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Abstract

Lane marker detection is a crucial component of the
autonomous driving and driver assistance systems. Mod-
ern deep lane detection methods with anchor-based lane
representation exhibit excellent performance on lane de-
tection benchmarks. Through preliminary oracle experi-
ments, we firstly disentangle the lane representation com-
ponents to determine the direction of our approach. We
show that correct lane positions are already among the
predictions of an existing anchor-based detector, and the
confidence scores that accurately represent intersection-
over-union (IoU) with ground truths are the most benefi-
cial. Based on the finding, we propose LaneIoU that bet-
ter correlates with the metric, by taking the local lane an-
gles into consideration. We develop a novel detector coined
CLRerNet featuring LaneIoU for the target assignment cost
and loss functions aiming at the improved quality of confi-
dence scores. Through careful and fair benchmark includ-
ing cross validation, we demonstrate that CLRerNet out-
performs the state-of-the-art by a large margin - enjoying
F1 score of 81.43% compared with 80.47% of the existing
method on CULane, and 86.47% compared with 86.10% on
CurveLanes. Code and models are available at https:
//github.com/hirotomusiker/CLRerNet.

1. Introduction
Lane (marker) detection plays an important role in the

autonomous driving and driver assistance systems. Like
other computer vision tasks, emergence of convolutional
neural networks (CNNs) has brought rapid progress on lane
detection performance. Modern lane detection methods are
grouped into five categories. Segmentation-based [18, 27]
and keypoint-based [21] methods regard lanes as segmenta-
tion mask and keypoints respectively. The parametric meth-
ods [16, 25] utilize curve parameters to regress lane shapes.
The row-based and anchor-based methods [15,19,20,24,28]
regards a lane as a set of coordinates on the certain horizon-
tal lines. The first two methods are the bottom-up detection
paradigms, where the lane positions are directly detected

Figure 1. Lane detection example. top: ground truth. mid-
dle: all the predictions (blue, deeper for higher confidence scores)
and ground truths (dashed orange). bottom: example of metric
IoU calculation by comparing segmentation masks of predictions
(blue) and GTs (orange). Best viewed in color.

in the image and grouped into lane instances afterwards.
The latter three are the top-down instance detection meth-
ods where each lane detection is regarded as both global
lane instance and a set of local lane points. The anchor-
based method is the de-facto standard in terms of detection
performance among the above method types. We choose the
best-performing CLRNet [28] from the anchor-based meth-
ods as our baseline.

The performance of lane detection relies on lane point
localization and instance-wise classification. The lane
detection benchmarks [7, 18] employ segmentation-mask-
based intersection-over-union (IoU) between predicted and
ground-truth (GT) lanes as an evaluation metric. The pre-
dicted lanes whose scores are above the predefined thresh-
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old are treated as valid predictions to calculate F1 score.
Therefore, the predicted lanes with large segmentation-
based IoUs with GTs should have large classification scores.

To determine the direction of our approach, we firstly
conduct the preliminary oracle experiments by replacing the
confidence score, anchor parameters and length of each pre-
diction with the oracle values. By making the confidence
scores oracle, the F1 score goes to near-perfect 98.47%. The
result implies the correct lanes are already among the pre-
dictions, however the confidence scores need to be predicted
accurately representing the metric IoU. Fig. 1 (middle)
shows the comparison between all the predictions (blue) and
GTs (dashed orange). The color depth of the predictions is
proportional to their confidence scores. The left-most pre-
diction is the high-confidence false positive that misses the
ground truth, however there is a correct low-confidence pre-
diction near the GT which has a high IoU.

The next question is: how could the segmentation-based
IoU be implemented as a learning target? In the anchor-
based and row-based methods, the prediction and GT lanes
are both represented as sets of x coordinates at the fixed
rows. [28] introduces the LineIoU loss to measure the in-
tersection and union row by row and sum them up re-
spectively. However, this approach is not equivalent to
the segmentation-based IoU especially for the non-vertical,
tilted lanes (e.g. Fig. 1 bottom) or curves. We introduce
the novel IoU coined LaneIoU, which takes local lane an-
gles of the lanes into account. The LaneIoU integrates the
angle-aware intersection and union of each row to match the
segmentation-based IoU.

The anchor-based methods learn global lane probability
scores for each anchor. The dynamic sample assignment
employed in the recent object detector [4, 5] is also effec-
tive for lane detection training [28]. The IoU matrix and
the cost matrix between the predicted lanes and the GTs re-
spectively determine the number of anchors to assign for
each GT and which anchors to assign. The confidence tar-
gets of the assigned anchors are set to positive (one). There-
fore, sample assignment is responsible for learning the con-
fidence scores. We introduce LaneIoU to sample assign-
ment in order to bring the detector’s confidence scores close
to the segmentation-based IoU. LaneIoU dynamically de-
termines the number of anchors to assign and prioritizes the
anchors to assign as a cost function. Moreover, the loU loss
to regress the horizontal coordinates is also replaced by our
LaneIoU to appropriately penalize the predicted lanes at dif-
ferent tilt angles. The LaneIoU integration to CLRNet [28]
makes the detector’s training more straightforward, thus we
coin our method CLRerNet.

We showcase the effectiveness of LaneIoU through ex-
tensive experiments on CULane and CurveLanes and report
the state-of-the-art results on both datasets. Importantly, for
a reliable and fair benchmark, we employ the average score

of five models for each experiment condition, while prior
work shows a score of a single model. Moreover, the F1
metric employed in the lane detection evaluation is utterly
sensitive to the detector’s lane confidence threshold, thus we
determine the threshold utilizing the 5-fold cross validation
on the train split.

Our contributions in this paper are threefold:

• Clearer focus: Through preliminary oracle experi-
ments, we show that correct lane positions are al-
ready among the predictions of an existing detector,
and the confidence scores that represent intersection-
over-union (IoU) with ground truths are the most ef-
fective to improve performance.

• Clearer training method: As a lane similarity func-
tion, we leverage LaneIoU which well correlates with
the evaluation metric and integrate it into training as a
sample assignment cost and regression target.

• Clearer benchmarking: Multi-model evaluation and
cross-validation-based score thresholding are em-
ployed for fair benchmark. The effectiveness and gen-
erality of LaneIoU is verified and CLRerNet achieves
state-of-the-art in the CULane and CurveLanes bench-
marks.

2. Related Work
2.1. Object detection

Training sample assignment. Sample assignment is the
major research focus in object detection. The proposals
from the detection head are assigned to the ground truth
samples. [8, 12, 13, 22] assign the GTs by calculating IoU
between the anchors on the feature map grid and GT boxes
statically. [4] introduces the optimal transfer assignment
(OTA) for object detector’s training sample assignment, that
dynamically assigns the prediction boxes to the GTs. [5]
simplifies OTA and realizes iteration-free assignment.
IoU functions. Several variants of IoU functions [23,29,30]
are proposed for accurate bounding box regression and fast
convergence. For example, the generalized IoU (GIoU) [23]
introduces the smallest convex hull of the boxes and makes
IoU differentiable even when the bounding boxes do not
overlap. Our LaneIoU is based on GIoU but newly enables
the IoU calculation between curves in the anchor-based and
row-based methods.

2.2. Lane detection

Lane detection paradigms can be grouped as
segmentation-based, keypoint-based, parametric, row-
based and anchor-based methods.
Segmentation-based methods. This line of work is the
bottom-up pixel-based estimation of lane existence proba-
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bility. SCNN [18] and RESA [27] employ a semantic seg-
mentation paradigm to classify the lane instances as sep-
arate classes on each pixel. The correspondence between
lane and class is determined by annotation thus not flexi-
ble (e.g. some lane position may belong to two classes).
The benchmark datasets [7, 18] employ pixel-level IoU to
compare predicted lanes with GTs, and are friendly to the
segmentation-based methods. However the methods do not
treat lanes as holistic instances and require post-processing
which is computationally costly. [19, 28] exploit the seg-
mentation task as the auxiliary loss only during training
time to improve the backbone network. We follow these
methods and adopt the auxiliary branch and loss.
Keypoint-based methods. Similar to human pose estima-
tion, the lane points are detected as keypoints and grouped
into lane instances afterwards. PINet [11] employs test-
time detachable stacked hourglass networks to learn key-
point probabilities and cluster the keypoints into the lane in-
stances. FOLOLane [21] also detects lanes as keypoints in-
spired by the bottom-up human pose detection method [1].
GANet [10] regresses the offsets of the detected keypoints
from the starting point of the corresponding lane instances.
This line of methods also requires post-process to group the
lane points into lane instances.
Parametric methods. In this line of work, a lane instance is
represented as a set of curve parameters. PolyLaneNet [25]
employs a curve representation using polynomial coeffi-
cients. LSTR [16] employs end-to-end transformer-based
lane parameter set detection. BSNet [2] chooses the quasi-
uniform b-spline curves and shows the highest F1 score
among this category. These methods achieve relatively fast
inference, however an error of one parameter holistically
affects the lane shape.
Row-based methods. UFLD [19] captures the global fea-
tures by flattening the feature map and learns row-wise lane
position classification. UFLDv2 [20] extends [19] to a row-
and column-wise lane representation to deal with the near-
horizontal lanes. CondLaneNet [15] learns a probability
heatmap of lane start points from where the dynamic con-
volution kernels are extracted. The dynamic convolution
is applied to the feature map, whereby the row-wise lane
point classification and x-coordinate regression are carried
out. LaneFormer [6] employs a transformer with row and
column attention to detect lane instances in an end-to-end
manner. Additionally vehicle detection results are fed to
the decoder to make the pipeline object-aware.
Anchor-based methods. The lane instance is represented
as a set of x-coordinates at the fixed rows. LaneATT [24]
employs lane anchors to learn the confidence score and lo-
cal x-coordinate displacement for each anchor. An anchor is
defined as a fixed angle and a start point. The training target
is assigned statically according to the horizontal distance
between each anchor to GTs. CLRNet [28] adopts learnable

anchor parameters (start point xa, ya and θa) and length l.
For sample assignment, the simplified optimal transport as-
signment [5] is employed to dynamically allocate the clos-
est predictions to each ground truth. Both methods pool
the feature map by the anchors and feed the extracted fea-
tures to the head network. The head network outputs the
classification and regression tensors for each anchor. This
paradigm corresponds to the 2-stage object detection meth-
ods such as [8, 13] The anchor-based methods are the de-
facto standard in terms of detection performance among the
five method types.

3. Methods
3.1. Network design and losses

The anchor-based methods [24,28] leverage the most ac-
curate but simple detection pipeline among the five types
described in Section 2. From the anchor-based methods we
employ the best-performing CLRNet [28] as a baseline. The
network schematic is shown in Fig. 2. The backbone net-
work (e.g. ResNet [9] and DLA [26]) and the up-sampling
network extract multi-level feature maps whose spatial di-
mensions are (1/8, 1/16, 1/32) of the input image. The ini-
tial anchors are formed from the Na learnable anchor pa-
rameters (xa, ya, θa) where (xa, ya) is the starting point and
θa the tilt of the anchor. The feature map is sampled along
each of them and fed to the convolution and fully-connected
(FC) layers. The classification logits c, anchor refinement
δxa, δya, δθa, length l and local x-coordinate refinement
δx tensors are output from the FC layers. The anchors re-
fined by δxa, δya and δθa re-sample the higher-resolution
feature map, and the procedure is repeated for three times.
The pooled features are interacted with the feature map via
cross-attention and are concatenated across different refine-
ment stages. The lane prediction is expressed as classifi-
cation (confidence) logits and a set of x-coodinates at Nrow

rows calculated from the final xa, ya, θa, l and δx. More de-
tails about the refinement mechanism can be found in [28].
During training, the predictions close to a GT are assigned
via dynamic assigner [5]. The assigned predictions are re-
gressed toward the corresponding GT and learned to be
classified as positives.

L = λ0Lreg + λ1Lcls + λ2Lseg + λ3LLaneIoU (1)

where Lreg is smooth-L1 loss to regress the anchor pa-
rameters (xa, ya, θa) and l, Lcls a focal loss [14] for
positive-or-negative anchor classification, Lseg an auxiliary
cross-entropy loss for per-pixel segmentation mask, and
LLaneIoU the newly introduced LaneIoU loss.

3.2. Oracle experiments

We conduct the preliminary oracle experiments to deter-
mine the direction of our approach. The prediction com-
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Figure 2. Network Schematic of CLRerNet.

ponents from the trained baseline model are replaced with
GTs partially to analyze how much room for improvement
each lane representation component has. Table 1 shows the
oracle experiment results. The baseline model (first row)
is CLRNet-DLA34 trained without the redundant frames.
The confidence threshold is set to 0.39 which is obtained
via cross-validation (see Subsection 4.1 and 4.2).

Next, we calculate the metric IoU between predictions
and GTs as the oracle confidence scores. For each predic-
tion, the maximum IoU among the GTs is employed as the
oracle score. In this case, the predicted lane coordinates are
not changed. The F150 jumps to 98.47 - the near-perfect
score (second row). The result suggests that the correct
lanes are already among the predictions, however the
confidence scores need to be predicted accurately repre-
senting the metric IoU.

The other components are the anchor parameters - xa,
ya, θa and length l that determine the lane coordinates. We
alter the anchor parameters and lane length by those of GTs
(third and fourth rows respectively). Although the row-wise
refinement δx is not changed, the oracle anchor parameters
improve F150 by 9 points. On the other hand, the oracle
length does not affect the performance significantly. The
results lead to the second suggestion that the anchor param-
eters (xa, ya, θa) are important in terms of lane localization.

We focus on the first finding and aim to learn high-
quality confidence scores by improving the lane similarity
function.

3.3. LaneIoU

The existing methods [15] and [28] exploit horizontal
distance and horizontal IoU as similarity functions respec-
tively. However, these definitions do not match the met-
ric IoU calculated with segmentation masks. For instance,
when the lanes are tilted, the horizontal distance corre-

confidence (xa, ya, θa) l F150

80.86
✓ 98.47

✓ 89.91
✓ 81.09

Table 1. Oracle experiment results.

positive 
overlap

union

lane A

lane B

negative 
overlap

wCLRNet

wours

wlane

LineIoU
(CLRNet)

LaneIoU
(ours)

Figure 3. Example of LineIoU [28] and LaneIoU calculations
between laneA and laneB. wlane, wCLRNet and wours within
the dashed rectangle stand for the lane width, the constant width
of [28] and our angle-aware width.

sponding to the certain metric-IoU is larger than that of
vertical lanes. To bridge the gap, we introduce a differen-
tiable local-angle-aware IoU definition, namely LaneIoU.
Fig. 3 shows an example of IoU calculation between two
tilted curves. We compare LineIoU [28] and LaneIoU on
the same lane instance pair. LineIoU applies a constant vir-
tual width regardless of the lane angle and the virtual lane
gets ’thin’ at the tilted part. In our LaneIoU, overlap and
union are calculated considering the tilt of the local lane
parts at each row. We define Ωpq as the set of y slices where
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both lanes p and q exist, and Ωp or Ωq where only one lane
exists. LaneIoU is calculated as:

LaneIoU =

∑H
i=0 Ii∑H
i=0 Ui

, (2)

where Ii and Ui are defined as:

Ii = min(xp
i +wp

i , x
q
i +wq

i )−max(xp
i −wp

i , x
q
i −wq

i ), (3)

Ui = max(xp
i +wp

i , x
q
i+wq

i )−min(xp
i −wp

i , x
q
i−wq

i ), (4)

when i ∈ Ωpq . The intersection of the lanes is positive when
the lanes are overlapped and negative otherwise.
If i /∈ Ωpq , Ii and Ui are calculated as follows:

Ii = 0, Ui = 2wk
i if k ∈ {p, q}, i ∈ Ωk, (5)

Ii = 0, Ui = 0 if i /∈ (Ωpq ∪ Ωp ∪ Ωq). (6)

The virtual lane widths wp
i and wq

i are calculated taking the
local angles into consideration:

wk
i =

wlane

2

√
(∆xk

i )
2 + (∆yki )

2

∆yki
, (7)

where k ∈ {p, q} and ∆xi and ∆yi stand for the local
changes of the lane point coordinates. Equation 7 com-
pensates the tilt variation of lanes and represents a general
row-wise lane IoU calculation. When the lanes are verti-
cal, wi equals to wlane/2 and gets larger as the lanes tilt.
wlane is the parameter which controls the strictness of the
IoU calculation. The CULane metric employs 30 pixels for
the resolution of (590, 1640).

In Fig. 4, LineIoU [28] and our LaneIoU are compared
by calculating correlation with the CULane metric. We re-
place each prediction’s confidence score with the LineIoU
or LaneIoU value and also calculate the metric IoU. The GT
with the largest IoU is chosen for each prediction. Clearly
our LaneIoU shows better correlation with the metric IoU
mainly as the result of eliminating the influence of lane an-
gles.

3.4. Sample assignment

The confidence scores are learned to be high if the anchor
is assigned as positive during training. We adopt LaneIoU
for sample assignment to bring the detector’s confidence
scores close to the segmentation-based IoU. [28] employs
the SimOTA assigner [5] to dynamically assign ki anchors
for each GT lane ti. The number of anchors ki is deter-
mined by calculating the sum of all the anchors’ positive
IoUs. We employ LaneIoU as:

ki =

m∑
j=1

LaneIoU(pj , ti), (8)

(a) (b)

Figure 4. Correlation between CULane metric IoU and (a)
LineIoU [28] and (b) LaneIoU (ours).

where m is the number of anchors and i = 0, 1, ..., n is
the index of n GT lanes. pj is a predicted lane and j =
0, 1, ...,m is the index of m predictions. ki is clipped to be
from 1 to kmax. The cost matrix determines the priority of
the assignment for each GT. In object detection, [5] adopts
the sum of bounding box IoU and classification costs. In
lane detection, CLRNet [28] utilizes the classification cost
and the lane similarity cost which consists of horizontal
distance, angle difference and start-point distance. How-
ever, the cost that directly represents the evaluation metric
is more straightforward for prioritizing predictions. We de-
fine the cost matrix as:

costji = −LaneIoUnorm(pj , ti) + λfclass(pj , ti), (9)

where λ is the parameter to balance the two costs and fclass
is the cost function for classification, such as a focal loss
[14]. LaneIoU is normalized from its minimum to max-
imum. The formulation (eq. 8 and 9) realizes dynamic
sample assignment of the proper number of anchors which
are prioritized according to the evaluation metric. In sum-
mary, compared with CLRNet, our CLRerNet introduces
LaneIoU as the dynamic-k assignment function, assignment
cost function and loss function to learn the high-quality con-
fidence scores that better correlate with the metric IoU.

4. Experiments
4.1. Datasets

The CULane dataset1 [18] is the de-facto standard lane
detection benchmark dataset which contains 88,880 train
frames, 9,675 validation frames, and 34,680 test frames
with lane point annotations. The test split has frame-based
scene annotations such as Normal, Crowded and Curve (see
Table 2). The CurveLanes2 [7] dataset contains the chal-
lenging curve scenes and consists of 100k train, 20k val and
30k test frames. We follow [15] and use the val split for
evaluation.

1https://xingangpan.github.io/projects/CULane.
html

2https://github.com/SoulmateB/CurveLanes
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Removing the redundant train data. The CULane dataset
includes a non-negligible amount of redundant frames
where the ego-vehicle is stationary and the lane annota-
tions do not change. We have found that overfitting to the
redundant frames can be avoided by simply removing the
frames whose average pixel value difference from the previ-
ous frame is below a threshold. The optimal threshold (=15)
is chosen empirically via validation as described in the sup-
plementary material. The remaining 55,698 (62.7%) frames
are utilized for training. The F1 score of CLRNet-DLA34
is improved from 80.30±0.05 to 80.86±0.06 (N = 5 each)
with the same 15-epoch training.

4.2. Training and evaluation

The models are implemented on PyTorch and MMDe-
tection [3], and are trained for 15 epochs with AdamW [17]
optimizer. The initial learning rate is 0.0006 and cosine de-
cay is applied. For CULane dataset, we crop the input im-
age below y = 270 and resize it to (800, 320) pixels. Hor-
izontal flip, random brightness and contrast, random HSV
modulation, motion and median blur and random affine
modulations are adopted as data augmentation, following
[28]. At the test time only the crop and resize are adopted
and no test-time augmentations are applied. In CLRerNet,
LaneIoU is introduced as a loss function, dynamic-k calcu-
lation and assignment loss function. wlane is set to 15/800
for loss and dynamic-k, and 60/800 for cost to balance with
the classification cost. The loss weights in eq. 1 are the
same as [28] except for λ3 which is set to 4. We addition-
ally benchmark a CLRerNet-DLA34 model trained for 60
epochs applying exponential moving average (EMA). The
learning rate decay is not applied and the momentum of
EMA is set to 0.0001.

To validate the generality of our method, we add the
LaneIoU-based sample assignment to LaneATT [24]. Origi-
nally, LaneATT assigns non-learnable static anchors to GTs
by horizontal distance thresholding. We prioritize the an-
chors by calculating LaneIoU between predicted lanes and
GTs to assign the positive-confidence targets. More details
are described in the supplementary material.

For CurveLanes [7], we follow the training setting of
[15] where the input resolution is (800, 320). To exploit
the auxiliary segmentation loss, we draw the segmentation
mask along all the lane labels with width of 30 pixels. Dif-
ferent from [18], we set all the lane masks as class one
(foreground). Since the test annotations are not available,
we evaluate our method on the validation split. We employ
the evaluation resolution of (224, 224) and line width of 5
following [15]. wlane is set to 5/224 for loss and dynamic-k
calculation and 20/224 for cost. λ for assignment cost cal-
culation (eq. 9) is set to 2.5.
Evaluation metric. We employ F1 score [18] as an eval-
uation metric. An IoU matrix between predicted lanes and

LaneATT CLRNet CLRerNet (ours)

Figure 5. Qualitative results comparing LaneATT, CLRNet and
our CLRerNet†⋆. Predictions and GTs are shown in blue and or-
ange respectively. Predictions with insufficient confidence score
are shown as blue circles.

ground-truths is calculated by comparing the segmentation
masks drawn with a width of 30 pixels (Fig. 1 bottom).
Based on the IoU matrix, one-to-one matching is calculated
using linear sum assignment and the prediction-GT pairs
with IoU over tIoU are considered as true positives (TP ).
Unmatched predictions and GTs are counted as false posi-
tives (FP ) and false negatives (FN ) respectively. We em-
ploy two tIoU values for IoU calculation: 0.5 and 0.75. The
F1 score is calculated as:

F1 =
2× Precision×Recall

Precision+Recall
. (10)

Cross validation and test. The F1 metric is sensitive to the
threshold of detection confidence score. We perform 5-fold
cross validation on the train split, by randomly dividing the
train videos into five groups. The F1 score of each thresh-
old is averaged across the 5-fold results, and the optimal
threshold is determined by taking the argmax of it.

Moreover, we find that the F1 score deviation of the mod-
els trained with different random seeds is not negligible. For
instance, the F1 score of the CLRNet-DLA34 ranges from
the minimum of 80.20 to the maximum of 80.34 (N = 5).
For a more reliable and fairer benchmark on the test split,
we train five models with different random seeds for each
condition and calculate the mean and standard deviation of
the metrics, on which the confidence thresholds obtained
by five-fold cross validation is applied. To the best of our
knowledge, we are the first to conduct the above benchmark
protocol in lane detection. As for the CurveLanes dataset
where the test annotations are not available, we report the
maximum F1 score on the validation split with respect to
the confidence thresholds.

4.3. CULane benchmark results

The benchmark results on the CULane test set are shown
in Table 2. The rows below the double horizontal line are
our experiment results. For each condition (row), we show
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Method Backbone F150 F175 Normal Crowd Dazzle Shadow Noline Arrow Curve Cross Night GFLOPs FPS
SCNN VGG16 71.60 39.84 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10 218.6 50

LaneATT Res18 75.13 51.29 91.17 72.71 65.82 68.03 49.13 87.82 63.75 1020 68.58 9.3 211
LaneATT Res34 76.68 54.34 92.14 75.03 66.47 78.15 49.39 88.38 67.72 1330 70.72 18.0 170

CondLane [15] Res18 78.14 57.42 92.87 75.79 70.72 80.01 52.39 89.37 72.40 1364 73.23 10.2 348
CondLane [15] Res34 78.74 59.39 93.38 77.14 71.17 79.93 51.85 89.89 73.88 1387 73.92 19.6 237
CondLane [15] Res101 79.48 61.23 93.47 77.44 70.93 80.91 54.13 90.16 75.21 1201 74.80 44.8 97
CLRNet [28] Res34 79.73 62.11 93.49 78.06 74.57 79.92 54.01 90.59 72.77 1216 75.02 21.5 204
CLRNet [28] Res101 80.13 62.96 93.85 78.78 72.49 82.33 54.50 89.79. 75.57 1262 75.51 42.9 94
CLRNet [28] DLA34 80.47 62.78 93.73 79.59 75.30 82.51 54.58 90.62 74.13 1155 75.37 18.4 185

LaneATT† Res34 77.51±0.10 56.78 92.48 75.47 68.09 73.21 50.96 88.72 68.18 1054 72.58 18.0 170
CLRNet† Res34 80.54±0.12 63.65 93.85 79.22 73.32 82.50 55.26 90.84 74.06 1106 75.92 21.5 204
CLRNet† Res101 80.67±0.06 64.35 93.95 79.60 72.91 81.58 55.76 90.42 74.06 1166 76.01 42.9 94
CLRNet† DLA34 80.86±0.06 64.05 94.03 79.78 75.23 81.94 56.02 90.67 74.57 1184 76.40 18.4 185

LaneATT+† Res34 78.19±0.06 56.96 92.60 76.42 69.12 77.59 52.01 88.75 64.49 974 72.78 18.0 153
CLRerNet† Res34 80.76±0.13 63.77 93.93 79.51 73.88 83.16 55.55 90.87 74.45 1088 76.02 21.5 204
CLRerNet† Res101 80.91±0.10 64.30 93.91 80.03 72.98 82.92 55.73 90.53 73.83 1113 76.13 42.9 94
CLRerNet† DLA34 81.12±0.04 64.07 94.02 80.20 74.41 83.71 56.27 90.39 74.67 1161 76.53 18.4 185

CLRerNet†⋆ DLA34 81.43±0.14 65.06 94.36 80.62 75.23 84.35 57.31 91.17 79.11 1540 76.92 18.4 185

Table 2. Evaluation results on the CULane test set. Our experiments are below the double horizontal line.

the averaged metric values of five models trained with dif-
ferent seeds. The confidence threshold obtained from 5-
fold cross-validation is employed. The F150 scores are
shown in the test scene columns except for the cross met-
ric where the number of false positives is shown. All the
FPS results on Table 2 are measured with a GeForce RTX
3090 GPU. CLRNet† and LaneATT† are the baseline model
trained with our implementation. Our method CLRerNet†
employs LaneIoU for dynamic-k calculation, assignment
cost and loss functions. CLRerNet†⋆ is the boosted version
of CLRerNet† which is trained for 60 epochs with EMA.

With introducing LaneIoU, CLRerNet† with DLA34
outperforms CLRNet† by 0.26% in F150. Moreover, the
boosted model CLRerNet†⋆ reaches F150 = 81.43% in
average, enjoying the state-of-the-art performance surpass-
ing the previous methods (F150 = 80.47%, single ex-
periment of CLRNet+DLA34) by a large margin. The
performance improvement by LaneIoU is also observed
on the models with other backbones - 80.54% to 80.76%
(+0.22%) with ResNet34 and 80.67% to 80.91% (+0.24%)
with ResNet101. LaneATT+† is improved by the LaneIoU-
based assignment by 0.68%, validating the generality of our
method. CLRerNet does not increase test-time computa-
tional complexity and shows the same GFLOPs and FPS as
CLRNet.

Qualitative results on the CULane test set are shown in
Fig. 5. Our CLRerNet†⋆ is capable of detecting the lanes in
the challenging scenes. The right-most tilted lane of the first
image (top) and the left-most lane of the second image (bot-
tom) are detected only by CLRerNet with high confidence
scores. The examples qualitatively suggest that CLRerNet
is able to give more correct scores to predictions, which is
analyzed in Subsection 4.5.

Method F1 Precision Recall GFLOPs
CondLane-S [15] 85.09 87.75 82.58 10.3
CondLane-M [15] 85.92 88.29 83.68 19.7
CondLane-L [15] 86.10 88.98 83.41 44.9

CLRNet-DLA34 [28] 86.10±0.08 91.40 81.39 18.4
CLRerNet-DLA34 86.47±0.07 91.66 81.83 18.4

Table 3. Comparison between methods on the CurveLanes val set.
Our experiments are below the double horizontal line.

4.4. CurveLanes validation results

The validation results on CurveLanes are shown in Ta-
ble 3. The default CLRNet [28] with the DLA34 back-
bone shows the same F1 score as CondLane-L [15] with
lower computation cost. Note that our results are the aver-
age of five training trials. The confidence threshold is set to
the empirically optimal value 0.44. CLRerNet significantly
outperforms the baseline by 0.37%, achieving the new state-
of-the-art 86.47%.

4.5. Ablation study

We corroborate the effectiveness of our method by ablat-
ing LaneIoU from dynamic-k calculation, assignment cost
and loss function. CLRerNet with DLA34 backbone is
trained in each condition with the redundant train data omit-
ted. We follow the benchmark protocol described in sub-
section 4.2, thus ten models (5 seeds + 5 folds) are trained
and validated for each condition. The results in Table 4
show that the performance degrades by replacing LaneIoU
with [28] for dynamic-k determination, cost function and
loss function respectively. Determining the number of as-
signments each GT lane by LaneIoU mitigates the inhomo-
geneity caused by lane tilt variation. The LaneIoU-based
assignment cost (eq. 9) prioritizes the predicted lanes which
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dynamic-k cost loss F150 F175
[28] [28] [28] 80.86±0.06 64.05±0.17

LaneIoU [28] [28] 80.98±0.07 64.17±0.17
LaneIoU LaneIoU [28] 81.07±0.03 64.22±0.26
LaneIoU LaneIoU LaneIoU 81.12±0.05 64.28±0.15

Table 4. Ablation study by replacing LaneIoU (ours) with [28].

have higher metric IoU with the GTs, leading to more ac-
curate confidence learning as motivated in subsection 3.2.
Replacing LineIoU loss with LaneIoU loss also mitigates
the tilt dependency of the regression penalty.

In summary, F1 score improvement solely by LaneIoU is
+0.26%. On the other hand, the scores with Res34, 101 and
DLA34 backbones are 80.54, 80.67 and 80.86 % (see Table
2) where each improvement is less than 0.20%. Res101 has
2× GFLOPs than Res34 but shows only 0.13% F1 differ-
ence. Therefore, LaneIoU’s improvement is twice as signif-
icant as the double-GFLOPs difference.

4.6. Analysis

Fig. 6 shows the comparison between CLRerNet and
CLRNet in terms of anchor assignment numbers per GT in
different angle ranges. The assignment numbers are accu-
mulated during the training and averaged. The angles are
calculated using GT lanes in (800, 320) resolution and 90◦

corresponds to the vertical lane. CLRNet wrongly assigns
more anchors to vertical GTs and few for near-horizontal
ones (by underestimating IoU), making training suboptimal.
LaneIoU mitigates the issue, homogeneously assigning an-
chors and distributing losses to diverse-angle GTs, espe-
cially in the angle ranges of 20◦ to 60◦ and 120◦ to 160◦

where the GTs typically exist.
The assigned anchor’s confidence target is set to posi-

tive prioritized by LaneIoU. Therefore, the confidence is
trained more homogeneously across different lane angles.
As can be seen in Fig. 7, the l1 error between the predicted
confidence scores and the metric IoU values is improved in
CLRerNet in the non-vertical angle ranges, corroborating
the effectiveness of LaneIoU.

4.7. Limitations

Although CLRerNet shows significant improvement in
performance, there still is a gap between the best CLRerNet
model’s performance (81.43%) and the oracle-confidence
case (98.47%). The dataset-oriented issues including label
fluctuation and data imbalance are considered to be the part
of the gap. As can be found in Table 2, the Noline test cate-
gory is the most challenging as there are no visual markings
on the road. Such cases are prone to label fluctuation and
inconsistency. Likewise, data imbalance such as stationary
scenes greatly affects the model training. As is mentioned
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Figure 6. The average number of assignments in different angle
ranges.
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Figure 7. The average l1 error between confidence score and met-
ric IoU in different angle ranges.

in Subsection 4.1, we find that mitigating the data imbal-
ance significantly improves the performance.

5. Conclusion
We disentangle the lane prediction components by the

oracle experiment and demonstrate the importance of high-
quality confidence scores for more accurate lane detection.
To make confidence scores represent the metric IoU, the
novel LaneIoU is proposed and integrated into the anchor-
based lane detection baselines. A novel detector coined
CLRerNet is developed by introducing LaneIoU as the sam-
ple assignment and loss functions. The statistical and fair
benchmark protocol is employed utilizing five-seed mod-
els and five-fold cross validation. CLRerNet achieves the
state-of-the-art performance on the challenging CULane
and CurveLanes datasets significantly surpassing the base-
line. We believe our oracle experiments, LaneIoU-based
training and benchmark protocol bring a clearer view of
lane detection to the community.
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