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Abstract

Event-based sensing is a relatively new imaging modal-
ity that enables low latency, low power, high temporal res-
olution and high dynamic range acquisition. These prop-
erties make it a highly desirable sensor for edge applica-
tions and in high dynamic range environments. As of today,
most event-based sensors are monochromatic (grayscale),
capturing light from a wide spectral range over the visi-
ble, in a single channel. In this paper, we introduce mul-
tispectral events and study their advantages. In particular,
we consider multiple bands in the visible and near-infrared
range, and explore their potential compared to monochro-
matic events and conventional multispectral imaging for the
face detection task. We further release the first large scale
bimodal face detection datasets, with RGB videos and their
simulated color events, N-MobiFace and N-YoutubeFaces,
and a smaller dataset with multispectral videos and events,
N-SpectralFace. We find that early fusion of multispec-
tral events significantly improves the face detection perfor-
mance, compared to the early fusion of conventional multi-
spectral images. This result shows that multispectral events
carry relatively more useful information about the scene
than conventional multispectral images do, with respect to
their grayscale equivalent. To the best of our knowledge,
our proposed method is the first exploratory research on
multispectral events, specifically including near infrared
data.

1. Introduction
Event cameras, also known as neuromorphic cameras or

Event-based Vision Sensors (EVS), are novel vision sen-
sors that operate differently from conventional cameras,
e.g. Active Pixel Sensors (APS). While conventional cam-
eras capture a series of frames at a fixed rate, event cam-
eras capture asynchronous and quasi-continuous streams of
events [15,33,46]. Each event is generated independently, at
the pixel level, when the pixel intensity changes by a certain
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Figure 1. Illustration of the additional information retrieved when
considering multispectral event-based data. Multispectral events
enable the perception of color contrast and provide more selec-
tive information about the scene. Additionally, extra-visible bands
could be more adequate in some scenarios, yielding the biggest
contrast. Best viewed in color.

threshold value, resulting in a high temporal resolution (mi-
crosecond) and potentially a very low power consumption,
as much less data is transmitted. Some other properties of
the event cameras are the absence of motion blur and their
high dynamic range: it can operate well in both very bright
and very dark environments simultaneously. This makes
event cameras particularly suitable for high-speed and low-
latency applications such as robotics, autonomous vehicles,
and virtual/mixed reality.

Despite their advantages, event cameras have been
mostly limited to monochromatic vision, which limits the
range of information they can capture. Development is at
least partly hampered by the fact that little amount of re-
search exists on the advantages of using different or multi-
ple channels of event acquisition for computer vision sys-
tems. Indeed, existing event-based cameras are primarily
based on grayscale intensity changes. Considering a sce-
nario like in figure 1, different objects have a different pixel
intensity, depending on the scene illumination, the cam-
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era sensitivity and more importantly the object’s reflectance
spectrum (eq. 1). We represent the object and background’s
intensity across wavelengths in the figure, for a single pixel.
In this scene, a regular monochromatic grayscale event
camera (on top) would not perceive any edge (intensity
change) because the overall intensity in the selected range
is the same. As the operation of event cameras depends on
brightness changes, it leads on purpose to less data being
captured, especially with low sensitivity parameters. If the
contrast is too low, like the Grayscale row in fig. 1, no event
data will be generated except for noise, whereas conven-
tional cameras can capture slight differences, especially for
high bit depth cameras. To alleviate this issue, one could
consider a multispectral event camera that outputs events
only for narrow bands in the visible (e.g. Blue, Green, Red).
From the different channels, we could now perceive inten-
sity differences, in particular for the Blue and Red channel
and events will be generated. Moreover, grayscale event
cameras would miss out on information beyond the visible
spectrum: if the object and background have very different
reflectance in the near infrared, it would be a relevant band
to use for our application. Our goal in this work is to ex-
plore how informative multispectral event-based data could
be for face detection and understand if it shows any advan-
tage over regular monochromatic events.

In this paper, we propose an explorative study of mul-
tispectral events. We formalize their concept and setup
experiments to compare their performance against regular
grayscale events and conventional images for face detec-
tion. Face detection is an important task in computer vision
and has a wide range of applications, such as surveillance,
biometrics, and human-robot interaction, among many.
Also, the human skin spectrum is well studied [2, 11, 36]
and it has interesting properties beyond the visible spectrum
that generalize to any skin type. Finally, event cameras have
a lot of potential in handheld devices, mobile robots or in
surveillance and monitoring applications, often interacting
with humans. For these reasons, we chose face detection as
our use-case task but we believe that our observations and
conclusions may carry over to other recognition tasks. Our
main contributions are:

1. We propose the 3 first ever bimodal datasets with
multispectral events, from simulation, labeled for
face detection. Two of them are converted from
open-source large-scale grayscale and color (RGB)
datasets [34, 55]; the third one is smaller but features
data over 10 spectral bands, from blue to near-infrared.
By bimodal, we mean temporally and spatially aligned
conventional images (APS) and their simulated event-
based data (EVS).

2. We propose the first fair comparison of APS and
EVS-based face-detection, comparing the robustness

of events over conventional images when both use the
same neural architecture and have been trained on the
same data. This differs from usual approaches where
APS and EVS models are either trained on differ-
ent imbalanced data or using hardly comparable algo-
rithms.

3. We introduce the novel idea of multispectral events,
capturing events over multiple spectral bands, and
we explore what benefits they could have over
monochromatic grayscale events. We show that
event-based face detection is significantly improved by
the use of multispectral events, beyond the effects we
observe with conventional multispectral images. Ad-
ditionally, even though we perfom all our experiments
with simulated events, we validate our observations on
a small set of real multispectral event-based sequences.

In this paper, we first take a look back on existing work
for event-based face detection, the use of color or multi-
spectral bands for face detection and the early attempts of
multispectral event-based sensing, in section 2. Then, in
section 3, we formalize the multispectral events concept and
describe a set of experiments to evaluate what advantages
multispectral events could bring, either in separate or com-
bined channels. To perform our experiments, and because
multispectral events are a novel idea, we had to build dif-
ferent datasets that we also release in this paper. Finally,
we report the results of our experiments in section 4, and
discuss these results in section 5.

2. Related work
Event-based face detection. While conventional face

detection is a mature problem in Computer Vision, event-
based face detection is in very early stages of research. It
has a lot of potential for always-on applications thanks to
the low latency and low power consumption properties of
event cameras [5, 15] but it is a new problem to solve due
to the change in data paradigm (frames to events). We dis-
tinguish two approaches: detection over reconstructed im-
ages, or detection over events. Barua et al. (2016) [4],
the earliest work on event-based face detection, tried both
approaches. While detection over reconstructed images is
convenient and enables the use of well-known face detec-
tors (e.g. [53]), it negates most advantages of event cam-
eras - although the reconstructed video has a higher dy-
namic range and framerate. Equivalently to image-based
face detection, over the time, research shifted from the use
of hand-crafted features (as in [4, 29]) to deep learning ap-
proaches. First, researchers [6,8,12,24,54] tried to directly
apply well-studied object detection architectures (SSD [35],
YOLO [42] or Faster R-CNN [43]) to 2D event representa-
tions (e.g. [17, 28, 48]), mostly encoding temporal informa-
tion too. More recent works [18, 26, 30, 39, 44] used the
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fact that events intrinsically only account for changes in
the scene and added memory to their architecture. As our
goal is to explore the effects of multispectral events for face
detection, we chose not to run our experiments on the lat-
est event-based face detection model but on a network that
can be used for both modalities so that the only differences
lie in the input data. We decided to use RetinaFace [13],
a non-recurrent CNN architecture, known for face detec-
tion, to perform our experiments. Although we need to
keep in mind that the network we used was designed for
APS images and that the overall results with EVS might be
improved with recurrency, we argue that our approach is
valid to quantify the benefit of multiple spectral bands for
each modality and should generalize to event-based recur-
rent neural networks.

Color/Multispectral face detection. Most of the liter-
ature involving multispectral data and faces are focused on
two areas, either face recognition using multispectral bio-
metrics (e.g. [10, 32, 49]) or face detection in thermal in-
frared (e.g. [7]). Due to event cameras’ limited sensitiv-
ity in the far infrared [50], thermal infrared face detection
papers are not relevant to multispectral event-based sens-
ing. A few works [10, 32, 56] tried to tackle the task of
near-infrared (NIR) face detection, mainly to solve illumi-
nation challenges such as light-variations or low light for
systems in dark environments (c.f. [38, 49]). To the best
of our knowledge, [58] is the only work that look at a
deep learning method for face detection using multispectral
bands. Also, hyperspectral imaging, the use of many nar-
row spectral bands, is relatively unexplored for face detec-
tion compared to land/vegetation classification or segmen-
tation [3, 9, 31], or even chemometrics [25].

In our work, we only explore early fusion of multispec-
tral data (images/events) by stacking the different channels
in a single input tensor. Another approach would have been
to perform late fusion, i.e. compute features on each hyper-
spectral channel and fuse them in a deeper layer. The late
fusion approach is quite common in the multispectral deep
learning research [19,27] and effective ways to fuse the fea-
tures have been found. Jiang et al. (2019) [27] showed that
late fusion of RGB and NIR features significantly improves
the performance over RGB alone for classification. We per-
form a similar experiment using early fusion and explore
if it also generalizes to event-based data. Finally, Singh et
al. (2020) [47] explored the role of color in CNNs by train-
ing on color data (as a human does) and evaluate on con-
gruent (realistic), grayscale and incongruent images (false
colors). This evaluation method is common in psychology
tests to evaluate the importance of color for object recogni-
tion. They showed that the testing accuracy on color images
is way better than for grayscale images and incongruent im-
ages [47]. However, we believe a neural network should
be validated and tested on a similar data distribution to the

training data, else, we cannot conclude that color is the real
factor improving object recognition. To prevent this, we al-
ways fine-tune our network on the multispectral data of in-
terest (same channels during training and testing), therefore,
if a model performs better or worse, it is only explainable
by the different input (spectral bands).

Multispectral event-based sensing. In their work,
Hansen and Gegenfurtner (2009,2017) [21,22] have proven
that luminance and chromatic edges are statistically inde-
pendent and therefore color provides extra information for
edge detection in conventional images [21]. They addition-
ally showed that color clearly contributes to object-contour
perception by comparing the performance of luminance
edges alone to luminance and color edges combined [22],
using conventional images. As we know that event cam-
eras mainly capture edges in the scene, it suggests that
color could particularly benefit event-based imaging. Un-
fortunately, almost all the existing commercial event cam-
eras are monochromatic (grayscale) [5, 15] except for the
Color-DAVIS346 from iniVation [37, 45, 50]. Scheerlinck
et al. (2019) presented the only color event-based dataset
available, the Color Event Dataset (CED) [45], that consists
of 50 minutes of footage with both color frames and color
events for image reconstruction. Only a few sequences in
the dataset could have been used for our face detection task
but these are definitely not enough to train a face detec-
tion network from scratch. By opposition to Tomy et al.
(2020) [52], we do not try to fuse conventional images and
event data together as we believe this approach is subopti-
mal for object detection. When doing so, only the motion
and illumination robustness properties of event cameras are
kept while the very low latency and low energy consump-
tion advantages are dropped when fusing. Very similar to
our approach, Marcireau et al. (2018) tried to generate real
RGB events using a set of beamsplitters and color filters for
event-based color segmentation. In our work, we explore
the face detection task instead, and use simulated events to
generate significantly more RGB events, systematically la-
beled, and to efficiently generate multispectral event-based
data, beyond the visible spectrum. To the best of our knowl-
edge, our work is the first to introduce the concept of hyper-
spectral, multispectral or infrared events and explore its im-
plications compared to multispectral conventional images,
here for face detection.

3. Method

3.1. Multispectral events

The light intensity received by a pixel, I(x, y), follows
equation 1, where L(λ) is the scene illumination, R(λ) is
the object reflectance and S(λ) is the camera sensitivity for
that pixel, at a particular wavelength λ. An event (x, y, t, p)
is generated, at time t, whenever log(I(x, y)) increases or
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decreases by a constant (defining the polarity p).

I(x, y) =

∫ ∞

0

R(λ)S(λ)L(λ)dλ (1)

Most commercial event cameras are monochromatic,
this means their pixel sensitivity S(λ) spans across all vis-
ible wavelengths and often also the beginning of the near-
infrared range [50]. Our idea is to play with the spectral
sensitivity of the sensor to create multispectral events. For
example, if we place an ideal long-pass filter in front of the
event camera with a cut-off frequency λc, the new intensity
equation becomes:

I(x, y) =

∫ ∞

λc

R(λ)S(λ)L(λ)dλ (2)

, because S(λ) would be null or negligible for λ < λc.
This concept can be generalized to other kind of filters

and the sensitivity of the sensor can be shaped as it is al-
ready done on regular RGB or multispectral cameras.

In conventional imaging, multispectral (MS) images can
look very different from grayscale (GS). This difference in
intensity contrast certainly affects the count and distribution
of events in a scene.

Hardware feasibility is further discussed in the Supple-
mentary Material, but the already existing application of po-
larization filters on EVS pixels [20] or RGB Bayer pattern
on EVS pixels [37, 41] would suggest that a multispectral
EVS camera would be feasible, also considering that the
lower sensitivity in narrower bands would be compensated
by the relatively higher sensititivy of the EVS pixel.

3.2. Multispectral event-based datasets

One issue when working with event-based data is the
lack of available datasets, particularly in our case, as we
want to explore multispectral events while no multispectral
event-based camera exists. Moreover, as we use a learning-
based approach for face detection, we need a large-scale
dataset, with enough samples, diversity and challenging
poses, to train a robust model from scratch. Finally, if we
want to fairly compare our event-based face detector to an
image-based one, they should be trained on a similar do-
main. A scalable way of building a large event-based face
detection dataset is to use simulated events [16]. One could
use open-source event simulation software, e.g. ESIM [40]
or v2e [23], but for our datasets we used a proprietary soft-
ware based on the exact same principle. These simulators
all rely on linearly interpolating the intensity signals to gen-
erate events, based on a generative model (e.g. [33]). In our
case, we produce an event when the brightness increases or
decreases by 30% (threshold).

Unfortunately, we could not find a suitable video-based
face detection dataset with multispectral data (including
NIR). Here is our approach:

• To train from scratch, we select open-source datasets
with color videos (RGB) and convert them to events.

• For fine-tuning, we capture our own dataset with two
multispectral cameras and simulate MS events.

• To validate our work with simulated events, we also
capture a few sequences with real events (GS and IR).

3.2.1 Training: large-scale color (RGB) data

To build N-YoutubeFaces [55] and N-MobiFace [34], we
simulate events for each color channel in the videos of the
original datasets. Note that the initial frame rate of each
video is at least 24 fps, which is in line with the simula-
tor’s requirements. YoutubeFaces [55] consists of 3.4k very
short color videos of 1.6k different people. It perfectly suits
our need of a diverse dataset for face detection in the wild.
At the same time, the data is not too challenging as the
sequences mainly come from movies or TV studio broad-
casts, where the image standards are high. On the other
hand, MobiFace [34] consists of 80 unedited mobile live
color video recordings (95k frames) by smartphone users.
It is challenging by design but all these challenges (fast mo-
tion, camera rotations, motion blur, scale and illumination
variations etc...) are situations where event cameras excel.
However, because N-MobiFace is made of simulated events
from conventional images, if the source image has motion
blur, the simulated events will also suffer from it. We did
not try to filter out these sequences as we observed it im-
proved the generalization capabilities of our face detector.
After conversion to events, we automatically relabeled both
datasets to complete for the missing ground truths, using ex-
isting face detection networks [14, 57] and Non-Maximum
Suppression over all predictions. More information on the
data format, the labeling and the data cleaning in the Sup-
plementary Material.

All in all, N-Youtubefaces and N-Mobiface are the first
large-scale bimodal datasets, with synchronized conven-
tional RGB videos and their RGB simulated event-based
data, labeled for face detection. We hope that these two
datasets, with easy and challenging data, will help the event-
based sensing community to push the capabilities of event-
based cameras for face detection, tracking or recognition. It
is also a nice platform to explore efficient ways to combine
information from conventional cameras and event-based
cameras, or to explore handheld device applications with
N-MobiFace.

3.2.2 Fine-tuning: multispectral data

The goal of this paper is to explore multispectral events for
deep-learning based face detection. The blue, green and red
channels of N-MobiFace and N-YoutubeFaces are a good
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Channel Blue 460nm 500nm Green 570nm 610nm Red 700nm Gray NIR
APS 0.672 0.670 0.666 0.667 0.673 0.670 0.663 0.672 0.668 0.582
EVS 0.589 0.590 0.593 0.579 0.577 0.576 0.589 0.559 0.592 0.521

Table 1. Mean Average Precision (mAP) of all the single-channel face detection models, after finetuning on N-SpectralFace. Higher is
better. Best model per row is in bold (with 1.0% tolerance). No single channel clearly outperforms others, only Near-Infrared is worse.

start but not enough to draw conclusions on multispectral
events and it does not help with exploring infrared bands.
Therefore, we need specifically multispectral data, enough
to fine-tune our baseline model and carry our multispec-
tral experimeents. The dataset N-SpectralFace consists of
69 sequences captured around the office in different places,
with different faces and lighting conditions. Each sequence
is recorded simultaneously with two cameras part of a setup
including a beamsplitter: a SILIOS CMS-C [51] multispec-
tral camera and a Basler dart [1] grayscale camera with a
long-pass IR filter in front. In total, 10 multispectral bands
are captured in parallel: 8 narrow bands in the visible, 1
grayscale band over all the visible spectrum (from 430nm to
700nm) and 1 near-infrared band (from 850nm up to around
1000nm). The data from both cameras are synced tem-
porally and spatially through calibration so that the bands
can be combined. N-SpectralFace is converted and labeled
following the same approach as for N-MobiFace and N-
YoutubeFaces.

3.2.3 Validation: Real multispectral events

All the event data we use for training or fine-tuning are sim-
ulated events. How could we make sure that our trained
models and the conclusions we derive are also valid for
real events ? To answer this, we captured a few se-
quences with real multispectral events, in the dataset Real-
SpectralFace. One DAVIS [5] camera is mounted with an
Infrared (IR) long-pass filter, the other one with an IR cut-
off filter. Therefore, each sequence captures 2 event-based
channels simultaneously: grayscale (visible spectrum) and
near-infrared, which will be useful to validate some of our
observations on multispectral events. Moreover, it is impor-
tant to consider that DAVIS cameras provide simultaneous
frame and event output, facilitating a direct comparison be-
tween real EVS observations and APS.

3.3. Experimental Setup

To examine the advantages of multispectral events for
face detection, we use the RetinaFace architecture [13] and
adapt the training for our experiments. To make annota-
tion easier and because it does not significantly improve the
mAP in the original paper, we do not use face landmarks.
For simplicity and because other representations did not
show better performance, we use the Binary image 2D rep-
resentation of events. For each pixel, if there was an event
within the last time window (50ms), we assign the value 1 to

it regardless of the polarity, else we assign it 0. We have ac-
cess to RGB and multispectral datasets (frames and events)
but the RGB data is by far the most abundant. Thus, we first
train a RetinaFace baseline model from scratch using the
RGB bands from N-MobiFace and N-YoutubeFaces, then
we fine-tune it on the multispectral data of interest from N-
SpectralFace. We perform two main experiments: Single
channel and Multi channel.

In the Single channel experiment, we compare the per-
formance of individual channels one to another by train-
ing a model for each band and modality (APS and EVS).
In the Multi channel experiment, we are interested in the
effect of combining different single channels together. In
particular, we select the channel combinations to evaluate
two aspects: the effect of increasing the number of channels
and the effect of near-infrared on the face detection perfor-
mance. As we have bimodal datasets (APS and EVS), all
of the 42 final models are trained on the same number of
samples, in the same order, for fairness. Finally, our work
can only benefit from an evaluation on real events to show
that our results can generalize to a real multispectral event-
based imaging sensor, if it is developed. Therefore, we also
test our grayscale (GS), infrared (IR) and GS+IR models on
real multispectral events from Real-SpectralFace.

4. Results

In the next subsections, we compare the face detection
performance of different APS and EVS models, using mean
Average Precision (mAP). Note that, by mAP, we mean
Average Precision (AP) averaged over 10 IoU thresholds
(0.5:0.05:0.95) as we perform single-class object detection.
In the further analysis, AP at single IoU thresholds are re-
ported (e.g. AP@.5 or AP@.75).

4.1. Single channel experiment

First, we investigate if any of the single channels is best
suited for face detection, out of the 10 multispectral chan-
nels of N-SpectralFace. In table 1, we report the metrics for
all 20 single channel models. Overall, APS models are per-
forming better than EVS models. No single visible channel
seems better than the others for face detection when used
alone: the mAP only varies by 1 to 2% for both APS and
EVS data. However, for both data modalities, the Near In-
frared (NIR) channel consistently performs worse, respec-
tively by 9% and 7% for APS and EVS.
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N-SpectralFace Real-SpectralFaceChannel APS EVS APS EVS
Grayscale (GS) 0.668 0.592 0.413 0.578
Infrared (IR) 0.582 0.521 0.548 0.535
GS+IR 0.693 0.626 0.473 0.607
Blue+Red (BR) 0.670 0.615 - -
BR+IR 0.679 0.639 - -
Color (BGR) 0.665 0.628 - -
BGR+IR 0.684 0.647 - -
BR+GS 0.672 0.626 - -
BR+GS+IR 0.688 0.645 - -
Hyperspectral (8ch) 0.664 0.645 - -
8ch+IR 0.681 0.656 - -
8ch+GS (9ch) 0.677 0.645 - -
9ch+IR 0.671 0.657 - -

Table 2. Mean Average Precision (mAP) of all the multi-channel
face detection models, after finetuning on N-SpectralFace. Higher
is better. Best model per column is in bold (with 1.0% tolerance).
Multi channel combinations that include infrared are highlighted
in light gray. Results on Real-SpectralFace are also reported.

4.2. Multi channel experiment

Although no single channel showed a superior perfor-
mance for face detection, these channels might possibly
complete each other if combined. To investigate what hap-
pens when increasing the number of channels and when fus-
ing NIR and visible data, 12 different channel combinations
are examined in table 2. Six of these combinations are vis-
ible bands only, from grayscale alone (GS) to all 9 visible
bands (9ch). The other six combinations are identical visi-
ble bands but with infrared added (+IR suffix). In the first
two columns of table 2, we report the validation mAP for
all multi channel models.

Increasing the number of channels. In APS visible-
only combinations (rows with white background), the num-
ber of channels does not seem to impact the face detec-
tion performance. Whether it is grayscale alone (GS) or
all 9 visible channels together (9ch), the mAP stays within
a 1% range (66 to 67%). The best APS model is only two
channels (GS+IR) with only 3% better mAP than the other
visible-only models. On the other hand, for EVS, there is
a clear dependency on the number of channels. The mAP
consistently improves with the number of channels for both
the visible-only models and the models with NIR (rows with
gray background), but we notice a diminishing increase: the
highest increase is between 1 and 2 channels (> 3.4%) and
there is almost no increase anymore between 8 and 9 chan-
nels (< 0.1%). In summary, EVS benefits more of combin-
ing different visible bands than APS.

Introducing infrared. What happens when we combine
visible and infrared bands? For both APS and EVS models,

adding infrared to any visible-only combination improves
the face detection performance. In table 2, we intention-
ally alternate the visible-only models and their +IR pair for
an easier read of the results. Note that for EVS models,
the effect of adding infrared also seems to have diminishing
returns. We observe a 3.4% increase for the EVS GS+IR
model (2 channels), a 2.4% increase for the EVS BR+IR
model (3 channels) and only 1.2% for the EVS 9ch+IR
model (10 channels). In summary, by increasing the num-
ber of channels and including IR, APS face detection im-
proves by only 2.5% while it increases by 6.5% for EVS. In
figure 2, we show some examples of face detection on mul-
tispectral events from a single scene. Multispectral events
show a greater level of details in the scene compared to the
relatively sparse single-channel EVS inputs (in particular
EVS IR), which in this example allow to detect more ac-
curately the face (see EVS GS+IR or BGR) or more faces
(see EVS BGR+IR). We believe this helps the EVS models
filtering out false positives, better estimating object contour
and make the system more robust overall. More samples in
the Supplementary Material.

Figure 2. Multispectral APS and EVS samples from N-
SpectralFace. For multispectral events, the infrared channel is al-
ways represented in red. Ground truth bounding boxes are in red,
face predictions are in green. Notice the increased details in mul-
tispectral EVS samples. Best viewed in color.
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(a) APS Grayscale and Infrared (b) EVS Grayscale and Infrared

(c) APS Blue, Red and Infrared (d) EVS Blue, Red and Infrared

Figure 3. Average Precision (AP) over IoU thresholds. Left is APS, Right is EVS. Each row is a different set of multispectal models.
Multispectral EVS models show a clear AP improvement across the different thresholds, compared to APS models.

Comparison across IoU thresholds. The mean Aver-
age Precision (mAP) metric is convenient to compare mul-
tiple models’ general ability to detect faces but it loses
some of the performance granularity by averaging over all
Intersection-over-Union (IoU) thresholds. In fig. 3, we eval-
uate the performance of each multispectral model over dif-
ferent IoU thresholds: higher IoU thresholds inform us
about the ability of a model to correctly regress the corners
of a face while lower thresholds only evaluate the ability to
detect (or not) a face at all. The two APS plots (fig. 3a
and 3c) show that increasing the number of channels or
adding infrared does not have much effect on the face de-
tection performance at lower IoU thresholds and it has a
moderate effect for stricter IoU thresholds (> 0.75). On the
other hand, the two EVS plots (fig. 3b and 3d) show that the
curves are clearly differentiated. In particular, from smaller
IoU thresholds (0.5) up to 0.85, combining visible chan-
nels together or introducing infrared substantially improve
face detection for event-based models. From these plots,
it seems that for APS, combining visible bands is similar
to averaging the individual performance of single channels.
Adding IR to visible channels (either GS or BR in the exam-
ple), shows a small improvement in AP for stricter thresh-
olds. In EVS, the behaviour is different, combining visible
bands is already quite beneficial, showing a clear edge over
the performance of single channels (BR vs B or R). More-
over, adding IR also clearly improves the performance of
the initial model. Therefore, when going from the B or R
model to BR then BR+IR, in EVS, we get two significant
improvements, resulting in the 5% mAP improvement for
EVS, while APS improves by less than 1%.

Improvement from combining channels. Finally, we

quantify how much the models benefit from combining
multispectral bands by reporting the metric difference of
each multispectral input and their best individual channel.
In table 3, these new metrics are reported for all APS and
EVS multi channel models. The distribution of the table
colors shows that APS does not benefit as much from early
fusion of multispectral bands as EVS. Some APS models
even suffer from the channel combination while almost all
EVS models show above 3% mAP improvement over their

Channel mAP (%) AP@.5 (%) AP@.75 (%)
APS EVS APS EVS APS EVS

GS+IR 2.5 3.5 1.0 2.9 2.9 5.4
BR -0.1 2.6 -0.0 1.2 -0.1 3.5
BR+IR 0.8 5.0 0.8 2.7 0.1 7.4
BGR -0.7 3.9 0.1 1.9 -2.1 5.3
BGR+IR 1.2 5.7 0.6 3.0 1.3 9.2
BR+GS 0.1 3.4 0.7 1.8 -0.5 4.4
BR+GS+IR 1.6 5.3 1.1 2.8 0.6 8.2
8ch -1.0 5.2 -0.7 2.8 -1.4 7.3
8ch+IR 0.7 6.3 -0.7 3.3 -0.0 9.4
9ch 0.4 5.3 -0.9 2.9 -0.6 7.3
9ch+IR -0.3 6.4 -0.7 3.4 -1.4 9.3

Table 3. Absolute difference between multi channel models and
their best single channel model. The cells are colored based on
four different ranges. Negative numbers, i.e. when the channel
combination performs worse than its best single channel, are in
red. Improvements up to 2% are in orange, between 2% and 5%
are in light green, and above 5% are in dark green. Best viewed
in color. EVS multispectral models show a clear face detection
improvement over their best single channel, compared to APS.
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best single channel. For event-based data, models with in-
frared show a bigger gap with their best indiviudal chan-
nel: the ”+IR” models show an mAP improvement 1.5 to 2
times better than their ”visible only” pair, with diminishing
gap when increasing the number of channels. Overall, the
best improvement over single channels is achieved by the
EVS 8ch+IR, 9ch+IR and BGR+IR models for the AP@.75
metric with more than 9% improvement. With table 3, we
confirm that EVS not only benefits from a multispectral in-
put, but the improvement is also substantially higher than
for APS. Combining both visible and infrared EVS bands
always further improves the face detection performance.

4.3. Real multispectral events

To confirm that the multi-channel experiments’ results
are not only valid for simulated events, the GS, IR and
GS+IR models are validated on real multispectral events
from Real-SpectralFace. The results are reported in the last
column in table 2. One can observe that the EVS mAP
is of similar magnitude for both N-SpectralFace and Real-
SpectralFace data, in the 50 to 60% range, so the mod-
els are still able to detect faces on real events even though
trained on simulation. Moreover, EVS models’ mAP trend
for Real-SpectralFace is the same as for N-SpectralFace.
The EVS infrared model is worse than the EVS grayscale
one but the combination of both (GS+IR) has the best face
detection performance. For the APS models, the face detec-
tion performance in Real-SpectralFace is generally lower
and the mAP trend is different (the best model is now IR).
This can be explained by Real-SpectralFace APS data being
captured with a DAVIS event camera [5], which has a lower
resolution, lower dynamic range and more noise.

5. Discussion
Since no multispectral event cameras currently exist,

the experiments have been carried mainly with simulated
events, allowing us to compare APS and EVS fairly. The
behaviour of the multispectral EVS models is always com-
pared to multispectral APS models to draw conclusions. It
is quite intuitive that color or multispectral data would im-
prove the face detection performance. However, the main
contribution of this paper is showing that the EVS improve-
ment from combining channels is substantially better than
for conventional imaging sensors. In other words, if we note
I(x) as the useful information for face detection contained
in an input x, our experiments show that:

I(MSEV S)−I(GSEV S) > I(MSAPS)−I(GSAPS) > 0
(3)

i.e., not only we show that event-based sensing, as con-
ventional imaging, can improve by using multispectral
data (more information is captured, the difference for both
modalities is > 0), but we show that the gain in information

from using multispectral bands is greater for EVS.

One could argue that a fair comparison of APS and
EVS models would actually be to choose a state-of-the-art
(SOTA) neural network for both image-based and event-
based data, instead of applying the RetinaFace [13] archi-
tecture to both. The main addition of SOTA models for
event-based object/face detection is the more clever use of
temporal information through recurrent neural networks or
visual transformers, e.g. in [18, 39]. We argue that the
temporal information is independant from the color infor-
mation and therefore our results could generalize to new
SOTA models. Moreover, showing that the event-based face
detection performance improves on a ”sub-optimal” neu-
ral network (designed for APS) demonstrates that multi-
spectral events have an inherent substantial advantage over
monochromatic events. We believe our result is stronger
than if we had found it through the design of a specific
neural architecture to efficiently fuse multispectral features.
This is in line with our decision to only explore early fu-
sion of the multispectral data. Note that our conclusions
are consistent with the works from Hansen and Gegenfurt-
ner (2009,2017) [21, 22] on object-contour perception in
color images. Event-based sensing mainly captures edges
in the scene and it could justify why EVS particularly ben-
efits from the addition of color or infrared bands. For this
reason, we are curious to know if our observations gener-
alize to other tasks than face detection, and we encourage
the research community to reproduce our results and extend
them to other computer vision tasks, when possible.

6. Conclusion

In conclusion, this work demonstrates that event cameras
substantially benefit from multispectral sensing. Combin-
ing events captured in different spectral bands improves the
face detection performance by a significantly larger margin
than it does for conventional multispectral images. These
results point toward a better efficiency of event-based data
to store color information and use it effectively. The in-
herent sparsity of event-based data and the fact that events
capture intensity differences in the scene could be factors
that explain this phenomenon. To obtain these results, we
built and shared two large-scale image-based and event-
based face detection datasets with color (RGB) data and a
third dataset with multispectral APS and EVS data for fine-
tuning. We took advantage of event simulation to perform
experiments on a hypothetical sensor and presented explo-
rative comparisons that could motivate the development of
a prototype. To the best of our knowledge, our research is
the first to tackle the evaluation of multispectral event-based
sensing, especially in the infrared.
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