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Abstract

Gaze following estimates gaze targets of in-scene person
by understanding human behavior and scene information.
Existing methods usually analyze scene images for gaze fol-
lowing. However, compared with visual images, audio also
provides crucial cues for determining human behavior. This
suggests that we can further improve gaze following consid-
ering audio cues. In this paper, we explore gaze following
tasks in conversational scenarios. We propose a novel multi-
modal gaze following framework based on our observation

“audiences tend to focus on the speaker”. We first leverage the
correlation between audio and lips, and classify speakers
and listeners in a scene. We then use the identity informa-
tion to enhance scene images and propose a gaze candidate
estimation network. The network estimates gaze candidates
from enhanced scene images and we use MLP to match sub-
jects with candidates as classification tasks. Existing gaze
following datasets focus on visual images while ignore au-
dios. To evaluate our method, we collect a conversational
dataset, VideoGazeSpeech (VGS), which is the first gaze fol-
lowing dataset including images and audio. Our method
significantly outperforms existing methods in VGS datasets.
The visualization result also prove the advantage of audio
cues in gaze following tasks. Our work will inspire more
researches in multi-modal gaze following estimation.

1. Introduction

Human gaze provides important cues for understanding

human behavior and is required by various fields such as

social communication [29] and human-robot interaction [28].

Gaze following is a crucial topic in gaze estimation. It

provides human intention in one scene and demanded by

human-robot interaction [30].

Gaze following aims to estimate gaze targets in a scene

where the human subjects appear in the same scene. Exist-

ing researches [9, 15, 17, 27, 37, 44] usually leverage facial
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Figure 1. We present a novel multimodal framework for conver-

sational gaze following that utilizes audio-vision video input to

generate accurate target detection for gaze following. Our approach

produces annotated bounding boxes for the speaker, listener, and

gaze target. To facilitate our methodology, we introduce VideoGaze-

Speech (VGS) including annotated audio and video cues.

and scene information to estimate the gaze target. Com-

pared with vision information, audio also provides important

cues in a scene. Previous studies [14, 38, 40] have demon-

strated the important role of sound in audiovisual estima-

tion. Numerous psychological studies also [31,33,41,43,43]

have highlighted the significant impact of sound on visual

attention. Combining audio and vision modalities can pro-

vide richer and complementary information compared to

unimodal approaches [19]. However, to the best of our

knowledge, there is no research using audio information in

gaze following.

Conversational scenarios are among the most common

scenarios, emerging whenever there are more than two in-

dividuals present in a scene. In this work, we explore gaze

following in conversational scenarios. We propose a multi-

modal gaze following framework (MMGaze) which lever-

ages both visual and audio cues. The framework is designed

based on our observation, “audiences tend to focus on the

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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speaker”. It means the gaze following performance would

be naturally improved if we add identity information for gaze

target inference. Therefore, our framework first performs

active speaker detection based on the correlation between

lip motion and audio. We respectively perform face track-

ing in videos and the mel-frequency cepstrum coefficients

(MFCC) feature [12] extraction from the audio. We compare

lip motion features of each individual with MFCC features

to distinguish speaker and listener [10]. To add identity infor-

mation into scene images, we respectively generate binary

identity maps for speakers and listeners. We stack the two

maps with scene images for scene image enhancement.

We further build a gaze candidate estimation network

which predicts all gaze candidates from enhanced scene

images. The network is inspired by object detection tasks

which detect objects from scene images. We use one MLP to

match subjects with gaze candidates. The MLP performs bi-

nary classification tasks and we select the candidate with the

largest probability as the final gaze target for one subject. Ex-

isting gaze following datasets usually focus on visual images.

We collect a new gaze following dataset, VideoGazeSpeech

(VGS), to evaluate MMGaze. We manually annotate the

dataset and require three different reviewers to check the an-

notation, which ensures the correctness of our dataset. VGS

contains 29 videos with audio tracks consisting of 35, 231
frames. To facilitate future research, we also provide anno-

tations in different formats, including VOC format, COCO

format, and VideoAttentionTarget [9] format.

The main contributions of our work are threefold.

• We propose the MMGaze for multi-modal gaze follow-

ing. The framework predicts identity information based

on the correlation of lip motion and audio. We employ

the identity information to enhance scene images and

propose a gaze candidate network which estimates all

gaze candidates from enhanced images.

• To evaluate our method, we introduce a new gaze fol-

lowing dataset, which is also the first gaze following

dataset containing audio track. Our dataset would en-

courage future research in multi-modal gaze following.

• We evaluate our method on the VGS dataset. Our

method has the best performance and experiments

demonstrate the advantage of audio in gaze following.

2. Related Works
Despite the significance of this topic, research in this

area is surprisingly limited. To address this gap, the project

divides the work into three parts. The first part provides an

overview of the existing research on gaze target detection.

The second part reviews the current state of research on

multimodal approaches to gaze detection. Finally, the third

part presents a list of available gaze datasets that can be used

to train and evaluate gaze detection models.

Table 1. Comparison of existing gaze following datasets. Our

dataset is the first to provide audio modality which would encourage

future research in multi-modal gaze following.

Dataset Pub. Year
Modalities

Vision Audio
GazeFollow [35] NeurIPS 2015 � �

VideoGaze [36] ICCV 2017 � �

VideoCoAtt [16] CVPR 2018 � �

Gaze360 [26] ICCV 2019 � �

VideoAttentionTarget [9] CVPR 2020 � �

GazeFollow360 [27] ICCV 2021 � �

Ours 2023 � �

2.1. Gaze Following Methods

Gaze tracking is a crucial area of research in computer

vision, with numerous applications in fields such as human-

computer interaction and medical diagnosis [1, 3, 6, 8]. How-

ever, existing gaze following methods often rely on tradi-

tional gaze tracking devices [4, 5, 7, 22], which can interfere

with the user’s natural gaze behavior and limit the accuracy

of results. To overcome this limitation, recent studies explore

deep learning for gaze following in images or videos.

Current gaze following research is limited to image

format as input and does not consider audio information.

Most studies obtain the prediction results of gaze follow-

ing target by combining raw frame with head position in-

put [9, 18, 23, 24, 35]. Recently, Tu et al. [39] redefined the

gaze following task to predict the paired head position and

gaze target by inputting raw frames. While these approaches

are limited to the analysis and learning of image information,

our daily activities, based on many psychological experi-

ments, suggest that our gaze following relies not only on

visual senses but also on auditory information [31,33,41,43].

Tavakoli et al. [38] proposed that audio signal contributes

significantly to dynamic saliency prediction.

Furthermore, most existing deep learning prediction mod-

els for gaze following require the input of head position along

with raw frames [9, 18, 24, 35], which is inconvenient for the

flexible application of the model. Additionally, adding head

position as input to the expected picture would be redundant

and impractical. In contrast, our proposed network archi-

tecture only requires raw video input. It can automatically

predict the head position of both speaker and listener using

contrastive learning and directly output the gaze following

target. This network does not require additional input of head

position in the input part and is, therefore, a more flexible

and convenient end-to-end process.

2.2. Multimodal

As for multimodal research, there is surprisingly a few

multimodal vision research for the gaze following domain
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[24, 32]. So this work aptly fills this gap by innovatively

merging audio and video information.

Nonaka et al. [32] formulated gaze estimation as Bayesian

prediction, rather than an artificial way, where they estimate

the likelihoods of head and body orientations given an input

image, and then multiply a learned conditional temporal

prior of gaze direction by cascading two neural networks.

Hu et al. [24] propose a novel extension method that adds 3D

space by the use of depth information, which is not strictly

multimodal fusion application.

Besides these gaze works, the multimodal task in com-

puter vision is currently performed by two main factions,

Fuse and Align. The Fuse faction fuses in a single tower

structure, and this faction mainly applies the Transformer.

The Transformer’s attention has the ability to aggregate fea-

tures in different feature spaces and at a global scale. The

Transformer is suitable for alignment and fusion of mul-

timodal feature representations. Vision Transformer [13]

was proposed to break the model barrier between CV and

NLP. The Align faction of fusion is a two-tower structure,

represented by CLIP [34] and ALIGN [25], focusing on mul-

timodal alignment for downstream tasks such as graphical

matching and retrieval. The VGS structure proposed in this

paper is a multimodal fusion approach based on the latter.

Furthermore, multimodal research in computer vision has

intensified in recent years in terms of the classes of elements

combined in modality [42], combines language and gaze

and proposes the object referring dataset and framework that

the observer is watching while describing and watching the

video. Boccignone et al. [2] mentioned the spatial-temporal

multimodal input that fuses audio and video and applies

the Foraging framework. D’Amelio and Boccignone [11]

improved the way of weighing the patch in the Foraging

framework. Nevertheless, they detected the eye-tracking

data of the viewer watching the video, not the gaze-following

target of the people in the video. All these methods are good

at fusing multiple modalities, but they do not explore the

role of sound as an aid to gaze estimation. In light of this,

this thesis will close a research gap in audio-video fusion in

the realm of gaze following.

2.3. Gaze Datasets

A summary of comparable gaze datasets is shown in Table

1. Publicly available datasets for gaze estimation typically

focus on in-the-wild scenes or video programs and currently

only have visual unimodality. These datasets can be classi-

fied based on various factors, such as dimension (2D or 3D),

format (video or image), frame type (in, out, or cross), anno-

tation method (gaze direction or gaze target), and modality

(vision or audio-vision).

For 2D datasets, GazeFollow [35] marks the center of

a person’s eyes and where they are looking with only in-

frame annotations, disregarding out-of-frame cases. The

Algorithm 1 Multimodal Gaze Target Detection

Require: Video stream V , Audio signal A
Ensure: Gaze targets G

1: Initialization:
2: Load models:

3: syncNet [10], s3fd [47], resneXt, rpn
4: Initialize operations: roiAlign, fcn, mlp
5: Active Speaker Detection:
6: for frame in V do
7: face ← s3fd.detect(frame)
8: Store detected face for timeline creation

9: end for
10: Extract audio features mfcc and compute correspon-

dence score

11: Identify speaker and listener based on correspondence

12: Gaze Candidate Estimation:
13: Construct identity maps using bboxi

s and bboxi
l

14: featureMaps ← resNext(F )
15: for point in featureMaps do
16: Define and classify roi using anchors and rpn
17: Refine candidateROIs with roiAlign
18: Generate mask using fcn
19: Predict gazeTarget using mlp
20: Store gazeTarget
21: end for
22: return Gaze targets G

VideoGaze dataset [36] is a large dataset for gaze tracking

across multiple views, but it requires pairing frames indi-

vidually. The VideoAttentionTarget [9] includes 109, 574
in-frame and out-of-frame fixation comments and 54, 967
comments, but it only labels the classification for out-of-

frame images, ignoring the target ground truth. Video-

CoAtt [16] is a dataset of 380 complex video sequences

from public TV shows, specifically designed for shared at-

tention research.For 3D datasets, Gaze360 [26] is a 3D gaze

tracking dataset that includes subjects in indoor and outdoor

environments, labeled with 3D gaze at various head poses

and distances. The RGB-D attention dataset [24] contains

everyday human activities with 3D gaze target annotations.

The GazeFollow360 dataset [27] collected videos into 360-

degree images in the equirectangular format.

While these datasets provide a good starting point for

gaze estimation research, more diverse and comprehensive

datasets are still needed to better capture the complexities

of real-world gaze estimation, including out-of-frame gaze

estimation, diverse scenarios, and multimodal input. Our

proposed VGS dataset addresses these issues by focusing

on conversational scenarios, overcoming the out-of-frame

issue, and fusing audio cues to improve the diversity and

robustness of gaze target detection.

1188



Audio AudioAudio 

Video

Frame 25fps

Face 
Tracking

Audio
Extraction

MFCC Feature13 × 20 × 1

Lip Motion5 × 120 × 120

…

Encoder

Encoder

Encoder Identity Feature

Audio Representation
1 × 1 × 256

VidV

,
Listener

Speaker

MLP

Face Position

Target 
Candidates Gaze Following

Visual Representation
1 × 1 × 256

Scene Images

Gaze Target 
Detector

20 Samples

5 Frames

Feature 
of 200ms

,

…
Figure 2. MMGaze performs gaze following for each frame of videos. Given one frame and audio track, it first performs active speaker

detection. MMGaze acquires audio feature of 200 ms (20 samples due to 100HZ) near the timestamp of the given frame. It also acquires

corresponding visual images of 200 ms (5 frames due to 25fps). Then, MMGaze extracts audio representation and visual representation

corresponding to lip motion of each individual via SyncNet [10]. It computes the similarity between audio representation and visual

representation of each individual, and distinguishes identity information. MMGaze provides a gaze candidate estimation network. It contains

a gaze target detector to estimate gaze target candidates from scene images enhanced by identity information. One multilayer perceptron

(MLP) is used to predict the relationships between each subject and all candidates. We select the candidate with the highest probability as

the final gaze target for each subject.

3. Multi-Modal Gaze Following Framework
3.1. Overview

In this paper, we explore gaze following in conversational

scenarios. We propose a multi-modal gaze following frame-

work (MMGaze) to integrate vision and audio information in

the scenario. MMGaze is built based on our key observation

“the audience more likely looks at speakers”. As shown in

Fig.2, MMGaze first performs active speaker detection in

scene images. We leverage the correlation between audio

and lips [10], and classifies speakers and listeners. We then

utilize the identity information to enhance scene images. We

propose a gaze candidate estimation network which predicts

all gaze candidates from enhanced scene images. A detailed

step-by-step process is presented in Algorithm 1.

3.2. Active Speaker Detection

In daily interactions, speakers naturally attract a greater

amount of attention from their audiences. This phenomenon

can also extend to conversational scenarios, where audi-

ences tend to focus their gaze on speakers. This observation

motivates us to integrate the identity information for gaze

following task. In this work, we distinguish the identity

information via multi-modal cues. Our work leverages the

correlation between audio and lip motion [10] to detect ac-

tive speakers. We respectively obtain audio features and

visual features corresponding to the lip motion of each indi-

vidual. We compute the similarity between the two features

and distinguish speakers based on the similarity. A threshold

is set to avoid out-of-frame voices.

In detail, we first split the input video frame by frame

for face detection. We use S3FD [47] to obtain gray-scale

facial images and crop mouth region based on facial land-

marks. We stack every five consecutive frames for speaker

detection. The sample frequency of videos are 25 fps where

five frames equals to a 200 ms videos. On the other hand,

we use 13-dimensional MFCC feature to represent audio

cues. The audio is sampled at 100 HZ. We obtain audios

of 20 frames, which is equal to 200 ms audio, to align with

the video. To obtain the similarity between lip motion and

audios, we use SyncNet [10] to extract lip motion feature and

audio features. The SyncNet is trained with contrastive loss

which requires lip motion feature should be similar with the

corresponding audio feature. It uses Euclidean distances to

measure the similarity of two features. In our work ,we also

uses the distance for speaker detection, where the highest

correspondence indicates the speaker. To avoid out-of-frame

voice, we empirically set a threshold for the speaker.

Overall, we leverage the correlation between lip motion

and audios for speaker detection. We crop lip region of each

individual from scene images and distinguish their identity.

As the result, we have the facial bounding box {bboxi
s} of

speakers and {bboxi
l} of listener.

3.3. Gaze Candidate Estimation

In this section, we enhance scene images with identity

and estimate gaze candidate from the enhanced images. We

then match subjects with candidates via a MLP.

Our work has facial bounding boxes {bboxi
s} and {bboxi

l}
based on active speaker detection. We convert these bound-
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ing boxes into identity maps to enhance scene images. In

detail, we construct two identity maps representing speakers

and listeners. The identity map is a binary image and has

the same size as scene images. We mark the facial region

of speakers and listeners based on {bboxi
s} and {bboxi

l}.

We stack the two identity maps with scene images in the

channel dimension. The five-channel image is used for gaze

candidate estimation next.

We propose a gaze candidate estimation network for tar-

get detection through supervised learning, which is inspired

by object detection task [20]. The network regresses bound-

ing box of gaze candidate from enhanced scene images. The

process can be broken down into the following steps: To

detect gaze targets, our model inputs enhanced images into

ResNeXt101 model [45] to obtain corresponding feature

maps. We then set predetermined regions of interest (ROIs)

for each point in the feature map using anchors, which gives

us multiple candidate ROIs. These candidate ROIs are sent to

the Region Proposal Network (RPN) for binary classification

and bounding-box regression. We filter out some candidate

ROIs and refine the remaining ones using the ROIAlign [20],

which maps the original image to the corresponding pixels in

the feature map and produces a fixed-size feature map. We

introduce candidate frame regression to these ROI regions

and use a fully convolutional network (FCN) to generate a

mask, which completes the target detection task and outputs

all the gaze candidates of all the subjects inside the frame.

We final train a Multi-Layer Perceptron (MLP) to map each

subject and their gaze targets with the highest probability.

3.4. Objective Function

We use binary cross-entropy loss Lcls for matching sub-

jects with gaze candidates, and smooth L1 loss for the bound-

ing box prediction of gaze candidates. The smooth L1 loss

is shown as follows:

Lbbox(t, t̂) =
∑

i∈{x,y,w,h}
Lsmooth(ti − t̂i), (1)

Denote predicted box parameterized by t and ground-truth t̂,
the discrepancy between these two representations is quanti-

fied using Lsmooth.

Lsmooth(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
, (2)

The smoothL1 function is a robust loss function, which

serves to mitigate the influence of outliers. For values of

x less than 1, it defaults to an L2 loss, ensuring that it is

smooth near zero. However, for larger values of x, it be-

haves linearly, akin to the L1 loss, thus ensuring robustness

against larger deviations. This amalgamation of L1 and L2

characteristics makes it particularly suitable for regression

tasks in the presence of potential outliers.

4. VideoGazeSpeech Dataset
Gaze following attracts much attention recently [9, 35]

while existing databases commonly lack audio information.

In this work, we collect the first gaze following dataset con-

taining audios, the VideoGazeSpeech Dataset. The dataset

is used to evaluate our method and also encourage future

research in multi-modal gaze following. Samples from our

dataset are presented in Fig.3. Our dataset comprises a total

of 35, 231 frames of 29 videos. Each video in the dataset

has an average duration of approximately 20 seconds and is

recorded at a frame rate of 25 frames per second (fps). The

resolution of each video is 1280× 720 pixels, and the entire

dataset occupies a storage space of 7.2 GB.

4.1. Data Collection

The VideoGazeSpeech Dataset contains 29 videos with

audio information in mp4 format, and the main task targeted

is gaze estimation in social situations. This dataset was

selected from the video dataset with audio [46], and the

original dataset only targets gaze estimation, which is an

entirely different annotation and task from gaze following.

Therefore, in this project, we need to re-annotate this dataset

in its entirety. We used manual labelling in the labelling

process, splitting the video by frame and labelling each gaze

following each character object in each frame through the

DarkLabel tool. To ensure the accuracy of the dataset, we

also had three different reviewers check the dataset.

We chose the tagged videos for each video to guarantee

as much of an equitable distribution of data as possible in

terms of the number of frames and persons in the movie. The

average number of frames per video is evenly distributed in

frames 400 ∼ 500, and the average number of persons in

each video is evenly distributed in 2 ∼ 4.

4.2. Data Processing

In order to facilitate the training and adaptation of mul-

tiple types of neural networks and for the scalability of the

database, this project also extends the VGS database into

three formats: VOC format, COCO format, and VideoAt-

tentionTarget format. The reader can directly utilize these

datasets for method verification, eliminating the need for

additional data transformation efforts. Moreover, the dataset

is randomly partitioned into a training set and a test set in

a 9:1 ratio, with the training set comprising 31, 701 frames

and the test set encompassing 3, 524 frames.

5. Experiments
Our approach is novel in recognizing the significance of

audio in gaze following, and as there are no existing meth-

ods directly comparable to our approach, we conducted a

comprehensive evaluation of our gaze following model using

our VGS dataset. We divided our experiments into two parts:
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Figure 3. Example diagram of the VideoGazeSpeech (VGS) database.There are three people in the sample video. Each line in the above

figure is labelled with the gaze following each person in the video, with the green box indicating the gaze following the target and the red

box indicating the corresponding head of the person producing the gaze work

Comparison with SOTA methods and ablation with different

backbones. In the ablation experiments, we examined the

impact of different backbones (ResNet101, ResNet50, and

ResNeXt-101) on the performance of our gaze candidate

estimation model. In comparison experiments, we gauged

our model against SOTA gaze detection models and investi-

gated the impact of introducing multimodality on gaze target

detection models in various ways.

Our experiments demonstrate that our proposed model

outperforms other models. Specifically, the comparison ex-

periments with different backbones inside the gaze candidate

estimation model and with advanced gaze following algo-

rithms highlight the efficacy of our multimodal processing

approach that leverages audio-vision features. Our findings

suggest that integrating audio and visual information can

improve the performance of gaze following tasks.

5.1. Evaluation Metrics

AP focuses on the model’s ability to cover positive sam-

ples and identify them. Suppose there are M positive cases

in these N samples, then we get M recall values (1/M, 2/M,

... , M/M), and for each recall value r, we can calculate the

maximum precision corresponding to (r′ >= r), M/M), for

each recall value r, the maximum precision corresponding

to (r′ >= r) can be calculated, and then average these M

precision values to get the final AP value. Considering this

project only focuses on detecting gaze targets, there is only

one target class, the gaze targets, and there is no need to

calculate the mAP.

5.2. Implementation Details

The current gaze following models use raw frame and

head position as their feature map [9, 18, 24, 35]. However,

our proposed gaze candidate estimation model integrates

audio information with video information for multimodal

fusion training, which is a novel approach in the gazing

field. In this experiment, We aim to explore the impact of

multimodality on gaze tracking, comparing two variables:

w/o audio (visual cues only) and with audio (audio and visual

cues). Our goal is to examine the effect of audio-vision

fusion on gaze following detection.

To conduct this experiment, we used the VGS database

proposed in our project and adjusted the feature-processed

data into coco format to train the gaze candidate estimation

network. The gaze candidate estimation model employed

ResNet-101, ResNet-50, ResNeXt-101, and FPN [54] as

the neck of the gaze candidate estimation network, which

reprocesses and rationalizes important features extracted

from the backbone. During the training process, the learning

rate was set to 0.0025, the number of epochs was set to 12.

We used two NVIDIA RTX 3090 in this experiment.
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Figure 4. Comparison from Gaze Candidate Estimation model and VAT model. The first line is the output of gaze candidate estimation

model, the second line is the output of VAT model, and the third line is the ground truth. Our model outperforms the VAT method in

accurately detecting the gaze target. In the first frame, our model accurately detects the gaze target where the VAT method failed to do

so. This demonstrates the superior performance of our model in terms of gaze target detection. In the second frame, our model accurately

detected the speaker as the gaze target in a conversational scenario, while another model failed. Incorporating audio cues is crucial for gaze

following, and audio-visual fusion can significantly improve accuracy, especially in real-world scenarios.

5.3. Quantitative Analysis

5.3.1 Comparison with SOTA methods

In our experiment, we compared traditional CNN methods

and Transformer methods in the context of gaze following.

We used DETR [48] as the representative of the Transformer

method due to its SOTA performance in computer vision.

We also included VAT [9], a gaze following domain-based

CNN model, to demonstrate the innovation and feasibility

of our proposed gaze candidate estimation model.

Our gaze candidate estimation network is a multimodal

network structure, so we explored the performance of dif-

ferent modalities in different network models to verify that

the richer information brought by multimodality would be

helpful for gaze following detection. During training, we

used DETR to train our VGS database, and the VGS dataset

was used in COCO format.

The results, shown in Fig. 5, demonstrate that our mul-

timodal network structure gaze candidate estimation net-

work (0.433) outperforms DETR (0.418) and VAT (0.324)

in terms of AP performance. Moreover, as the modality

increases, the AP of our method and Transformer method

performs better than that of a single modality. Interestingly,

we found that VAT performs worse when audio cues are

added to the feature map, indicating that its network is too

simple to handle multimodal information.

These results suggest that incorporating audio informa-

tion into gaze following models, as we did in our gaze candi-

date estimation model, can lead to significant improvements

in accuracy, particularly in real-world scenarios where audio

cues play a crucial role. The superiority of our multimodal

network structure over traditional CNN methods and Trans-

former methods also highlights the importance of fusing

multimodal information for gaze following detection.

5.3.2 Different Backbones

In this gaze candidate estimation work, we conducted exper-

iments to compare and test three backbones: ResNet-101,

ResNet-50 [21], and ResNeXt-101 [45]. Our results indicate

that ResNeXt outperforms ResNet with the same number

of parameters, which is consistent with Fig. 6. Specifically,

ResNeXt has a higher average precision (AP) than ResNet

for different modal treatments. We also found that increas-

ing the number of neural network layers from 50 to 101 for
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Figure 5. Quantitative evaluation in comparison with state-of-the-

art methods on our VGS dataset in the AP (Average precision)

metric ↑ (higher is better). Our method outperforms DETR and

VAT.

ResNet leads to a slight performance improvement, but not

as significant as ResNeXt.

Notably, Fig. 6 shows that each backbone with audio-

vision feature map outperforms the visual feature map, in-

dicating that audio-vision fusion of feature can significantly

improve the performance of gaze following target detection.

5.4. Qualitative Analysis

We employed a rigorous evaluation approach to compare

the performance of various gaze-following models using

Gaussian heat maps generated from random samples of video

data. The results in Fig. 6 and Fig. 5 clearly demonstrate

the effectiveness of our multimodal model in enhancing the

prediction accuracy of gaze-following models. In particular,

the gaze candidate estimation model shows superior perfor-

mance compared to other models. This is because the gaze

candidate estimation model takes into account the speaker’s

mode, which improves its accuracy in social situations.

Furthermore, Fig.4 illustrates how the gaze candidate

estimation model’s consideration of speaker mode can lead

to more accurate analysis results. For example, in the second

image of the first row, the person is looking at the speaker,

whereas the VAT method wrongly detects the person looking

at another listener. This finding underscores the importance

of considering multimodal information in gaze-following

models to achieve more robust and accurate results.

Our training results show the gaze candidate estimation

network converges faster and more efficiently than the DETR

model, which took sixfold time and eightfold epochs to con-

verge, emphasizing our model’s efficacy for social gaze-

following. The superior performance of our multimodal

model underlines the value of multimodal inputs in conver-

sational gaze analysis, with considerable implications for

advancing robust gaze behavior models in social contexts.
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Figure 6. Performance of Gaze Candidate Estimation Network with

different backbones in the AP (Average Precision) metric↑ (higher

is better)

6. Conclusion
In this research project, we introduce a novel multimodal

framework that overcomes the limitations of existing meth-

ods for gaze following in conversational settings. Our pro-

posed approach leverages audio-vision fusion, which pro-

vides multiple sources of input and significantly improves

detection accuracy and robustness. The framework learns

subjects’ identity information based on the correspondence

of visual and audio features, while our gaze candidate es-

timation network leverages both identity information and

scene images to estimate gaze candidates.

A major contribution of our study is the VideoGaze-

Speech dataset, which includes annotated audio and video

cues and is the first multimodal gaze tracking dataset. This

dataset provides a valuable benchmark for evaluating the

performance of gaze tracking models that utilize audio and

video inputs. To evaluate the effectiveness of our approach,

we conduct experiments on the VideoGazeSpeech dataset,

demonstrating the advantage of audio-vision fusion.

In conclusion, our proposed multimodal framework for

gaze following in conversational settings and the VideoGaze-

Speech dataset represent significant contributions to the field.

It has the potential to enhance the accuracy and effective-

ness of gaze following, ultimately improving human-robot

interaction in conversational settings.
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