach as

1Such techniques may improve performance further, but are orthogonal to
our approach.

“Promptonomy” since the prompts are intended to manage
multiple tasks and capture inter-task structure, and name our
model PromptonomyViT (PViT).2 See Figure 1 for an overview.

Recently, the general idea of prompt tuning has been adapted
to vision models by VPT [48], suggesting better efficiency of
large vision models. Our model differs from recent “prompt
tuning” approaches in that we refine a full transformer model
rather than optimize a limited set of prompt tokens. As a
result, information is propagated from the “task tokens” to all
other tokens, enabling interaction across the entire network
between the synthetic tasks and the real video downstream task.
Furthermore, our multi-task prompts are supervised by auxiliary
tasks, and not the primary action recognition task.

To summarize, our main contributions are as follows: (i) we
propose a new method for exploiting synthetically generated
labels for several tasks to improve video understanding
models; (ii) we propose the concept of special “multi-task
prompts” to capture task-related information through task
supervision, while also interacting with prompts of other
tasks and the downstream video task; (iii) we demonstrate
improved performance on five tasks and five datasets on video
understanding benchmarks: compositional and few-shot action
recognition on SomethingElse, spatio-temporal action detection
on AVA, standard action recognition on Something-Something
V2, Diving48, and PNR Temporal Localization task on Ego4D,
highlighting the effectiveness of the proposed approach.

2. Related Work
Prompt Tuning. Natural language prompting is a method of
reformatting NLP tasks as natural language responses to natural
language input. Recently, the concept of prompt tuning for
efficient fine-tuning of language models was introduced by [56].
Several recent works [4,82,95], have explored prompt tuning
in the context of multi-task learning in natural language process-
ing. ATTEMPT [4] suggested a soft prompt tuning approach
for parameter efficient multi-task knowledge sharing, UNI-
FIED PROMPT [82] suggested to use multi-task text prompting
for zero-shot tasks, and the authors in [95] suggested the soft
prompt tuning method for efficient fine-tuning. Additional re-
cent works [48,99,100] suggested exploring the usage of prompt
tuning in vision transformers. Specifically, VPT [48] uses
prompt tuning to efficiently fine tune vision transformers, while
others [99,100] use prompts for continual learning. As opposed
to these works, our focus is on the addition of multiple prompts
that incorporate various types of scene-level information learned
from synthetic data, which will lead to better video understand-
ing. Last, we note that, since our focus is not on efficiency, the
entire model is fine-tuned without freezing any parameters.
Learning from Synthetic Data. In the field of computer
vision, synthetic data has been widely used as an alternative

2The name also refers to the classic work on Taskonomy [110], which
studied the structure and management of multiple tasks in images.
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to real-world training data to solve various problems [24, 29,
70,75,81,84,93]. Many works attempted to generate synthetic
data that mimics real data for image classification [29, 70],
semantic segmentation [81, 98], action recognition [24, 93],
object detection [74, 75], representation learning [71, 101],
and more [84,104]. Instead, our approach focuses on learning
multiple tasks simultaneously from several synthetic domains
and then transferring knowledge into the real world task by
developing a multi-task prompting model and training scheme.

Multi-task Learning from Synthetic Data. The multi-task
setting refers to the ability to learn multiple tasks simultane-
ously in which all model parameters are subject to a shared
influence [12,15,22,31,32,53,63,64,87,88,108,115]. Many
recent works employ multi-task learning in CNNs [66,92] and
Transformers [11,43,107] to exploit the potential advantages
of fast training, stronger results, and fewer parameters.
MTFormer [107] is a transformer-based architecture, where
multiple tasks share the same transformer encoder and decoder
but has multiple modules layered on top of that for each task.
MuIT [11] is a transformer-based encoder-decoder model with
shared attention to learn task inter-dependencies, and UniT [43]
jointly learns multiple tasks across different domains, from
object detection to vision-and-language reasoning and natural
language understanding. In contrast to these works, our work
is a form of prompt-driven auxiliary task learning which uses
synthetic scene-level annotations to train video transformers
for improving action recognition on real video data.

Scene Understanding Models. Recently, scene understanding
models that use scene-level annotations have been successfully
applied to a wide range of computer vision applications:
panoptic segmentation [20, 77], video relation understand-
ing [61,83,89], vision and language [19,57,58,90], relational
reasoning [8,9,42,45,54,78,106,109], human-object interac-
tions [30,51,105], action recognition [3,33,34,40,41,46,72,86,
97,102,111], and even image & video generation [7,39,49]. In
our work, we demonstrate how video transformers can utilize
shared representations from a variety of multiple different
synthetic tasks to perform video downstream tasks.

Video Transformers. Vision Transformers [25, 91] recently
proposed a new approach to image recognition by discarding
the convolutional inductive bias entirely and instead employing
self-attention operations. With the advent of ViT, and the
fact that attention-based architectures are a natural choice for
modeling long-range contextual relationships in video, a number
of video transformer models, including TimeSformer [10],
ViViT [2], Mformer (MF) [73], ORViT [40], MViT [27],
MViTv2 [60] and Video Swin [67], form the latest era in action
recognition. We choose to work with MViTv2, although our
method can be used on top of any of these. Our work exploits
the seamless ability of the transformer architecture to process
multiple domains and to integrate the underlying structure
among tasks for several downstream video-related tasks.

3. The PViT Model
Our PViT approach utilizes synthetic data of various

domains with multiple types of scene annotations to enhance
video understanding models. We consider the setting in which
the main goal is to learn downstream video-understanding
tasks, such as action recognition or action detection, while
leveraging multiple synthetic scene-annotated datasets. The
key idea of our work is that multi-task prompt learning can
be used to incorporate synthetic scene tasks into the video
model. This is achieved by adding a set of task prompts, each
corresponding to a different task, and letting each prompt predict
task-related annotations. Importantly, all prompts are part of the
computation for any video, regardless of the underlying task,
and thus enables sharing information among auxiliary tasks.

We begin by describing the video transformer architecture
and the training setup (Section 3.1). We then introduce our
Multi-task Prompts (Section 3.2) and the Training losses
(Section 3.3). Our method is illustrated in Figure 2.

3.1. Preliminaries
Video Transformer Architecture. A typical Video Trans-
former model takes as input a video X2RT⇥3⇥H⇥W , extracts
N non-overlapping per-frame patches xi 2 R3⇥h⇥w and
projects them into a lower-dimension d (e.g., see [25]). Denote
the transformer patches by Exi, which we refer to as “patch to-
kens”. Then, spatio-temporal position embeddings PE2RN⇥d

are added for providing location and time location information,
resulting in a new embedding: zi=Exi+PEi. This forms the
sequence of input tokens to the video transformer:

z=[zCLS,z1,z2,···,zN ] (1)

where zCLS is a CLS token used for the downstream task.
Next, a transformer is comprised of a stack the Multi-headed
Attention (MHSA) blocks, which apply the self-attention
operation over all patch tokens z (including the CLS token
zCLS) followed by a Feed-Forward Network (FFN), a layer
normalization (LayerNorm [6]) step and a non-linear operation
with residual connections [38].
Training Setup for Various Domains. In our approach, we
aim to process batches of videos from various domains for
n different tasks. A key desideratum in this context is to be
able to input both videos of synthetic scene data across various
domains for multiple tasks, as well as videos from the real
domain into the same model. In contrast to standard training,
where each sample contains a full set of annotations (e.g., depth,
normal, etc.), in our case, only partial annotations are included.
This is explained in greater detail in Section 3.3.

3.2. Multi-task Prompts
As mentioned earlier, our key observation is that multi-task

prompt learning can be used to incorporate synthetic scene tasks
into the video model. Towards this end, we add a set of “task
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Figure 2. PViT architecture. We extend a transformer with a set of “task prompts”, pi, that are designed to capture information regarding each task,
as well as capture the inter-task structure. The prompts are supervised by synthetic scene auxiliary tasks (depth, segmentation, normal, and 3D pose)
available only during training, in order to enhance performance on a video task (predicting “put-down cereal”). Each task prompt in the attention
block interacts with the patch tokens and CLS token, as well as other task prompts within the block.

prompts” designed to capture information regarding each task, as
well as capture the inter-task structure. Specifically, we define a
fixed number of n learned vectors p1,p2,···,pn2R1⇥d for tasks
T1,···,Tn. We refer to these vectors as the learned task prompts.

Let P = {p1,p2,··· ,pn} be the set of task prompts. These
prompts are concatenated to the patch tokens to obtain the
following set of inputs to the transformer:

z=[zCLS,z1,z2,...,zN ,p1,p2,...,pn] (2)

The transformer processes the input z, resulting in a new
representation for each token z (i.e., the CLS token, the patch
tokens, and the task-prompts). We denote FCLS(z) as the
representation of the CLS token, and let FPi(z) denote the
representation of the ith task-prompt. We also use FPT (z) as
the final representation of all the patch tokens.

Next, these final output tokens are used for predicting
labels. For the action recognition task, we simply predict using
FCLS(z) and a prediction head ŶCLS = HCLS(FCLS(z)).
For the synthetic tasks, the task i has a prediction head
Ŷi = Hi(FPi(z),FPT (z)) that is used for predicting labels
corresponding to this task. It uses the patch tokens only for
cases where a dense prediction is required (e.g., segmentation
maps, normal and depth estimation). The task heads Hi for
localization tasks (e.g., boxes and 3D poses), are a simple FC
layer, while for dense prediction tasks, we upsample patch token
outputs from several layers and concatenate them with the corre-
sponding task token to predict the task output map. Figure 3 also
visualizes the “task prompts” learned by our model. For more
info about the prediction heads see Section C in Supplementary.

3.3. Training and Inference
Our training data consists of labeled examples from n

synthetic tasks, as well as the downstream task of action
recognition. As mentioned above, we have n+1 predictions
heads corresponding to those. During training, for each training
video we add a loss corresponding to the labels provided for
that video. For example, if the synthetic video X contains

labels for task 2 (e.g., depth) and task 5 (e.g., normal), we take
the output of prediction heads F2 and F5 and compare them
to the ground-truth labels for these two tasks. We formally
describe the task-specific losses below. We use Ŷ to refer to
predicted labels, and Y for ground-truth labels.
Losses. For Depth Estimation, we first downsample the
ground-truth depth map YDepth to a fixed scale of h̃⇥w̃ map.
Next, we predict a fixed scale map Ŷdepth, and clip large values
to focus on relatively closer objects. Finally, we use the MSE
loss for computing the per-pixel depth error:

LDepth=
1

h̃⇥w̃
·MSE

⇣
ŶDepth,YDepth

⌘
(3)

For Normal Estimation, we predict the normal map
ŶNormal 2 Rh⇥w⇥3 for every axis in world coordinates.
We again down-sample the ground truth map YNormal and
compute the MSE loss:

LNormal=
1

h̃⇥w̃
·MSE

⇣
ŶNormal,YNormal

⌘
(4)

For Semantic Segmentation, we use per-pixel multi-label
classification to compute a map for different semantic instances
in the scene. We downsample the ground-truth map YSegm and
compute pixel-level cross-entropy loss followed by a Softmax
function:

LSegm=
1

h̃⇥w̃
·CE

⇣
ŶSegm,YSegm

⌘
(5)

For 3D Pose estimation, we predict a tensor ŶPose3d2R1⇥75

corresponding to a 25⇥3 of 3D joins in KinectV2 format [16].
Each training sample consists of a single individual. We define
the loss for 3D Pose Estimation to be:

L3DPose=
1

75
·MSE

⇣
Ŷ3DPose,Y3DPose

⌘
(6)

For Bounding Box Prediction, we set a fixed number of
O objects per training sample and use the L1 loss function
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Figure 3. “Task Prompts” Visualization. Visualization of the output
of the “task prompts” prediction heads on frames from the SSv2,
Diving48, and Ego4D datasets. The model was trained with Something-
Else as the action recognition dataset. Shown are prediction head
outputs (i.e., Hi) for depth, normal, and semantic segmentation. It can
be seen that the task prompts produce meaningful maps, despite not
receiving such labels for real videos.

to compute boxes predictions ŶBoxes 2 RO⇥4 and the
corresponding ground-truth coordinates YBoxes:

LBoxes=L1

⇣
ŶBoxes,YBoxes

⌘
+GIoU

⇣
ŶBoxes,YBoxes

⌘
(7)

where the GIoU is used as in [79].
Last, for the video downstream task (denoted as DT ),

on which we evaluate our model, we consider the standard
cross-entropy loss between the predicted logits ŶCLS and the
true video labels YCLS as follows:

LDT =CE
⇣
ŶCLS,YCLS

⌘
(8)

The total loss is the sum of all of the losses described above.
We note that only losses for which the samples have ground truth
are added since the ground truth changes across instances, as our
training does not use explicit correspondences between different
input modalities. Each of the task terms in the loss is multiplied
by a hyper-parameter (�), and these were chosen such that all
loss components have the same scale (see Supplementary). The
total loss is the weighted combination of all terms:

LTotal=�DTLDT+�DepthLDepth+�NormalLNormal

+�SegmLSegm+�3DPoseLPose3d+�BoxesLBoxes
(9)

For simplicity, we omit the temporal dimension when
predicting the losses above per frame.
Inference. For inference, PViT receives input from the real
videos without requiring any additional synthetic data.

Finally, our method can be applied on top of a variety
of video transformers (MViT [27], TimeSformer [10],
Mformer [73]). For our experiments, we use the MViTv2 [60]
model because it performs well empirically.

4. Experiments and Results
We begin by describing the datasets (Section 4.1), implemen-

tation details (Section 4.2), and baselines (Section 4.3). Next, we
evaluate our approach on several benchmarks and tasks. Specif-
ically, we consider the following tasks: Compositional Action
Recognition (Section 4.4), Object State Change Classification
& Localization (Section 4.5), Action Recognition (Section 4.6),
and Spatio-Temporal Action Detection (Section 4.7).

4.1. Datasets
We first describe the datasets used for the downstream

video tasks, followed by the datasets used as auxiliary synthetic
datasets including their annotations. We use the following video
datasets: (1) Something-Something v2 (SSv2) [35] is a dataset
containing 174 action categories of common human-object
interactions. (2) SomethingElse [69] which exploits the com-
positional structure of SSv2, where a combination of a verb and
a noun defines an action. We follow the official compositional
split from [69], which assumes the set of noun-verb pairs
available for training is disjoint from the set given at test time.
(3) Ego4D [36] is a new large-scale dataset of more than
3,670 hours of video data, capturing the daily-life scenarios of
more than 900 unique individuals from nine different countries
around the world. (4) Diving48 [59] contains 48 fine-grained
categories of diving activities. (5) Atomic Visual Actions
(AVA) [37] is a benchmark for human action detection, we
report Mean Average Precision (mAP) on AVA-V2.2. For
“auxiliary” synthetic datasets, we use (1) SURREACT [94],
a novel synthetic data generation method based on real human
motion from real datasets. The method renders 3D SMPL [68]
sequences with randomized cloth textures, lighting, and body
shapes from 3D skeleton joints extracted by Kinect V2 [52]
from the two following datasets: (i) NTU RGB+D [85] is a
large-scale multi-view video dataset of RGB-D human actions
with 56,880 samples collected from 40 subjects, including depth
maps and 3D skeleton joints. (ii) UESTC RGB-D [47] is also
a multi-view action dataset that with 40 categories of aerobic
exercise along with depth maps and 3D skeleton joints. (2)
HyperSim [80] is a photorealistic synthetic dataset for holistic
indoor scene understanding. This dataset contains 77,400 HD
images of 461 indoor scenes as well as ground truth depth and
normal values for each pixel. (3) Procedural Human Action
Videos (PHAV) [23] is a human action video dataset which
relies on procedural generation and other computer graphics
techniques of modern game engines. There are 39,982 actions
in 35 categories, annotated with optical flow, segmentation,
and depth maps. (4) KIST SynADL [44] generated by the
ElderSim engine, is a large-scale synthetic dataset of elders’
activities. There are 462K RGB videos representing 55 action
classes, along with 2D, 3D skeleton joints positions used as
ground truth. (5) EHOI [55] consists of 20K synthetic image
dataset of first-person view, annotated with segmentation masks,
and hand-object interaction boxes of 19 categories.
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Model Compositional Base Few-Shot
Top-1 Top-5 Top-1 Top-5 5-Shot 10-Shot

I3D [14] 42.8 71.3 73.6 92.2 21.8 26.7
SlowFast [28] 45.2 73.4 76.1 93.4 22.4 29.2
TimeSformer [10] 44.2 76.8 79.5 95.6 24.6 33.8
Mformer [73] 60.2 85.8 82.8 96.2 28.9 33.8
MViTv2 [60] 63.3 87.5 83.7 96.8 32.7 40.2

MViTv2 MT 63.0 87.6 79.8 95.8 32.7 40.6
MViTv2 VPT 53.0 81.8 76.8 94.8 31.8 39.0

PViT (Ours) 65.5 89.0 85.0 97.4 34.3 41.3
(+2.2) (+2.5) (+1.3) (+0.6) (+1.6) (+1.1)

Table 1. Compositional and Few-Shot Action Recognition on the
SomethingElse dataset.

4.2. Implementation Details
PViT is implemented in PyTorch, and the code will be re-

leased upon acceptance and is included in the supplementary.
Our training recipes and code are based on the MViTv2-S,
16⇥4model, and were taken fromhttps://github.com/

facebookresearch/mvit. We pretrain the Promptono-
myViT model on the K400 [52] video dataset. Then, we fine-
tune on the downstream video task (detailed in Section 4.1) with
the synthetic datasets and the PromptonomyViT loss. In the
training batch, there are 64 videos with the number of synthetic
videos being at most ⇥3 the number of real videos. For more
implementation details, see Section C in Supplementary.

4.3. Baselines
In our experiments, we compare PViT to several models

reported in previous work for the corresponding datasets.
These include the following methods: BMN [62], I3D [14],
SlowFast [28], as well as the state-of-the-art transformers –
SViT [5], TimeSformer [10], ViViT [2], and MViTv2 [60].

Additionally, we explore two alternative ViT-based baselines.
First, we consider a model we call MViTv2 multi-task (MViTv2
MT), and is perhaps the simplest application of ViT to our task.
It augments the MViTv2 model with multiple prediction heads
(one per synthetic task) operating on the CLS token, but does
not use additional task prompts. The prediction heads have the
same architecture as Hi used in PViT. We also consider a model
we refer to as MViTv2 VPT, which is an implementation of
the VPT [48] approach for action recognition. This is a simple
prompt-based approach utilizes the additional task prompts
included in PViT but does not use additional synthetic data and
keeps the backbone frozen. The advantage of MViTv2 VPT
is training efficiency, as fewer parameters are used in training.
Considering VPT trains only a few parameters, we assume
that the parameters are insufficient to account for differences
between pretraining (K400) and target datasets (AVA, SSv2).
This is in marked difference to the case of images where VPT
worked (their pretraining and target benchmarks are similar in
distribution and tasks). Nevertheless, we still find it important
to evaluate their method in our setting.

Model Temporal PNR
Localization Error Classification Top-1

Bi-LSTM 0.790 65.3
BMN [62] 0.780 -
I3D ResNet-50 [14] 0.739 68.7
MViTv2 [60] 0.702 71.6

MViTv2 MT 0.640 73.6
MViTv2 VPT 0.791 64.2

PViT (Ours) 0.637 (-0.065) 74.8 (+3.2)

Table 2. PNR Temporal Localization results on Ego4D.

4.4. Compositional & Few-Shot Action Recognition
In several video datasets, an action is defined as the

combination of a verb and a noun. Hence, one of the challenges
is to identify combinations of words that were not seen during
training. This “compositional” setting was explored in the
“SomethingElse” dataset [69], where verb-noun combinations in
the test data do not occur in the training data. We also evaluate
the few-shot compositional action recognition task in [69] (See
Section C.2 in supplementary).

Table 1 reports the results for these two tasks. PViT
outperforms MViTv2 baseline for both the Compositional and
Few-shot tasks by 2.2% for the compositional task, and by 1.6%,
1.1% for 5 and 10-shot tasks. Furthermore, PViT outperforms
MViTv2 MT, suggesting that the design of our task prompts
approach is beneficial for learning from synthetic data. It can
also be seen that MViT VPT performance is adversely affected,
as suggested above, resulting in 53%.

4.5. Object State Change Tasks
Human activity relies heavily on hands and objects. Two

tasks studying hand-object interaction have recently been
introduced to the Ego4D [36] dataset. The first is temporal
localization, which involves finding key frames that indicate
a change in object state within a video clip. The second is the
classification of object state changes, which indicates whether
an object state has changed or not.

Table 2 reports results on the above two tasks in Ego4D. We
observe that PViT performs better than MViTv2 by 3.2%/-0.065
on the classification/localization tasks. As in Section 4.4, it
can be seen that PViT consistently outperforms MViTv2 MT
and MViTv2 VPT baselines. Overall, these results indicate
that PViT successfully leverages scene data, even for another
downstream video task.

4.6. Action Recognition
Tables 3a and 3b report results for the standard action

recognition task on the SSv2 and Diving48 datasets. It can be
seen that in Diving48, our method improves over the MViTv2
baseline by 6.0%, outperforming the other methods. We
hypothesize that this relatively high gain is due to (i) the large
availability of synthetic pose annotations (which is likely to help
in human actions in the Diving dataset; See Figure 4d). (ii) Since
Diving is a small dataset, the introduction of additional synthetic
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(a) Something–Something V2

Model Pretrain Top-1 Top-5

SlowFast [28], R101 K400 63.1 87.6
ViViT-L [2] IN+K400 65.4 89.8
MViTv1 [27] K400 64.7 89.2
MViTv2 [60] K400 68.2 91.4

MViTv2 MT K400 68.4 91.4
MViTv2 VPT K400 61.5 87.5

PViT (Ours) K400 69.4 (+1.2) 91.6 (+0.2)

(b) Diving48

Model Pretrain Frames Top-1

SlowFast [28], R101 K400 16 77.6
TimeSformer [10] IN 16 74.9
MViTv2 [60] K400 16 73.1
SViT [5] K400 16 79.8

MViTv2 MT K400 16 82.2
MViTv2 VPT K400 16 69.8

PViT (Ours) K400 16 85.8 (+6.0)

(c) AVA-V2.2

Model Pretrain mAP

SlowFast [28], R50 K400 22.7
SlowFast [28], R101 K400 23.8
MViTv1 [27] K400 25.5
MViTv2 [60] K400 26.8

MViTv2 MT K400 26.3
MViTv2 VPT K400 19.0

PViT (Ours) K400 28.4 (+1.6)

Table 3. Results on SSv2, Diving48, and AVA-V2.2 datasets. We report (a) Top-1 and top-5 accuracy on SSv2. (b) Top-1 on Diving48. (c) mAP
metric on AVA. IN refers to ImageNet-21K. For additional comparisons, see Section A.1 in supplementary.

supervision results in a larger effect. Finally, PViT achieves a
1.2%, improvement in SSv2, indicating that PViT can improve
on large datasets (180K videos). Last, PViT consistently out-
performs MViTv2 MT and MViTv2 VPT baselines, as above.

4.7. Spatio-temporal Action Detection
Gu et al. [37] describes the action detection task on AVA

as a two-stage prediction procedure. As a first step, boxes
are detected using an off-the-shelf person detector, followed
by a prediction of the action of each detected box. For fair
comparisons, the person boxes are kept identical across
approaches, and the final result is measured by the Mean
Average Precision (MAP) metric.

Table 3c reports results for spatio-temporal action detection
on the AVA dataset. We observe that PViT improves the
MViTv2 baseline by 1.6%, thereby demonstrating the ability
to leverage “task prompts” to detect and localize human actions.
In addition, PViT consistently outperforms MViTv2 MT and
MViTv2 VPT baselines, as above.

4.8. Ablations
We perform a comprehensive ablation study on the

“SomethingElse” [69] dataset to measure the contribution of the
different PViT components (See Table 4). For more ablations,
see Section A in supplementary.
The Role of Prompts and Tuning. PViT contains two
main concepts: (i) the addition of multiple task-specific
prompts dedicated to unique tasks. (ii) training these prompt
representations to predict task-related labels from synthetic
data. We present results for different combinations of these
two factors in Table 4a. First, to demonstrate the importance of
having multiple prompts, one per task, we suggest the MViTv2
one-prompt (OP) variant. This variant is similar to PViT but
uses a single prompt instead of n prompts for n auxiliary tasks.
Since the number of prompts decreases, we compensate by
increasing the dimension size. As shown in Table 4a, PViT
outperforms the OP variant, suggesting that multiple prompts
are important for integrating information across tasks.
Next, we consider the MViTv2 neutral-prompts (NP) variant,
which is simply MViTv2 with additional prompts but without

additional synthetic supervision (similar to the MViTv2 VPT,
but with an unfrozen backbone). The purpose of this variant
is to examine whether the model performance is due to the
increased model capacity. This result (63.4) is similar to the
baseline without synthetic data (MViTv2, 63.3), suggesting
that the gain of PViT is due to the use of synthetic data. Last,
the PViT VPT variant is a simply PViT with a frozen backbone.
MViTv2 VPT differs from this variant since here, synthetic data
is used for training. The result (53.9) emphasizes the importance
of fine-tuning the backbone even when using synthetic data.
Model Capacity and Efficiency Analysis. To determine
whether the performance improvement is a result of increasing
parameter size, Table 4a compares the number of parameters,
FLOPS, and inference runtime between the methods. The main
difference between the models is due to the additional task
prompts and the task heads since the latter contains the most
overhead (only during training). In our setting, task prompts only
add 20K parameters, while the task heads add 6.8M parameters.
However, during test time, the heads are not used, and thus the
parameter sizes are almost equal to the baseline (i.e., 38.2M), re-
sulting in similar inference runtime and FLOPS as the baseline.
Effect of Synthetic Data Size. Here, we examine the impact
of the synthetic data portion on performance. In Figure 4b, we
plot the performance of PViT as a function of the synthetic data
portion when the largest value is obtained using all synthetic
data. The positive slope suggests that adding synthetic data
consistently improves results, which is an advantage since
synthetic data is abundant. We note that the synthetic data we
used is the size of the real data.
Contribution from Auxiliary Tasks. To investigate the impact
of each auxiliary task on performance, we examined in Table 4c
how the auxiliary tasks contribute to performance individually,
as well as the most effective combinations of auxiliary tasks.
As can be seen, we find that performing PViT on auxiliary tasks
individually does improve performance (see also Dataset Task
Agreement below). However, using all tasks (last line) improves
more than any individual task, and is also close to the optimal
combination. This reinforces our strategy of simply training
on all tasks.
Dataset-Task Agreement. We next aim to explore how dif-
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(a) The Role of Prompts and Tuning

Model Top-1 Top-5 Synthetic Train/Test FLOPS Runtime
Data Params (⇥106) (⇥106) (ms)

MViTv2 [60] 63.3 87.5 7 38.2/38.2 70.6 132.2
MViTv2 MT 62.7 87.6 3 45.0/38.2 89.3 131.4
MViTv2 OP 63.5 88.0 3 45.0/38.2 89.5 137.7
MViTv2 NP 63.4 87.8 7 38.2/38.2 79.9 154.5

MViTv2 VPT 53.0 81.8 7 0.13/38.2 82.3 154.5
PViT VPT 53.9 82.4 3 7.2/38.2 93.9 143.7

PViT 65.5 89.0 3 45.0/38.2 93.9 142.8

(b) Effect of Synthetic Data Size
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(c) Auxiliary Tasks Contribution
Datasets Depth Segm. Normal 3D Poses 2D Boxes Top-1 Top-5

- 7 7 7 7 7 63.3 87.5

PHAV+HS+SURR 3 7 7 7 7 64.8 88.7
SUR+EHOI 7 3 7 7 7 65.0 88.7
HS 7 7 3 7 7 63.9 88.2
SUR+ES 7 7 7 3 7 64.1 88.4
EHOI 7 7 7 7 3 64.7 88.6

best combination 3 3 7 7 3 65.5 89.0

All 3 3 3 3 3 65.1 88.8

(d) Dataset-Task Agreement

Depth

3D-Pose

Normal

Boxes

SomethingElse
Ego4D
Diving48
AVA

Table 4. Ablations. We show (a) The Role of Prompts and Tuning. (b) Effect of Synthetic Data Size. (c) Contribution of Auxiliary Tasks. (d)
Dataset-Task Agreement. A polygon represents a real video dataset, and the closer a vertex is to the circle border, the greater the gain from applying
that synthetic task. The gains are scaled for comparison.

ferent synthetic tasks help real datasets. Figure 4d illustrates the
gain for real datasets when trained on individual auxiliary tasks3.
It can be seen that the datasets are roughly clustered into two
sets: (i) SomthingElse and Ego4D, which benefit more from
Depth and Boxes. These datasets indeed contain hands interact-
ing with objects within close range of the camera and therefore
having clearly expressed depth. (ii) AVA and Diving48, which
benefit more from Normals and Poses. These datasets generally
consist of zoomed-out frames with mostly full human bodies
in scenes containing solid surfaces (for example, pools, walls,
etc.). For more details, see Section A.2 in the supplementary.

Domain Gap Between Synthetic and Real Data. In this work,
we show that training PViT on synthetic data leads to improved
performance on real data. However, as synthetic and real data
come from different domains, it is not apriori clear why the
former should aid the latter. We hypothesize that our synthetic
tasks are mostly low-level (e.g., depth/normal maps, segm.
masks), and for these, there may be a smaller gap between syn-
thetic and real domains (See [17,96]). To illustrate this, we use
our learned task heads to predict labels on real data. Recall that
these heads are learned only on synthetic data. Figure 3 shows
results for this prediction, and it can be seen that the synthetic
prompts predict well also on real data. This demonstrates that
the synthetic tasks learned are also usable on real data.

3The plot excludes segm. since it contributes equally to all datasets.

5. Discussion and Limitations

Semantic understanding of videos is a key element of
human visual perception, but its modeling is still challenging
for machine vision. In this work, we propose a new method
for exploiting various types of scene-level data to improve the
performance of video understanding tasks. We present a multi-
task prompt learning approach for video transformers, where
a shared transformer backbone is enhanced with task-specific
prompts. The use of task-specific prompts allows the model to
benefit from task-related information, among different domains.
We demonstrate improved performance on several video
understanding benchmarks, highlighting the effectiveness of the
proposed approach. However, the multi-task prompt learning
method is not necessarily limited to synthetic scene data, and
thus we leave to future research the challenge of extending the
work to train the method on real data as well as improving other
downstream tasks in addition to video understanding.
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