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Abstract

Detecting diffusion-generated deepfake images remains
an open problem. Current detection methods fail against
an adversary who adds imperceptible adversarial pertur-
bations to the deepfake to evade detection. In this work,
we propose Disjoint Diffusion Deepfake Detection (D4), a
deepfake detector designed to improve black-box adversar-
ial robustness beyond de facto solutions such as adversar-
ial training. D4 uses an ensemble of models over disjoint
subsets of the frequency spectrum to significantly improve
adversarial robustness. Our key insight is to leverage a re-
dundancy in the frequency domain and apply a saliency par-
titioning technique to disjointly distribute frequency com-
ponents across multiple models. We formally prove that
these disjoint ensembles lead to a reduction in the dimen-
sionality of the input subspace where adversarial deepfakes
lie, thereby making adversarial deepfakes harder to find
for black-box attacks. We then empirically validate the D4
method against several black-box attacks and find that D4
significantly outperforms existing state-of-the-art defenses
applied to diffusion-generated deepfake detection. We also
demonstrate that D4 provides robustness against adversar-
ial deepfakes from unseen data distributions as well as un-
seen generative techniques.

1. Introduction

Significant advances in deep learning are responsible for
the advent of “deepfakes”, which can be misused by bad ac-
tors for malicious purposes. Deepfakes broadly refer to dig-
ital media that has been synthetically generated or modified
by deep neural networks (DNNs). Modern DNNs such as
diffusion models [16,27,42,54,59,64] and generative adver-
sarial networks (GANSs) [0, 13,24,35,36,53,69] are now ca-
pable of synthesizing hyper-realistic deepfakes, which can
then be used to craft fake social media profiles [49], gener-
ate pornography [ 4], spread political propaganda, and ma-
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Figure 1. Under the non-adversarial setting, the deepfake detector
correctly classifies the image produced by Stable Diffusion [60]
on the text prompt “a photograph of an astronaut riding a horse.”
as fake. However, one can flip the detector’s prediction by adding
imperceptible adversarial perturbations to the deepfake.
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nipulate elections.

The deepfake detection problem asks the defender to
classify a given image as deepfake or real. While re-
cent work has made remarkable efforts towards solving
the deepfake detection problem, many of these detectors
are rendered ineffective by adversarial examples (Fig. 1).
Specifically, these state-of-the-art detectors often leverage
DNNs, and Carlini et al. [7] (amongst others) have shown
that such DNNs are vulnerable — the attacker can simply
use adversarial perturbation techniques to evade detection
[21,29,41,61,63]. Recent work has shown that these “ad-
versarial deepfakes” can even be crafted in a black-box set-
ting, where the attacker only has query access to the detec-
tor [23,30,31,66]. Defending against adversarial examples,
in general, has been shown to be a difficult task [4], and is a
critical problem in the deepfake detection setting.

Our key intuition to mitigate this problem is to utilize re-
dundant information in the frequency feature space of deep-
fakes to generate disjoint ensembles for adversarial deep-
fake detection. Specifically, we show in Sec. 3.1 that we
can achieve good detection performance with only a subset
of the features, particularly in the frequency domain. This
enables us to build an ensemble of performant classifiers,
each using a disjoint set of frequencies. In contrast to tra-
ditional ensembles (where each model shares the same set
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of frequencies), a key advantage of this design is that non-
robust frequencies are partitioned across all the models in
the ensemble (see Sec. 3.2). Thus, an attacker is no longer
able to perturb a single non-robust frequency to evade all
models — rather, they must find perturbations to evade mul-
tiple sets of disjoint frequencies. D4 thus aims to thwart the
attacker’s generation of adversarial deepfakes.
To summarize, our key contributions are as follows:

1. We propose D4, a deepfake detection framework de-
signed to be adversarially robust. D4 builds an ensem-
ble of models that use disjoint partitions of the input
features. This is achieved by leveraging redundancy in
the feature space. D4 achieves robustness while still
maintaining natural deepfake detection average preci-
sion scores as high as 93%. (see Sec. 4 for details).

2. Extending the theoretical results by Tramer et al. [65]
on dimensionality of adversarial subspaces, we prove
new bounds on the maximum number of adversarial
directions that can be found under an ensemble with
disjoint inputs. Our bounds are tight for both the
lo and /., perturbation norms (Lemmas 3.1 and 3.2
in Sec. 3.3) and indicate that D4 reduces the dimen-
sion of the adversarial subspace, i.e., there are simply
fewer adversarial examples to be found.

3. We evaluate D4 against query-based black-box at-
tacks, as well as frequency and post-processing at-
tacks. Across a variety of diffusion-generated deep-
fake images, we find that D4 significantly outperforms
state-of-the-art defenses such as the recently proposed
EnsembleDet [18, 22, 67], suggesting that D4 indeed
provides a reduction in dimension of the adversarial
subspace. For example, as indicated by our evaluation
in Sec. 4, D4 reduces the attack success rate to 28%,
whereas baselines incur attack success rates of more
than 90%. These improvements also extend to unseen
image domains and deepfake generation models.

2. Background and Related Work

Notation. We consider a distribution D over X x ), where
X C RY s the input space and ) C 7€ is the finite class-
label space. We denote vectors in boldface (e.g., x). We
denote a trained classifier as F : X — ) (the classi-
fier is usually parameterized by its weights w, omitted for
brevity). We denote the loss function as £(x,y). An en-
semble classifier is a function M7, 7, . 7.,): & — VY
that combines the logit outputs [y, ls, ..., [, of multiple clas-
sifiers Fi, Fo, ..., F, with a voting aggregation function
A:R"™¢ = ).

For classifier 7 and input-label pair (x, y), an adversar-
ial example is a perturbed input x’ such that (1) x’ is mis-
classified, i.e., F(x') # y and (2) ||x —x'|| is within a small

Figure 2. Diffusion models can generate hyper-realistic images
entirely from scratch. From left-to-right, images generated by the
DDIM, LDM, and PNDM diffusion models respectively.

e ball, where ||.|| is a given norm. The value of € is chosen
to be small so that the perturbation is imperceptible.
Deepfake Image Generation. In this work, we focus on
detection of deepfake images that are generated entirely
from scratch using a deep generative model (see Fig. 2 for
examples). Two prominent techniques that have achieved
state-of-the-art for such generation are GANs [24] and dif-
fusion models [27]. GANs comprise two DNNs: a gen-
erator and a discriminator. The generator synthesizes im-
ages, while the discriminator attempts to distinguish be-
tween real and deepfake samples. Through this adversarial
training procedure, GANs learn to generate increasingly re-
alistic and high-quality outputs, and have achieved remark-
able success [56]. However, GANs have recently been su-
perceded by diffusion models. These models iteratively add
noise to data samples and then remove it, thereby learning to
generate images from randomly sampled noise. Diffusion
models have now also achieved new state-of-the-art FID
scores for image generation benchmarks [16]. Given the
quality of images generated, detection of diffusion model
deepfakes poses a pressing concern.

Deepfake Image Detection. The research community
has made rapid progress towards detecting deepfake im-
ages. Some efforts propose classification DNNs that op-
erate directly on pixel features [47, 48, 62, 67]. Others
have instead trained DNNs using features extracted from
the deepfakes, i.e., co-occurrence matrices [5 1], color-space
anomalies [50], convolutional traces [25], texture represen-
tations [43], pixel-patches [9], or more recently using neural
features from foundation models such as CLIP [55].

One particular line of work that has shown great promise
for deepfake detection is leveraging frequency features.
Specifically, Frank et al. [22] proposed the idea of detecting
deepfakes with the Discrete Cosine Transform (DCT) as a
pre-processing transform before the DNN. Similar work has
also achieved remarkable performance using frequency fea-
tures — [17,74], and more recent efforts have emphasized
their utility in detecting deepfakes from both GANs and dif-
fusion models [58]. D4 also leverages frequency features,
but through a unique disjoint ensembling approach.
Adversarial Deepfakes. Unfortunately, regardless of the
chosen feature space, the above detectors have been ren-
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dered ineffective in adversarial settings. Specifically, Car-
lini et al. [7] showed that DNN detectors are vulnerable to
adversarial examples — an adversary can add impercepti-
ble adversarial perturbations to a deepfake that evade such
detectors, rendering them ineffective. Others have corrobo-
rated this observation [21,23,29-31,41,46,52,63,66].

An adversary can construct these “adversarial deep-
fakes” in either a white-box setting (with complete knowl-
edge of the detector’s weights and parameters), or black-
box setting (with only query access to the detector). In this
work, we focus on the black-box setting. The DNN mod-
els of deepfake detectors in the real world are often hidden
from the users and likely to be black-box services, such as
those already offered by Intel [33], Deepware [1], Reality
Defender [2] and Sensity Al [3]. These services are typi-
cally available through web-based platforms or through API
access. Moreover, defending against white-box attacks is a
challenging open problem on all vision tasks. We leave de-
fense in the white-box setting to future work.

Adversarial Deepfake Detection. Existing defenses for
adversarial deepfakes can be broadly classified into (a)
training time defenses (which adjust the training process),
and (b) inference-time defenses.

(a) Training time. The original training time defense is ad-
versarial training, in which the model is trained on adver-
sarial examples generated during training [44]. However,
Carlini et al. [7] suggest that adversarial training alone is
unlikely to achieve significant improvement in robustness
in the difficult deepfake detection setting (confirmed by our
experiments in Sec. 4.2).

Instead of adversarial training, recent work has also pro-
posed using an ensemble of models — in principle, the ad-
versary is then forced to attack multiple models. However,
He et al. [26] have shown that arbitrarily ensembling mod-
els does not necessarily lead to more robustness. Prior work
suggests that each model in an ensemble tends to learn the
same non-robust features, i.e., an adversary is able to per-
turb the same features to evade all models [32].

Most recently, Dutta et al. [18] and Khan et al. [37]
proposed EnsembleDet and ARDD respectively as ensem-
ble defenses against adversarial deepfakes. Both defenses
ensemble multiple different DNN architectures, and posit
that the different architectures will learn different features,
thereby providing improved robustness. Devasthale et
al. [15] take this approach one step further and also adver-
sarially train each model in the ensemble.

Note that while D4 is also an ensemble-based detector, it
is fundamentally different than existing approaches since it
does not require different architectures to avoid learning the
same features — we instead leverage artifact redundancy
to design frequency-partitioned ensembles (see Sec. 3 for
a more detailed explanation). Furthermore, D4’s partition-
ing approach to achieve disjoint ensembles is novel, and it

Ensemble
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Figure 3. The processing pipeline of D4. It partitions the DCT
spectrum of an image into disjoint partitions using a saliency-
based approach. Each frequency partition is fed to a separate
model that is adversarially trained. A voting mechanism over the
ensemble decides the output.
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offers theoretical and empirical advantages where such fea-
ture redundancy is available, e.g., deepfakes, allowing it to
outperform prior work (see Sec. 4).
(b) Inference time. Another class of defenses focuses on re-
moving the effect of the adversarial perturbation without
any changes made to the underlying detection technique —
unfortunately, these approaches are computationally inten-
sive, e.g., upto 30 minutes per image [23,34], in comparison
to no additional overhead in D4 (see Sec. 5). Nevertheless,
both approaches are complementary in that pre-processing
could be combined with training-time defenses such as D4.
Finally, we note that there are other inference-time de-
fenses that are not specific to deepfakes. For example, state-
ful defenses [39] were proposed to defend against black-box
adversarial examples, but have been recently shown to be
vulnerable [19,28]. Another group of defenses post-process
the detector’s response by manipulating the detector’s con-
fidence scores [ 1,57], but these do not work against hard-
label black-box attacks.

3. Our Approach

We now present D4 (Fig. 3), a deepfake detection frame-
work that leverages an ensemble of disjoint frequency mod-
els to achieve robust detection of diffusion-generated deep-
fake images. Sec. 3.1 presents our observation of redundant
information in the frequency space of deepfakes. Sec. 3.2
details how redundancy allows frequencies to be parti-
tioned between multiple models for robust ensembling and
explains our exact frequency partitioning schemes. Fi-
nally, Sec. 3.3 provides theoretical insight into why D4 im-
proves adversarial robustness.

3.1. Redundant Information in Deepfake Image
Spectra

As discussed in Sec. 2, ensembles are a promising ap-
proach to adversarial robustness, so long as perturbing the
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Figure 4. Average Precision (AP) values of a single CNN classifier
trained on a fixed subset (randomly selected) of the input features.
Redundancy in frequency spectra permits good deepfake detection
even when using ~ 6% of the components (see black line).

same set of features does not simultaneously evade the in-
dividual models. We propose designing an ensemble that
avoids this shortcoming by disjointly partitioning the input
feature space amongst individual models.

As mentioned earlier, the frequency spectrum of im-
ages facilitates deepfake detection because generation tech-
niques leave discriminating artifacts that are more promi-
nent in the frequency space. We additionally observe that
these artifacts are spread throughout the frequency feature
space, and they are more uniformly spread as compared to
pixel space. We confirm this in Fig. 4, which plots the per-
formance of a simple convolutional classifier ' on an in-
creasingly smaller random subset of the input features.

Our first key insight is thus that disjoint partitioning is
feasible for deepfake detection. Specifically, we observe a
“redundancy” in frequency-space artifacts — signals rele-
vant for deepfake detection’ are distributed throughout the
frequency spectrum. This observation is best exemplified
by the black line in Fig. 4, which plots the deepfake de-
tection performance using increasingly small subsets of the
spectrum using the same classifier. Using as few as ~ 6%
of the frequency components yields good deepfake detec-
tion performance. We emphasize that this does not hold for
subsets of pixels (red line), as signals for detection are not
well-distributed in the RGB space. Overall, these findings
suggest that the frequency-space contains plenty of redun-
dancy, which can potentially be leveraged to design a robust
ensemble.

3.2. Leveraging Redundancy to Build a Robust En-
semble

Using the observations from Sec. 3.1, one can craft a
robust ensemble by partitioning the frequency components
amongst multiple detector models, without hurting natural

I'We use the same architecture as Frank ez al. [22]

2Frank et al. [22] attribute their presence to the upsampling process
in generative models. Existing work proposes detectors that leverage the
entire frequency spectrum for deepfake detection.

detection performance. Fig. 3 visualizes this partitioning as
part of our ensembling pipeline. Specifically, for each in-
dividual model we mask (i.e., zero out) the frequencies not
used. For example, consider an ensemble of two such “dis-
joint” models F4 and F'p, with the full-spectrum frequency
feature vector f = [fi; f2]. Then, the input feature vec-
tor to Fa is [f1;0] and to Fg is [0; f2]. Since the input
feature space (frequencies) is not shared amongst the indi-
vidual models, the adversary cannot simply attack the en-
semble by targeting common frequencies.

Furthermore, we note that choice of partitioning scheme,
i.e., how the frequencies are partitioned plays an important
role in robustness of the ensemble. Specifically, the chosen
scheme should aim to design all models as “equals” — if
some models are less robust than others, then the adversary
can target them to overturn the ensemble’s decision.
Saliency Partitioning. While signals for deepfake detec-
tion are distributed throughout the spectrum, there still ex-
ists an adversarial saliency ordering of these frequencies
that determines their robustness for the deepfake detection
task. For an ensemble of size n, our saliency partition-
ing technique is aimed at ensuring each model receives a
fair proportion of salient frequencies. To this end, we fol-
low [8] and [20] to compute saliency values for all frequen-
cies. This is achieved by adversarially perturbing deepfake
x to x 4 0%, where 0” is the perturbation computed with the
Carlini-Wagner /5 attack for 1000 steps. Then, we compute
saliency s, for the i*" frequency as

si = Eocx V(2 +6%); - 07 €]

where subscript i denotes the i*” component. Intuitively,

higher gradients and larger perturbation magnitudes imply
larger saliencies. Frequencies are then ordered by their
saliencies, and distributed in a round-robin fashion amongst
the models.

3.3. Adversarial Subspace of Disjoint Ensembles

Given the partitioning approach in Sec. 3.2, we now
show that an ensemble of such disjoint frequency models
increases robustness against adversarial examples by re-
ducing the dimension of the adversarial subspace. For a
single model F and input x, Tramer et al. [65] approxi-
mate the k—dimensional adversarial subspace as the span
of orthogonal perturbations ry,--- ,rx € R? such that
riTg > 7V 1<i<kwhereg = ViLr(x,y), LFis
the loss function used to train F, and < is the increase in
loss sufficient to cause a mis-classification. For perturba-
tions satisfying the ¢y-norm, i.e. ||rij|ls < eV 1 < i <k,
the adversarial dimension & is bounded by M (tight). In
what follows, we extend this result and provide bounds for
dimensionality of the shared adversarial subspace between
n disjoint models. We provide tight bounds for both ¢5 and
£+ norms in Lemma 3.1 and Lemma 3.2 respectively (with
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detailed proofs in the supplementary materials). We con-
sider these bounds for two voting mechanisms: (1) major-
ity, where the ensemble outputs deepfake if at least [n/2]
classifiers predict deepfake, and (2) at-least-one, where the
classifier outputs deepfake if at least one classifier predicts
deepfake, otherwise it outputs real.

Lemma 3.1. Given n disjoint models, Fi, ..., Fy, hav-
ing gradients g1,--- ,gn € R? for input-label pair (x,y)
(where g5 = VLF,(X,y)), the maximum number k of or-
thogonal vectors r1,ra, - -+ 1. € R? satisfying ||ri||2 < €
and, viTg; > ~y; for all 1 < j < n (at-least-one voting) or
for at least | 5] models (majority voting), for all 1 < i < k
is given by:

k = min | d,

2 n

€
nizZngH%
(57 =

E 7]) @
j=1
(at-least-one voting)
k <min | d, | max ZHgH
>~ ) 16 2 J 112
IKI—fJ Z 7] JeK (3)
(majority voting)
k>min | d, | min 5 > llesll3
IK|=[31 ( Z fyj JeK 4)
(majority voting)
Lemma 3.2. Given n disjoint models, Fi, ..., Fy, hav-

ing gradients g1,--- ,gn € R? for input-label pair (x,y)
(where g5 = VxLF,(X,y)), the maximum number k of or-
thogonal vectorsry,ra, - -+ , ). € RY satisfying ||ri||eo < €
and E[ngri] > v forall 1 < j < n (at-least-one vot-
ing) or for at least 5] models (majority voting), for all
1<i<k

2 2 2 2
k = min (d, Lmin (6 HzngHl,..., ¢ |2gn2|1)J)
neyg ney; )

(at-least-one voting)

2 2 2 2
= i (0o (182 )
neyq neyy (6)

(majority voting)

Implications. If all n disjoint models in the ensemble are
“near-identical” (as expected per our saliency partitioning
scheme), i.e., ||g1|3 ~ -+ ~ ||gn|[2 and 71 ~ -+ = v,
then Lemma 3.1 for at-least-one voting reduces to k =~

min (d, {%J ) This implies that an ensemble of n

1

disjoint models offers reduction in dimensionality of the ad-
versarial subspace by a factor of n compared to any individ-
ual constituent disjoint model. Similar interpretation holds
for Lemma 3.2, where reductions are now by a factor of n2.
Next, in Sec. 4, we empirically demonstrate that this reduc-
tion in dimension of adversarial subspace leads to improved
performance against black-box adversarial examples.

4. Experimental Evaluation

Our experiments broadly aim to answer the following
questions:
Q1. How robust are D4 ensembles against black-box at-
tackers, and how does D4 raise the attacker’s cost of creat-
ing adversarial deepfakes?
Q2. Does D4’s robustness hold for deepfakes from dif-
ferent diffusion models? How well does D4 generalize to
deepfakes from unseen image domains, diffusion models,
or even different generative architectures, i.e., GANs?
Q3. How does D4 fare against traditional post-processing,
and more frequency-based attacks?

In the following sections, we address these questions by
detailing our setup and experiments.

4.1. Experimental Setup

We adopt the following settings to evaluate D4 for de-
tecting deepfakes and adversarial deepfakes.
Datasets and Pre-processing. @ We perform our ex-
periments using real images from the LSUN Bedroom
dataset [72], and the CelebaHQ dataset [35]. For each
of these datasets, we obtain deepfake images from the
LDM [59], DDIM [64], and PNDM [42] diffusion mod-
els. Deepfakes for bedroom are sourced from those gen-
erated by prior work [58], and we generate deepfakes for
CelebaHQ ourselves using models from the HuggingFace
public model repository [71]. For our generalization evalu-
ation with GANs, we source ProGAN [35], StyleGAN [36],
and Diff-StyleGAN2 [69] images again from [58]. For any
given diffusion model and dataset, the training set com-
prises 39k training images for each class, 1k validation, and
10k testing (as per [58]). All images are resized to 256x256,
and then center-cropped to 224x224.
Baselines. We implement five baselines to evaluate D4.
The first two baselines are the pixel-space ensemble de-
fenses EnsembleDet [ 18] and ARDD [37] proposed by prior
work. EnsembleDet comprises three models with the Ef-
ficientNet, XCeption, and Resnet50 architectures. ARDD
is similar, but instead comprises the VGG16, InceptionV3,
and Xception architectures. Our third baseline ARDD-AT is
also from prior work [15], which changes the architectures
of ARDD to VGG19, Vision Transformer, Wide-ResNet,
and also adversarially trains each individual model on deep-
fake images only. Our fourth baseline is simply an adver-
sarially trained version of a full-spectrum frequency space
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1.0 A
Detector No Attack Attack (ASR) z o5 ] r
(AP) SurFree HSJA  QEBA  Triangle Boundary  SignOPT 2

EnsembleDet 100% 100% 100%  100% 77% 100% 100% L: 00 —— EnsembleDet

ARDD 100% 100% 100%  100% 99% 90% 100% 8 041 —— ARDD
ARDD-AT 100% 91% 23% 97% 18% 19% 43% z ARDD-AT
D4 (SIZE=1) 98% 93% 11% 53% 51% 6% 10% £ 021 —— D4 (SIZE=1)
D4 (SIZE=4) 93% 28% 3% 2% 0% 8% 8% < 00 —— D4 (SIZE=4)

Table 1. An attacker achieves lower attack success rates (ASRs) when attacking D4
(SIZE=4) as compared to the baselines. Attacks are launched on LSUN bedroom
deepfake images from an LDM diffusion model, with a query budget of 50k queries

and /> perturbation budget of € = 10.

detector — this is equivalent to a D4 ensemble of size 1,
i.e., D4 (SIZE=1) without multiple models or disjoint par-
titioning. We perform adversarial training for D4 (SIZE=1)
with PGD-50 attacks [44] using the TRADES loss [73]. Fi-
nally, we use the pretrained CNNDet detector from [67] as
an additional baseline for our generalization experiments
in Sec. 4.3.3, since this detector was designed for detection
of unseen generative models. All baseline models (except
CNNDet) are trained using the Adam optimizer [38] with
an initial learning rate of 0.0001, batch size of 32, and a
maximum of 20 epochs.

Attacks. We evaluate D4 and baselines against six popular
black-box attacks spanning both the gradient-based and ran-
dom search-based categories. For gradient-based attacks,
we select HSJA [10] and QEBA [40]. For random search-
based attacks, we select SurFree [45], Triangle [68], Bound-
ary [5], and SignOPT [12]. We employ the default hyper-
parameters for each attack, and focus our attack evaluation
on the ¢ norm with a standard perturbation ¢ = 10. We
impose a query budget of 50,000 queries on each attack fol-
lowing [57] (roughly equivalent to between $50 - $75 as per
modern MLaaS platforms such as Clarifai).

D4 Architecture and Training. We implement a D4 en-
semble D4 (SIZE=4) comprising four models. Each model
follows a ResNet50 architecture, and the 2D-Discrete Co-
sine Transform (DCT) is used to convert images to the fre-
quency space before distributing frequencies amongst the
models. Each individual model is also adversarially trained
using the same procedure as the D4 (SIZE=1) baseline.

Metrics. We follow prior work [55,58,67] and use average
precision (AP) to measure the natural, i.e., non-adversarial,
unperturbed deepfake detection performance of D4. We
then consider an adversary that attempts to perturb deep-
fakes to the “real” class, and employ attack success rate,
i.e., ASR (fraction of success perturbations) as our perfor-
mance metric for robustness. Lower ASR implies that the
detector is more effective against adversarial deepfakes.

. . . . . .
0 10000 20000 30000 40000 50000
Query Budget
Figure 5. SurFree ASR vs. query budget against

all detectors, on LSUN bedroom deepfakes from
the LDM diffusion model.

4.2. Robustness Against Adversarial Examples

We now present performance of D4 and baselines under
the six attacks described in Sec. 4.1. For each detector, we
present ASR over 100 images under a 50k query budget.

Results for each baseline detector are presented in rows
1-4 of Tab. 1. Notably, these baselines achieve excellent AP
scores of ~ 100% on non-adversarial deepfakes. However,
we find that for each detector at least one attack achieves
ASR > 90%, rendering it entirely ineffective. Interestingly,
the random-search based SurFree attack is particularly ef-
fective against all the baselines, e.g., 91% and 93% against
the the ARDD-AT and D4 (SIZE=1) baselines respectively.
In contrast D4 (SIZE=4) (presented in row 5) is not vulnera-
ble to any ASRs over 28% (again, achieved by SurFree). In
some cases, it can even reduce ASR to < 3%. Furthermore,
D4 is able to withstand these attacks without much drop in
performance on non-adversarial deepfakes (93% AP). We
re-emphasize that this is only achievable due to the redun-
dancy observation from Sec. 3.1.

To better visualize how D4 raises the cost of an attack,
we also plot SurFree ASR against attack query budget for all
detectors in Fig. 5. An attacker can typically achieve over
80% ASR against all baselines within 20k queries. How-
ever, D4 (SIZE=4) continues to prevent ASR over 28% even
at over double, i.e. 50k queries.

4.3. Generalization of Robustness

We now expand beyond the standard setting discussed
in Sec. 4.2 and instead consider the generalization capabil-
ities of D4 in different contexts. First, we repeat the exper-
iments from Sec. 4.2 for other diffusion models. Second,
we consider a more difficult setting and extend our evalu-
ation of D4 to adversarial deepfakes from models and do-
mains unseen at training time. While this generalization
is known to be possible for non-adversarial deepfake detec-
tion [55,67], to the best of our knowledge generalization for
adversarial deepfake detection has not yet been explored.
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Model  Detector Attack (ASR) Moddl  Detector  NOAttack  Attack

SurFree HSJA QEBA  Triangle Boundary SignOPT (AP) (ASR)
LM DiSizey e % e 0% Si s M Dt o v
o ERED G m W W m @ v Bead w o w
DM iicizeey  on o 0 o 0% 0% PNDM gL (GiEh o o

Table 2. D4 (SIZE=4) continues to reduce the attacker’s ASR more than
the baselines, even when trained and tested on adversarial deepfakes from

diffusion models other than LDM.

Detector LDM DDIM PNDM
CNNDet 62% (-) 68% (100%) 64% (100%)
D4 (SIZE=4)  93% (28%) 70% (9%) 79% (19%)
Both 93% (28%) 70% (9%) 79% (19%)
StyleGAN ProGAN Diff-StyleGAN2
CNNDet 95% (100%)  100% (100%) 100% (100%)
D4 (SIZE=4)  67% (14%) 59% (28%) 67% (11%)
Both 80% (54%)  100% (63%) 94% (67%)

Table 4. Generalization of CNNDet (trained on ProGAN) and
D4 (SIZE=4) (trained on LDM) to LSUN Bedroom diffusion and
GAN deepfakes that were unseen during training. Results are pre-
sented in the following format: non-adversarial AP (ASR).

4.3.1 Different Diffusion Models

Tab. 2 presents the results of repeating the experiments in
Sec. 4.2, but now for adversarial deepfakes from the DDIM
and PNDM diffusion models. As expected, we observe
that the trends continue to hold — in fact, D4 (SIZE=4)
on PNDM is able to completely prevent all six attacks, i.e.,
ASR=0 across all images. For reference, the D4 (SIZE=1)
baseline (one of the stronger ones from Tab. 1) is again vul-
nerable to at least one attack with > 90% ASR.

4.3.2 Unseen Image Domains

Tab. 3 presents results of evaluating the D4 (SIZE=4) mod-
els from Tab. 2 (trained only on bedroom images) on ad-
versarial deepfakes from an entirely different data domain,
i.e., human faces. We focus on the strongest SurFree attack.
Again, D4 reduces ASR significantly more than the base-
lines, with minimal cost to non-adversarial deepfake detec-
tion. One exception is DDIM, for which non-adversarial AP
drops to 78%. However, the decrease in ASR from 97% to
15% likely offsets this drop in adversarial settings.

D4’s success can be attributed to the following: any de-
tector using the full feature set may overfit to a small set
of non-robust features unique to the specific training image
domain. On the other hand, D4’s disjoint partitioning of
non-robust features forces each model to learn more from
the robust artifacts caused by the diffusion model.

Table 3. D4 (SIZE=4) only trained on LSUN Bedroom
is able to generalize its robustness to CelebaHQ, an en-
tirely different domain unseen during training time.

4.3.3 Unseen Generative Models

We now evaluate D4’s generalization to adversarial deep-
fakes from models unseen during training time, including
different diffusion models, as well as other architectures,
i.e., GANs. To this end, we select the D4 (SIZE=4) model
from Tab. | trained on LDM LSUN bedroom only. Since
prior work has only focused on generalization in the non-
adversarial context, our baseline is the popular CNNDet
detector [67] renown for its detection capabilities across
a wide variety of GANs. CNNDet is a pixel-space detec-
tor trained only on ProGAN deepfake images, using heavy
JPEG and blurring data augmentation.

Row 1 of Tab. 4 presents CNNDet’s AP scores for non-
adversarial deepfakes and ASR for adversarial deepfakes,
across the variety of diffusion and GAN models listed
in Sec. 4.1. As expected, CNNDet performs well for de-
tection of non-adversarial GAN deepfake images (all AP
scores > 80%). However, it performs poorly for diffusion
deepfakes which can be explained by prior work’s observa-
tion that the high frequency artifacts differ between GANs
and diffusion models [58]. Under the adversarial setting,
it is rendered completely ineffective with 100% ASR for
both GAN and diffusion deepfakes. This also suggests that
simultaneously achieving both generalization and robust-
ness against adversarial examples is a challenging prob-
lem. Row 2 presents D4 (SIZE=4) scores, which exhibit
the opposite trend — it is able to generalize better (both
non-adversarial and adversarial) for diffusion deepfakes,
but worse for GANS s (since it is trained on diffusion images).

The above observations suggest that combining the two
detectors may yield improvements. To this end, row 3
presents the results of ensembling D4 (SIZE=4) and CN-
NDet using an at-least-one voting scheme. The resulting ag-
gregate detector “merges” the benefits to an extent, present-
ing AP scores >= 80% and >= 70% for non-adversarial
GAN and diffusion model deepfakes respectively. Further-
more, ASRs are significantly reduced from the 100% of
CNNDet. Overall, this indicates that D4 is complemen-
tary to existing detectors, and can be combined to improve
adversarial (or even non-adversarial) generalization. Addi-
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Detector Noise Blur JPEG  Freq-Peaks
D4 (SIZE=4) 78% 93% 83% 92%

Table 5. AP scores on LSUN Bedroom LDM deepfakes that are
subject to post-processing, or an adaptive frequency-peaks attack.

tional results on CelebaHQ can be found in the supplemen-
tary materials.

4.4. Post-Processing and Adaptive Attacks

We now evaluate D4 (SIZE=4)’s robustness to post-
processing image transforms that are common, e.g., when
distributed through social media. We focus on standard
transforms leveraged by prior work, including additive
Gaussian noise (¢ = 2), blurring (¢ = 2), and JPEG
compression (80%). We also evaluate against the adaptive
frequency-peaks attack proposed by recent work [70], de-
signed to evade frequency-based deepfake detectors by re-
moving frequency artifacts. At a high level, the attack ma-
nipulates frequency coefficients to remove “peaks” in the
spectrum. Specifically, it computes a fingerprint as the dif-
ference between the log-scaled mean spectra of deepfake
and real images. To attack a deepfake image, the attack then
intensifies and subtracts this fingerprint from the image.

Tab. 5 presents results of evaluating D4 (SIZE=4) un-
der the above settings. We observe that D4 is generally ro-
bust to post-processing, with the largest drop happening for
Gaussian noise (78% AP). Prior work has also shown that
the frequency space is generally robust to all standard trans-
forms except noise [22]. Furthermore, the frequency-peaks
attack does not appear to hurt performance. This is likely
because disjoint partitioning of features ensures many fre-
quency components are used for detection, not just peaks.

4.5. Impact of Size and Architecture

We also evaluate various D4 configurations with differ-
ent ensemble sizes and network architectures for the in-
dividual models. We first repeat our experiments for D4
(SIZE=4), but with VGG16 as the backbone. We find that
our takeaways for D4 are architecture agnostic, i.e., this
version of D4 (SIZE=4) is still more robust than the base-
lines, with AP scores of 91% while reducing ASR to 35%.
Next, we consider using different networks for the individ-
ual models in the ensemble, to see if it reduces the number
of networks required. We thus evaluate two variants of D4
(SIZE=3) — one with Resnet50 for all three models, and
the other with Resnet50, VGG16, InceptionV3. Since the
saliency values are computed using a single model, we use
Resnet50 for saliency computations. We find that the vari-
ant with the same Resnet50 architecture provides expected
robustness of ASR of 33%. However, the variant with dif-
ferent architectures provides no robustness, with ASR of

99%. This can be attributed to two possible reasons: (a)
saliency in D4 is likely specific to the architecture on which
it was computed and does not transfer between architec-
tures, and (b) as per Lemmas 3.1 and 3.2, D4 achieves
maximum reduction in adversarial subspace dimensional-
ity, and thus maximum robustness, when models are near-
identical. We leave combination of multiple architectures
and saliency-based disjoint partitioning to future work.

5. Discussion and Future Work

Societal impact and limitations. Modern deepfakes raise
several societal and security threats; D4 is a step towards
mitigating that. Nonetheless, adversarial deepfakes also
have benign use cases, e.g., anonymization of an end-user
on an online network; D4 could prevent such anonymiza-
tion. Additionally, D4 is focused on diffusion-generated
deepfake images — since it relies upon redundancy in the
frequency space, it may not be effective against against fu-
ture types of deepfakes that avoid these artifacts. We believe
that the benefits of D4 outweigh such potential concerns.
Training/Inference Cost. Training an individual model in
the D4 (SIZE=4) ensemble took approximately 18 minutes
per epoch using four NVIDIA GeForce 2080 Ti GPUs. Fur-
thermore, since each model in the ensemble is independent
of each other (due to the disjoint partitioning scheme), all
four models can be trained in parallel. Inference-time of
the ensemble is a mere 0.7s/image using only a single GPU,
implying minimal overhead over the 0.6s/image taken by a
single model. This is also a significant advantage over the
~ 30 minutes/image achieved by prior inference-time de-
fenses such as Deep Image Prior [23] as discussed in Sec. 2.

6. Conclusions

In this paper, we present D4, an ensemble approach to
deepfake detection that exploits redundancy in frequency
feature space by partitioning the frequencies across multi-
ple models. We show theoretical advantages to such disjoint
partitioning of input features, that reduces the dimensional-
ity of the adversarial subspace. We empirically validate that
D4 offers significant gains in robustness under black-box
attacks, reducing attack success rates to as low as 0%.
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