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Abstract

Temporal action segmentation relates to high-level video
understanding, commonly formulated as frame-wise classi-
fication of untrimmed videos into predefined actions. Fully-
supervised deep-learning approaches require dense video
annotations which are time and money consuming. Further-
more, the temporal boundaries between consecutive actions
typically are not well-defined, leading to inherent ambigu-
ity and inter-rater disagreement. A promising approach to
remedy these limitations is timestamp supervision, requir-
ing only one labeled frame per action instance in a training
video. In this work, we reformulate the task of temporal seg-
mentation as a graph segmentation problem with weakly-
labeled vertices. We introduce an efficient segmentation
method based on random walks on graphs, obtained by
solving a sparse system of linear equations. Furthermore,
the proposed technique can be employed in any one or com-
bination of the following forms: (1) as a standalone solu-
tion for generating dense pseudo-labels from timestamps;
(2) as a training loss; (3) as a smoothing mechanism given
intermediate predictions. Extensive experiments with three
datasets (50Salads, Breakfast, GTEA) show that our method
competes with state-of-the-art, and allows the identification
of regions of uncertainty around action boundaries.

1. Introduction
Video understanding covers a wide range of problems

concerned with automatically extracting information from
videos. In particular, it includes the task of temporal action
segmentation which plays an important role in various ap-
plications such as autonomous driving [3], robotics [25,42]
and healthcare [7–9, 16, 19–21, 30], amongst others.

In its most basic form, temporal action segmentation
aims at classifying each frame of an untrimmed video into
one of a set of predefined actions. In contrast to standard
image classification, the prediction at a specific time-point
within the video also relies on other time-points to capture
and utilize temporal dependencies between frames. In re-

cent years, fully-supervised techniques have achieved un-
precedented performance in action segmentation. Yet, this
level of supervision suffers from a critical drawback as it re-
quires frame-wise annotations which are extremely expen-
sive and time consuming. In addition, the transitions be-
tween consecutive actions are not well-defined in time, thus,
creating inherently-ambiguous time-intervals which in turn
lead to inter-rater disagreement and unreliable annotations.
To deal with this, unsupervised methods have been pro-
posed which require little or no information, thus, remov-
ing the limitation described above. Unfortunately, their per-
formance is dramatically inferior to that of fully-supervised
techniques, rendering them impractical.

As a compromise between the two opposing approaches
discussed above, paradigms of weak-supervision have been
studied in recent years. Among these paradigms, a promis-
ing approach is timestamp supervision [34, 37] which has
shown clear potential in reaching the performance of fully-
supervised algorithms using only a fraction of the anno-
tated data. The settings of timestamp supervision entails
annotating only a single frame of every action instance
within a training video. Typically, timestamps are selected
as representative frames of their related actions, thus, they
are situated outside of ambiguous intervals. Thus, times-
tamp supervision significantly facilitates the annotation pro-
cess [36] while providing strong temporal cues for action
segmentation. The most prominent approach utilizes times-
tamps to generate dense pseudo-labels and then trains a tem-
poral segmentation model in a supervised fashion.

In this work, we approach the task of temporal action
segmentation with timestamp supervision by representing it
as a graph segmentation problem. Here any given video in-
duces a sparse graph whose vertices are the video frames,
labeled according to the timestamps provided. An edge
weight between two arbitrary frames is determined by their
local proximity in time and their feature similarity. Inspired
by [17], we then perform action segmentation via random
walks on graphs, described as follows. Starting at an un-
labeled vertex/frame, we determine the probability we will
first reach a certain timestamped vertex, for all timestamps.
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Then, we assign a label to the unlabeled vertex accord-
ing to the timestamp of the greatest probability. Comput-
ing the above for all vertices jointly translates to solving a
sparse system of linear equations, which can be done effi-
ciently using various well-established techniques. The de-
rived method for action segmentation can be utilized in any
one or a combination of the following forms:

1. Given per-frame features (e.g. extracted from a pre-
trained model) and timestamps, the random walk can
be used as a standalone solution for producing dense
predictions, i.e. pseudo-labels.

2. The random walk formulation induces an objective
that can be utilized as an auxiliary loss for training ac-
tion segmentation models with timestamp supervision.

3. Given per-frame features and predictions, our random
walk solution can be used as a refinement mechanism
to smooth the predictions. Note that the features and
the predictions may originate from different sources.

As noted above, we may apply any of the three approaches
individually. However, as we aim to provide a complete
and consistent solution, we focus here on producing a uni-
fied action segmentation technique which applies all of the
aforementioned modes of random walks. We evaluate our
method on three action segmentation benchmarks: 50sal-
ads [46], Breakfast [15] and GTEA [26]. Our results show
that our random walk action segmentation method competes
with state-of-the-art techniques in timestamp supervision.
In summary, our main contributions are as follows:

• We introduce a random walk segmentation (RWS)
method which views action segmentation with times-
tamp supervision as a graph segmentation problem.

• The proposed method can be used as either complete
or complementary action segmentation solution. This
includes using our random walk as a training objective,
a smoothing mechanism or a pseudo-label generator.

• Extensive experiments demonstrate our performance is
comparable to or better than state-of-the-art.

• A novel analysis of the uncertainty prediction of the
temporal action segments. We show that in contrast
to competing methods, our technique produces smooth
action transitions, allowing to better identify uncer-
tainty regions near action boundaries.

2. Related Work
Fully Supervised Action Segmentation. Traditional

supervised approaches for action segmentation involve a
two-step procedure for extracting per-frame features and
fusing them together over time. The temporal integra-
tion can be performed using either hidden markov models

(HMM) [27, 28, 32] or using a parametric recurrent neural
network (RNN) [39, 45]. More recent approaches use the
parameters’ efficient dilated convolution operation in order
to increase the receptive field of the model and allow longer
patterns to be captured. Two paradigms for using Tempo-
ral Convolution Networks (TCNs) have been proposed: an
Encoder-Decoder architecture [10, 31], and a multi-stage
architecture (MS-TCN) [12, 35]. The latter exhibits im-
proved results since it comprises multiple cascaded stages,
each containing a stack of dilated convolution layers, which
gradually refine the predictions. A recent approach, AS-
Former [50] utilizes the transformer architecture [47] for
action segmentation. It consists of an encoder and several
decoders for refinement and exhibits comparable results to
MS-TCN. UVAST [2], is a recent work that also utilizes
the transformer architecture, and aims to directly predict the
actions’ sequence (transcript, see below) and their duration
from the video frames. It improves the segments’ order pre-
diction, but is less accurate in predicting the boundaries’
locations. In spite of their impressive results, these methods
require a large amount of carefully annotated videos, which
is expensive and time-consuming to collect.

Unsupervised Action segmentation. The challenge
of predicting temporal actions without using annotated
data has been addressed by several methods. Some use
pre-training tasks for learning frame-wise features. The
refined representations are then clustered to form seg-
ments [1,29,49]. Another line of research offers temporally-
aware clustering methods using pre-trained image encoders
for extracting the frames representations [11, 43]. TW-
FINCH [43] is a recent approach for temporally weighted
hierarchical clustering. It uses temporal and spatial features
to represent a video as a 1-nearest neighbor graph that is
iteratively partitioned. In comparison to fully-supervised
or weakly-supervised approaches, the above methods suffer
from significantly degraded performance.

Weakly Supervised Action Segmentation. The use of
weakly-supervised approaches has been proposed as a solu-
tion to balance reasonable performance and data efficiency.
Many works rely on transcripts supervision, a per-video list
of ordered actions. They try to align the frames and tran-
scripts using different techniques such as Viterbi [41] and
Dynamic Time Warping [5, 6]. Other approaches rely on a
set of action labels (action sets), without knowing their tem-
poral location, order and frequency [13, 33, 40]. Some use
even weaker supervision in the form of complementary tex-
tual data such as narrations or subtitles [14, 44]. Typically,
these approaches are designed to address a specific type of
weak supervision and result in inferior performances.

Timestamp-Based Action Segmentation. Li et al. [34]
were the first to introduce the use of timestamp supervision
for temporal action segmentation as a form of weak super-
vision. Their proposed method, ABE, presents a greedy al-
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Figure 1. An overview of the proposed segmentation framework. We develop a random walk approach for temporal action segmentation
which accepts per-frame features and weak labels of an input video, models it as a graph and propagates the labels between vertices/frames.
The proposed system can be used to generate pseudo-labels, as a training loss or to refine given predictions at inference time. All mentioned
modes are utilized to create a unified random walk segmentation (RWS) technique for action segmentation with timestamp supervision.

gorithm for estimating the action boundaries based solely
on timestamps. Using the dense pseudo-labels, they train
a parametric action segmentation model (MS-TCN). Their
method achieves promising results, but its sequential nature
makes it sub-optimal. The graph-based method we propose
better models the long-range dependencies between frames.
Bermann et al. [2] present an iterative clustering method for
action boundaries estimation and integrate it with their pro-
posed model, UVAST. Our proposed method for pseudo-
labels prediction is more efficient and deals more care-
fully with boundary prediction. Additionally, we present
an improved mechanism for temporal smoothing based on
the idea of encoding the frames into a graph. Khan et
al. [22] also propose modelling the video as a graph. How-
ever, they alternate between optimizing two functions, a
graph convolutional network for frame-wise label genera-
tion and an action segmentation model, leading to ineffi-
ciency. Rahaman et al. [38] recently proposed an itera-
tive expectation-maximization method1 for action segmen-
tation, which trains a model with a weighted cross-entropy
loss. The weights are determined adaptively to capture the
uncertainty of unlabeled frames, similar to our weighted
smoothing function.

3. Methodology
3.1. Problem Definition

Let an input video V = [x1, ..., xN ] be a sequence of
N frames where xi denotes the frame at time i. The video
consists of S � N consecutive temporal segments, each
corresponds to one ofC predefined action labelsA = [C] ,
{1, ..., C}. In timestamp supervision, we are provided with
S ground-truth labels Y = {yj}Sj=1 (|Y | = S) at time-

1To our understanding, this model was trained on a different set of
timestamps that the the one we experiment with, adhering to [34].

points {tj}Sj=1, one for each temporal segment. Given the
timestamps, action segmentation aims at producing dense
predictions2 [â1, ..., âN ], i.e., classifying each frame xi to
an action label âi ∈ A.

3.2. Random Walks for Action Segmentation

Our work builds on the random walk algorithm for image
segmentation [17], which we adapt the for action segmen-
tation. We start by representing the input video as an undi-
rected weighted graph G = (V,E,W), with each vertex
vi ∈ V (|V| = N ) associated with a frame xi and the edges
E = {ei,j} connect successive frames. The edge weights
encode vertex similarity as follows

wi,j , exp
(
−β||fi − fj ||2

)
(1)

where fi are the features of xi and β > 0 is an hyperpa-
rameter. The timestamps induce a partition V = VY ∪ VU

(VY ∩ VU = ∅) where VY (|VY | = S) is the set of seed
vertices corresponding to timestamped frames. The random
walk algorithm aims to compute for each unlabeled vertex
vi ∈ VU the probability pia that a random walker starting at
vi first reaches a vertex timestamped with action a. Finally,
the vertex is assigned to the label of the highest probabil-
ity. As shown in [18], the probabilities can be computed by
minimizing for all actions a ∈ A the following objective

Q(pa) =
1

2
pT
a Lpa s.t. ptja = 1[a = yj ] ∀vj ∈ VY ,

(2)
where we define pa , [p1a, ..., p

N
a ]. Here L , D −W is

the graph Laplacian with D being a diagonal matrix with
entries Dii =

∑
j wi,j . Thus, the probabilities are ob-

tained by solving a sparse, positive-definite, system of lin-
2In practice, the output may not be per-frame predictions, as in [2]. Yet,

any form of valid output can be translated to per-frame predictions.
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ear equations instead of performing a random walk simula-
tion. Moreover, since the probabilities at any vertex must
sum to unity, only C − 1 linear systems must be solved.

3.3. Regularized Random Walks

While the classic random walk algorithm provides a rig-
orous and efficient approach to action segmentation by re-
ducing the problem to solving systems of linear equations, it
has two important limitations. First, it only considers edges
between neighboring frames, thereby neglecting important
temporal information. Second, the algorithm treats times-
tamps as hard constraints, precluding label modification of
the corresponding vertices. To alleviate these limitations,
we perform the following modifications. We extend the set
of edges to E , {(i, j)

∣∣ |i − j| ≤ m} where m > 0 is an
hyperparameter. To further improve the temporal context,
we adjust the weights as follows

w̃i,j ,

{
Agg(wi,j−K , ..., wi,j , ..., wi,j+K), (i, j) ∈ E,
0, otherwise.

(3)
where K > 0 controls the context window size, and Agg is
an aggregation function set as either min, max, mean or
none. The latter implies simply setting wi,j ≡ w̃i,j . Next,
we introduce regularization into the objective function

p̂a = arg min
pa

1

2
pT
a Lpa + γr(pa, ya). (4)

Here γ > 0 and r(·, ·) measures similarity to a supervision
vector ya, where in our setup it is a binary vector whose
non-zero entries correspond to timestamps with label a. For
simplicity we set r(pa, ya) , ||Ha(pa−ya)||2 where Ha ,
diag(ya). Consequently, we compute the probabilities by
solving the following sparse system of linear equations

(L + γHa)pa = γya. (5)

Finally, we set our predictions as âi = arg maxa pia.
The proposed regularized random walk algorithm re-

tains all the computational efficiency benefits of the original
method, while offering flexibility in determining the tempo-
ral context size and in adhering to the timestamps.

3.4. Modes of Operation

Our method engenders multiple modes of operation:
Pseudo-Label Generation. By solving (5) we can use
timestamps to generate dense pseudo-labels. This proce-
dure can be seen as a standalone solution which requires
only per-frame features F = {fi} to build the Laplacian
and performs no training. Alternatively, we can solve (5)
repeatedly at training time to update the pseudo-labels with
any update of the model features.

Smooth Refinement. At test time, given per-frame features
F = {fi} and the model predictions {ya} , {p̃a}, we first
build the Laplacian L using the features and then utilize (5)
as a refinement mechanism, adjustable via γ, to produce
smooth results. Notice that the features and predictions may
originate from different models, offering flexibility.
As Training Losses. Let pa = pa(θ) be the output of a
segmentation networkMwith parameters θ. Revisiting (4),
we define a Laplacian-based smoothing loss function

Llap ,
∑
a∈A

pT
a (θ)Lpa(θ) =

∑
a∈A

∑
(i,j)

wi,j |pia − pja|2, (6)

where L can depend on the model parameters θ or on exter-
nal features. In practice, we use a truncated version

LT−Lap ,
∑
a∈A

∑
(i,j)

wi,j∆
2
i,j , (7)

where for a given τ > 0 we define

∆i,j ,

{
|pia − pja|, |pia − pja| ≤ τ,
τ, otherwise.

(8)

The second term in (4) can be substituted with any super-
vised loss function Lsup. Thus, we trainM using the fol-
lowing random walk loss: LRW = Lsup + LT−Lap.

3.5. Unified Random Walk Solution

So far, we presented our random walk and its operating
modes. Here we join the different modes to create a uni-
fied random walk solution for temporal action segmentation
with timestamp supervision. Our random walk segmenta-
tion (RWS) method consists of the following stages:

1. Pseudo-Label Generation. Before training, we use
the timestamps and per-frame features, extracted by a
pre-trained model, to yield dense pseudo-labels via (5).

2. As Training Losses. During training, we set our ac-
tion segmentation model as an MS-TCN [48] and train
it using the following loss

Ltotal = Lcls + αLT−Lap + δLconf , (9)

where Lcls is a classification cross-entropy loss com-
puted over the generated pseudo-labels, Lconf is the
confidence loss [34], given in supplementary, and α >
0 and δ > 0 are hyperparameters denoting the con-
tribution of each loss. Following each update step of
the model, we use it to extract per-frame features and
update our pseudo-labels and Laplacian term LT−Lap.

3. Smooth Refinement. At inference, we run our model
to obtain per-frame predictions {p̂a}. We then apply
our random walk with a pre-trained features to refine
our predictions by solving (5) with ya = p̂a and Ha =
I where I is the identity matrix.
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4. Experiments
We validate the effectiveness of our proposed method for

pseudo-label generation and our unified random walk solu-
tion. We also ablate the design choices and optimization
process, and provide insights into the unexplored feature of
estimating the confidence of action segmentation models.

4.1. Experimental Setting

4.1.1 Datasets

We evaluate the performance of the proposed model over
the next challenging datasets - (i) Breakfast [15]: 1712
videos of breakfast preparation actions, each frame is an-
notated with one of 58 action classes. Each video contains
130-9000 frames and 2-25 segments; (ii) 50Salads [46]:
50 videos of people preparing different salads, each frame
is annotated with one of 17 action classes. Each video
contains 7000-18000 frames and 15-26 segments; (iii)
GTEA [26]: 28 videos of actors performing various daily
activities, each frame is annotated with one of 11 actions.
Each video contains 630-2000 frames and 21-44 segments.
For a fair comparison, we use the same random timestamps
as in [34]. We follow previous works [12, 35, 50] and per-
form 4-fold cross-validation on Breakfast and GTEA, 5-fold
cross-validation on 50Salads and report the mean results.

4.1.2 Metrics

To be consistent with previous works, we report the follow-
ing metrics - (i) Frame-wise accuracy (Acc): Mean clas-
sification accuracy, computed over all of the frames within
a video. This metric assigns larger weights to longer seg-
ments and focuses more on boundary locations; (ii) Seg-
mental edit score (Edit) [32]: Measures the alignment of
the predicted transcript (ordered sequence of actions) to the
ground true transcript, without considering the segment du-
ration; (iii) Segmental F1 (F1@10,25,50) [31]: This met-
ric compares the intersection over union (IoU) of each seg-
ment with respect to the corresponding ground truth. A seg-
ment is considered a true positive if its IoU in relation to the
ground truth exceeds a selected overlapping threshold. The
metric is measured at a few thresholds of 10%, 25% and
50%. This score penalizes over-segmentation and is less
sensitive to the exact location of the boundaries. The seg-
mental F1 score provides a more comprehensive measure
of the segmentation quality [2,31], as the action boundaries
are ambiguous by nature. Therefore, we put emphasis on
this measure throughout our empirical analysis.

4.1.3 Competing Methods

We compare our approach, RWS , with current state-of-the-
art methods for timestamp-based temporal segmentation:

Action Boundary Estimation (ABE) [34]. A fundamental
work that introduced and applied the use of timestamps as
weak supervision for temporal segmentation. It introduces a
heuristic for predicting per-frame actions from timestamps
and uses it for creating dense supervision for the temporal
segmentation model during training. The presented heuris-
tic is based on the fact that there exists a single boundary
between every pair of consecutive timestamps. The authors
propose a greedy algorithm for partitioning the segment be-
tween each pair of timestamps. The method is repeated
twice, scanning the frames from left to right and vice versa
and averaging the results to estimate the boundaries.
Unified Video Action Segmentation model via Trans-
formers (UVAST) [2]. A recent method for video action
segmentation via sequence to sequence translation. The
proposed model is a complex system of transformer en-
coder and two decoders. —First, the encoder is applied to
raw frame representations and produces refined dense per-
frame features. Then, the first decoder predicts the tran-
script based on the frame features and the second decoder
predicts the segment duration based on the transcript and the
frame features. The authors also address the setup of times-
tamp supervision and derive a method for generating dense
labels from timestamps based on k-medoids clustering.
Graph Convolution Network (GCN) [22]. A recent
method that models the inter-frame relations as a graph. In
contrast to our method, they propose learning a second para-
metric model, a GCN [24], for predicting the dense pseudo
labels. An optimization process alternates between optimiz-
ing the GCN and the temporal segmentation model. 3

4.1.4 Implementation Details

For a fair comparison, we follow [22, 34] and adopt the
multi-stage temporal convolutional (MS-TCN) model pre-
sented in [48]. This model is composed of 4 stages, each
of which contains 10 blocks of dilated convolutions with
a hidden dimension of 64. The first stage of the model
consist of two parallel convolutions with different kernel
sizes of 3 and 5. The resultant two outputs are summed
and passed to the following stages. We train the model
for a maximum of 60 epochs, monitor the accuracy of the
train timestamp predictions, and end training when the ac-
curacy reaches a saturation point. In accordance with pre-
vious work [34], the model is trained only for classifying
the annotated timestamps during the first 30 epochs. Next,
pseudo-labels are generated based on the learned represen-
tation derived from the temporal model. We use Adam [23]
optimizer and set the learning rate to 0.0005 and the batch
size to 8. Video frames are sampled at a rate of 1 fps, and
frame representations are extracted from an I3D model [34]

3In contrast to ABE and UVAST, the GCN evaluation setup reports
average results over three randomly initialized runs.

6618



Breakfast 50Salads GTEA
F1@{10,25,50} Acc F1@{10,25,50} Acc F1@{10,25,50} Acc

ABE 96.0 87.3 67.6 72.6 99.4 95.0 76.8 79.9 96.6, 86.3, 65.5 75.5

UVAST 95.5 87.5 70.0 76.9 97.5 90.4 75.6 81.3 99.8 97.7 83.0 75.3

RWS 96.5 88.9 69.5 76.1 99.7 97.5 81.0 80.6 96.7 89.4 71.4 78.6

Table 1. Comparing methods for generating dense pseudo-labels from timestamps. Best results are bolded while second best are underlined.

pre-trained over Kinetics-400 dataset [4]. Our method is
agnostic to the chosen model and to the frame representa-
tions. Code for replicating our experiments is available at
https://github.com/RoyHirsch/RWS.

4.2. Results

4.2.1 Pseudo-Label Generation

As a first application, we provide a standalone none-
parametric solution for generating dense pseudo-labels
from timestamps. We use the frame features extracted from
a pre-trained I3D model [4] and use the same timestamps as
in [34]. Table 1 compares our method to the two clustering
methods presented in ABE [34] and in UVAST [2] (since
GCN [22] does not generate pseudo-labels, this method is
not relevant for the compression). We compute ABE re-
sults using their published code, UVAST resuls are obtained
from [2]. We report the mean metrics for all the data folds.
Our method improves the segmental F1 by an average of
2.3/0.7 points in compare to the baselines over 50Salads
/ Breakfast datasets at the expense of marginal decrease in
accuracy. The opposite behavior is shown for GTEA.

4.2.2 Unified Random Walk

We evaluate the performance of our unified random walk
segmentation method. Similar to the setup presented
in [34], we only use timestamp supervision during train-
ing, learn a parametric action segmentation model and eval-
uate it over videos without any additional annotation. Ta-
ble 2 compares the performance of RWS to the state-of-the-
art timestamp-based methods. We also compare to a few
recent fully-supervised baselines: MS-TCN [34], a fully
supervised version of our model, MS-TCN++ [35], AS-
Former [50] and to a fully supervised UVAST [2].

Due to the fact that there is no single timestamp-based
model that outperforms all of the metrics, we provide a
ranking of the tested measurements. In the most important
metric, segmental F1, our method outperforms its competi-
tors. Furthermore, it achieves the second best performance
in terms of segmental edit distance, without utilizing a dedi-
cated transcript prediction component (as used by UVAST).
In terms of per-frame accuracy, ABE outperforms all the
tested baselines. As stated before and in [2], the exact loca-
tions of action boundaries are ambiguous by nature. Hence,

The F1 and edit scores are more prominent and effective
metrics, thus, are more relevant to real-world applications.

Figure 2 presents the segmentation results for two sam-
pled videos from Breakfast and 50Salads datasets. We com-
pare the performance of our method to ABE by re-training
the models with the code provided by [34]. We also com-
pare to UVAST using the trained checkpoints published
in [2]. Using different colors to code different actions, the
bar plot represents the predicted temporal segments. This il-
lustrates that our method is less prone to over-segmentation
and yields less false-positive action segments.

4.3. Ablation Studies

4.3.1 Impact of the Random Walk Parameters

Our random walk temporal segmentation method intro-
duces additional hyperparameters to tune. In this section
we explore and quantify the influence of the various param-
eters over the standalone operative mode of our method.
Figure 3 summarizes an ablation study and reports accu-
racy and F1@10 for different configurations over the three
datasets (additional details regarding the experimental setup
are provided in supplementary materials). First, we study
the influence of the weight aggregation method. As can be
seen, any type of aggregation is beneficial, yet min aggrega-
tion outperforms others by a small margin. This aggregation
is particularly useful since it highlights action boundaries
where the correlation between frame features is low.

The parameter β, which controls the sharpness of the
similarity scores has a more prominent effect. As seen from
the results, accuracy improves with sharpness until it un-
til it saturates at a value of 30. Increasing γ, the temporal
prior weight, reduces prediction accuracy as the algorithm
prioritizes precisely classifying sparse timestamps over cor-
rect label propagation. Increasing the number of neighbors
to the limit of 15 (30 neighbors per frame in total) mod-
estly improves accuracy, but further increases degrade per-
formance as graph weights become less sensitive to local
changes. This result is consistent with previous works [22].

4.3.2 Impact of the Smoothing Loss Function

Farha et al. [12] have been the first to introduce the use of
the truncated mean squared error (T-MSE) over the frame-
wise log probabilities to enforce temporal consistency, and
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Breakfast 50Salads GTEA Rank
F1@10,25,50 Edit Acc F1@10,25,50 Edit Acc F1@10,25,50 Edit Acc F1 Edit Acc

MS-TCN [34] 70.8 67.7 58.6 63.8 77.8 69.9 64.2 51.5 69.4 68.0 85.1 82.7 69.6 79.6 76.1 - - -
MS-TCN++ [35] 64.1 58.6 45.9 65.6 67.6 80.7 78.5 70.1 74.3 83.7 88.8 85.7 76.0 83.5 80.1 - - -
ASFormer [50] 76.0 70.6 57.4 75.0 73.5 85.1 83.4 76.0 79.6 85.6 90.1 88.8 79.2 84.6 79.7 - - -

UVAST [2] 76.7 70.0 56.6 77.2 68.2 86.2 81.2 70.4 83.9 79.5 77.1 69.7 54.2 90.5 62.2 - - -

UVAST [2] 72.0 64.1 48.6 74.3 60.2 75.7 70.6 58.2 78.4 67.8 70.8 63.5 49.2 88.2 55.3 2 1 4
GCN [22] 67.9 61.0 45.3 67.0 61.4 75.1 72.3 61.0 67.6 75.1 81.5 77.5 60.8 75.6 66.1 3 3 2
ABE [34] 70.5 63.6 47.4 69.9 64.1 73.9 70.9 60.1 66.8 75.6 78.9 73.0 55.4 72.3 66.4 4 4 1

RWS 70.9 64.7 44.8 71.1 60.2 76.7 72.8 55.5 69.3 70.0 80.9 74.1 56.3 76.2 59.3 1 2 3

Table 2. Comparison with state-of-the-art timestamp-based (bottom section) and fully-supervised methods (top section). In the rightmost
section, the averaged metrics for each timestamp-based model are ranked.
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Figure 2. Segmentation results over sample videos from (a) 50Salads and (b) Breakfast datasets.
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Figure 3. The effect of different parameters over RWS pseudo-dense labels generation results.

thus reduce over-segmentation. Yet, it assigns equal impor-
tance to all the temporal locations. Our method introduces
a new way to regularize the temporal smoothness based on
the graph Laplacian. It enforces a soft temporal consistency
that is governed by the graph Laplacian. In other words,
as formulated in equation 7, the difference between every
two adjacent frames is weighted by their similarity. Fur-
thermore, since edges in our graph are not limited to con-
secutive frames, using graph Laplacian smoothing is more
expressive than using T-MSE, which compares only con-
secutive frames. In Table 3 we compare between the two
smoothing methods over the three tested datasets. As can
be seen, the proposed loss achieves improved F1 and accu-
racy with an improvement of 3.4% and 2.6% respectively.
The proposed loss can also be applied to other weakly-

supervised or fully-supervised temporal segmentation se-
tups, however, this is outside the scope of our study.

F1@{10,25,50} Edit Acc
Breakfast

LT−MSE 69.4 62.6 44.5 70.1 57.3
LT−Lap 69.2 63.1 45.4 70.5 58.0

50salads
LT−MSE 75.1 70.4 50.9 67.3 68.1
LT−Lap 75.1 71.2 61.1 67.8 69.6

GTEA
LT−MSE 78.3 71.8 54.9 75.1 56.4
LT−Lap 80.6 73.4 55.9 76.9 58.9

Table 3. Comparing T-Laplacian and T-MSE smoothing.
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4.3.3 Impact of the Different Losses

The proposed optimization is composed of three compo-
nents: a classification loss, a Laplacian smoothing loss, and
a confidence loss. Table 4 quantifies the impact of the dif-
ferent terms for Breakfast and 50Salads datasets. Similar
to [34], the best results are obtained when using smoothing
in conjunction with a confidence term. Using the additional
two terms improves the mean segmental F1 by roughly
20%, the edit distance by 12% and the per-frame accuracy
by 6.3%. Table 5 quantifies the influence of the Laplacian
smoothing over 50Salads dataset. The Laplacian smooth-
ing has less influence over the prediction when its weight
is small. Conversely, when its weight is too large, the final
prediction is over-smoothed and the performance degrades.

F1@{10,25,50} Edit Acc
Breakfast

Lcls 63.7 54.7 34.5 67.8 54.9
Lcls + LT−Lap 65.0 54.1 32.6 67.3 56.0
Lcls + Lconf 66.1 54.9 33.0 67.8 55.8
Lcls + LT−Lap + Lconf 69.2 63.1 45.4 70.5 58.0

50Salads
Lcls 68.3 62.6 44.3 60.5 65.0
Lcls + LT−Lap 69.5 64.7 47.0 61.9 66.7
Lcls + Lconf 72.7 67.5 49.5 64.8 67.7
Lcls + LT−Lap + Lconf 75.1 71.1 61.1 67.8 69.6

Table 4. The contribution of the different loss terms.

α F1@{10, 25, 50} Edit Acc

0.000 72.7 67.5 49.5 64.8 67.6
0.025 72.7 67.9 49.3 64.0 67.2
0.050 75.1 71.1 61.1 67.8 69.6
0.075 74.1 69.5 51.2 66.3 68.8
0.100 74.0 68.4 50.1 64.2 67.6

Table 5. Impact of the Laplacian smoothing over 50Salads dataset.

4.4. Estimating the Prediction Confidence

A critical aspect of any predictive model is determining
the degree of confidence a model has in its predictions. This
is a crucial feature in many applications such as autonomous
driving [3] and healthcare [9,16], which is often overlooked
in the context of temporal action segmentation. To address
this, we compute the entropy of the per-frame probabilities
as a measure of the model per-frame confidence, where high
entropy implies low confidence and vice versa.

Fig. 4 illustrates the per-frame probabilities and entropy
for a sample Breakfast video. Comparing to UVAST is
challenging as its per-frame predictions are noisy, and thus
refined by two consecutive decoders. Hence, we compare

our model to ABE and find that it produces smoother action
transitions, which better model natural ambiguity in bound-
ary locations. We quantify this property by measuring the
mean accuracy of per-frame predictions at different confi-
dence levels. Table 6 reports accuracy for the kth percentile
most confident frames. Considering only high-confidence
predictions, RWS outperforms ABE in accuracy by large
margins with an average of 6 and 5 percentage points for
k = 60%/70%. Thus, our method assigns low confidence
to predictions near action boundaries, identifying ambigu-
ous regions while maintaining high accuracy elsewhere.

Acc@{90%, 80%, 70%, 60%}

RWS ABE
Breakfast 65.2 80.5 90.4 89.0 65.9 73.2 79.9 76.8
50Salads 73.2 74.3 76.3 78.8 69.5 71.2 73.5 75.6

GTEA 62.6 73.5 82.8 85.4 69.6 74.4 79.2 83.4

Table 6. Comparing per-frame accuracy of the top k ∈
{90%, 80%, 70%, 60%} most confident frames.
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Figure 4. Normalized per-frame probabilities and entropy for a
Breakfast dataset video. P: predictions, G: ground true and E:
normalized entropy. Our model enforces smoother transitions be-
tween action segments, thus, highlights boundaries uncertainty.

5. Conclusions
In this work we presented random walks for temporal

action segmentation with timestamp supervision. The pro-
posed random walk can be used to generate dense labels
from timestamps, refine given model predictions at infer-
ence, and act as an auxiliary training loss. Our RWS method
uses all of the aforementioned to provide a unified solution
for action segmentation with timestamp supervision. We
evaluate our technique on three benchmarks, demonstrating
on-par or improved performance with state-of-the-art. Fur-
thermore, our adaptive temporal smoothness mechanism al-
lows identifying ambiguous regions near action boundaries.
As future work, the proposed method can be further adapted
to accept any form of weak labels, beyond timestamps.
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