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Abstract

Common illumination sources like sunlight or artificial
light may introduce hidden vulnerabilities to AI systems.
Our paper delves into these potential threats, offering a
novel approach to simulate varying light conditions, includ-
ing sunlight, headlights, and flashlight illuminations. More-
over, unlike typical physical adversarial attacks requir-
ing conspicuous alterations, our method utilizes a model-
agnostic black-box attack integrated with the Zeroth Or-
der Optimization (ZOO) algorithm to identify deceptive pat-
terns in a physically-applicable space. Consequently, at-
tackers can recreate these simulated conditions, deceiving
machine learning models with seemingly natural light. Em-
pirical results demonstrate the efficacy of our method, mis-
leading models trained on the GTSRB and LISA datasets
under natural-like physical environments with an attack
success rate exceeding 70% across all digital datasets, and
remaining effective against all evaluated real-world traffic
signs. Importantly, after adversarial training using samples
generated from our approach, models showcase enhanced
robustness, underscoring the dual value of our work in both
identifying and mitigating potential threats.1

1. Introduction
In the modern technological landscape, machine learn-

ing (ML) models have catalyzed significant advancements
across myriad applications, from optimizing consumer ex-
periences to propelling the evolution of autonomous vehi-
cles [7, 34, 31]. Yet, with these breakthroughs comes an
increasing concern about the model susceptibility to manip-
ulations that can severely undermine their efficacy and de-
pendability. Central to this apprehension is the phenomenon

1Project page: https://github.com/BlueDyee/
natural-light-attack

Figure 1. An illustrative example of the presence of light inter-
ference for misleading classifiers.

of “Adversarial Attacks” [13]. These sophisticated dis-
ruptions, validated by current research, can deceive model
predictions, producing unintended and often harmful out-
comes. This vulnerability extends beyond the digital envi-
ronment—where the majority of ML models are developed
and validated—manifesting in the physical realm, thereby
jeopardizing not only the model performance but also the
safety of humans dependent on them.

Specifically, transitioning adversarial techniques from
the digital plane to the tangible world, or the “Digital to
Physical (D2P)” process [17], introduces its own set of intri-
cacies. The direct implementation of digital distortions of-
ten falls short in the real world, owing to the unpredictable
variability of lighting, angles, and myriad physical condi-
tions. Some researchers are aiming to bridge this gap by
exploring the transformation interplay between digital and
physical entities [8, 12, 17]. Yet, these pursuits often cul-
minate in over-optimized solutions tailored for specific de-
vices, lacking broad applicability. Alternatively, more con-
spicuous interventions involving stickers [6] or lasers [5]
have proven effective in both realms but suffer from their
overt detectability, reducing real-world feasibility.
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(a) Real world (b) L simulation [39]

Figure 2. A comparison of simulated shadow[39] and light us-
ing same method.

In this paper, we study a new kind of physical attacks,
namely, natural light attacks. As visualized in Fig. 1, imag-
ine an autonomous vehicle misinterpreting a dimly lit stop
sign at night, mistaking reflections caused by its own head-
lights for genuine signals. Such precarious situations could
also be induced by various light sources, such as direct or
reflected sunlight, thereby happening even in the absence of
a malicious agent. Other possible light sources that can cre-
ate similar effects include sunlight, reflected sunlight from
buildings, and flashlight illuminations. Different from pre-
vious works, e.g., lasers [5] or projectors [12, 24, 27], natu-
ral light attacks cannot use dedicated patterns and may hap-
pen even without any attackers.

To empirically support our claims, we spotlight traf-
fic sign recognition—an indispensable facet of autonomous
systems. While previous works have dabbled with shadows
for adversarial intent [39], the inherent contrast between
light and shadow necessitates distinct generative method-
ologies. As shown in Fig. 2, the method used to simu-
late shadow [39] is incapable of replicating the saturation
change in red region or the reflections observed in the black
region, both of which are caused by the light. Therefore, we
propose a novel light simulator that takes real-world traffic
sign images and images subjected to varying light pertur-
bations as the input. The primary objective of this sim-
ulator is to rapidly adapt to diverse traffic signs and light
sources. Utilizing this simulator, we pinpoint light pertur-
bations that misguide classifiers, causing misidentifications.
Our method adopts the well-established Zeroth-Order Opti-
mization (ZOO) paradigm [2, 3, 4, 35] to refine the physi-
cal perturbations. Extensive experiments conducted on the
benchmark GTSRB and LISA datasets reinforce our asser-
tions, with an attack success rate (ASR) of 70%, emphasiz-
ing the potential risk posed by natural light conditions. This
investigation highlights the urgent requirement to incorpo-
rate these conditions in robust ML model development for
resilience against unforeseen threats. For instance, integrat-
ing adversarial training can serve as a formidable counter-
measure, substantially diminishing the ASR.

Our contributions can be summarized as follows:

• We highlight the potential of natural light as a novel
avenue for adversarial attacks, capable of mislead-

ing traffic sign recognition models. This susceptibil-
ity can be effectively replicated with accessible light-
emulating sources like flashlights or sunlight.

• Our work involves the development of a light simula-
tor, designed to quickly adapt to diverse tasks while
accurately simulating the interaction between varied
light sources and objects. In addition, we pioneer the
integration of Zeroth-Order Optimization (ZOO) into
physical black-box attacks.

• We perform exhaustive evaluations across both digi-
tal and physical realms, accounting for variations in
day and night settings. Our results indicate the ef-
fective performance of our proposed approach in both
simulated and real-world scenarios, demonstrating its
adaptability to diverse environments.

2. Related Works

2.1. Digital Adversarial Attack

Adversarial attacks are being recognized as a potent con-
cern within the AI research community. Initially, these at-
tacks were concentrated on altering digital images by lever-
aging backpropagation, manipulating the input image to
maximize the loss to the true label or minimize the loss
of a target label. This form of optimization can be im-
plemented using methods such as PGD [23], FreeAT [33],
YOPO [38], and ACG [37]. Another popular kind of meth-
ods for generating adversarial perturbations is to utilize gen-
erators. Nonetheless, certain situations only allow access to
the model output, with gradient information being unavail-
able, creating the challenge of “black-box attacks” [30].
Specifically, black-box attacks can be categorized into two
types: decision-based and score-based attacks. Decision-
based attacks, where the attacker can only infer the pre-
dicted label, can be applied to not only Deep Neural Net-
works (DNNs) but also other structures like Support Vector
Machines (SVMs), Decision Trees, or any model deployed
via cloud APIs. The second category, score-based attacks,
enables the attacker to infer the confidence score as their
attack objective [3, 16, 20]. This method offers more infor-
mation about the model’s output, allowing for more precise
attacks.

2.2. Physical Adversarial Attack

Building on the success in the digital domain, a recent
line of research has sought to transpose digital attacks into
real-world settings. For example, Kurakin et al.[19] demon-
strated that adversarial examples maintain their adversarial
properties even when translated to the physical world, al-
beit with a slight reduction in Attack Success Rate (ASR).
Consequently, numerous studies have aimed to address this
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(a) advLB [5] (b) Shadow [39] (c) OPAD [12] (d) Ours

Figure 3. Visual comparisons with previous works. Our pro-
posed attack is not only stealthy but can also be found in real-life
scenes.

digital to physical challenge [1, 6, 17] either by contem-
plating the expectations of transformations or by account-
ing for printer and camera properties. In parallel, other
researchers have attempted to alter existing physical ob-
jects to deceive models, using tools like stickers [6], pro-
jectors [12, 24, 27], or lasers [5]. However, such methods
can be visually conspicuous or be constrained to certain en-
vironments. Consequently, several studies have pivoted to-
wards unrestricted, natural-like attacks, exploring strategies
such as natural-like adversarial patches [15] or shadow ma-
nipulation [39]. Distinct from previous techniques, our pro-
posed natural light attack introduces a unique adversarial
approach. This method not only integrates seamlessly with
real-world environments but also offers enhanced ease of
implementation, for instance, through simple means such
as a flashlight or mirror, as depicted in Fig. 3.

3. Natural Light Attack
3.1. Problem Formulation

Given the input image x ∈ RH×W×C with the corre-
sponding true label y ∈ [1, · · ·, k], and a victim classifier
f : RH×W×C → Rk associated with a confidence score
fi(x) to the i-th class, the predicted label ỹ is derived as
follows.

ỹ ≜ argmax
i

fi(x). (1)

Here, the goal of the proposed natural light attack is to
project a specific light onto the target object to generate ad-
versarial example xadv , leading to the misclassification, i.e.,

argmax
i

fi(x) ̸= argmax
i

fi(xadv). (2)

To generate the image for natural light attack xadv , we
consider the location of the light, which is represented by
the corresponding mask MP ∈ RH×W . Regions of MP

that are illuminated are assigned a value of 1, whereas unil-
luminated areas receive a value of 0. The mask MP , dictat-
ing different shapes of light interference, is determined by
a parameter set P . For instance, a circular mask Mcircle

can be dictated by P = {mc, nc, r}, where (mc, nc) and
r represent the center coordinate and the radius, respec-
tively. An ellipse mask Mellipse can be depicted by P =

Figure 4. A loss visualization of different light perturbations on
a single photo. This loss map demonstrates the variation in loss
across different positions (mc, nc, r = 10) of circle light interfer-
ence. This map reveals that our proposed attack can be optimized
via derivative-based method, which has mathematically proven ef-
ficacy that is superior to previous unrestricted attacks [5, 39] that
relied on heuristic algorithms, such as PSO.

{mc, nc, a, b, ϕ}, where a, b, and ϕ are respectively the ma-
jor axis length, minor axis length, and the rotation angle.
Here, we use the circular shape due to the computational ef-
ficiency. It is worth noting that manipulating circular light
in real-world situations is also comparably simpler. In the
following, we present how to derive the mask by zeroth-
order optimizers.

3.2. Zeroth-Order Attack Optimizer

The primary focus of the proposed attack is to search
for a set of parameters P = {mc, nc, r} for MP that can
cause misclassification by the classifier. In our approach,
we specifically address the practical black-box scenario,
where the information of the victim model is unknown, ex-
cept for the confidence score f(x) and true label y. Our
criteria for optimization is based on the cross-entropy loss
between the f(x) and y. With the objective of maximizing
the cross-entropy loss LCE , we aim to construct an adver-
sarial image by solving the following optimization problem:

argmax
P

LCE(y, f(x+ G(x,MP)), (3)

where the adversarial noise is generated by the natural light
generator G(x,MP) controlled by the mask MP .

With the recent advancements in the field of opti-
mization, numerous variants of Zeroth-Order Optimization
(ZOO) have emerged [4, 10, 22], providing different strate-
gies and techniques. Considering these options, we incor-
porated the concept of ZOO-SCD [21] into our mask op-
timization approach due to its efficiency in handling low-
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Figure 5. Overview of our proposed pipeline: (a) In the training stage of our Light Generator, we aim to mimic real light images given a
mask by minimizing the LMSE between simulated and real light perturbations. Second, in the Inference stage of the ZOO optimizer (b),
we further combine the light generator with the ZOO optimizer to find a physically reproducible attack image, aiming to maximize the
LCE of the victim classifier.

dimensional spaces. Specifically, we applied circular light
interference to each pixel of an image and recorded the
cross-entropy loss value between confidence score f(·) and
true label y. Fig. 4 illustrates the loss map with different
light location but with a fixed radius (r = 10).

To identify the optimal position MP for generating an
attack image x∗

adv with a maximized misclassified score, we
need to find the maximum loss on a 2D surface. Therefore,
at each starting point P , we can utilize ZOO to determine
the direction of the maximum gradient by evaluating the
change in score resulting from adjusting the estimate step
size in each dimension Pj ∈ P . Consider a 2D surface as
an example, where the coordinates (P1, P2) can also be rep-
resented as (mc, nc). We update P in the direction indicated
by the gradient (δm, δn) with a step size of γ, i.e., moving
to (mc + γ δm

||(δm,δn)||2 , nc + γ δn
||(δm,δn)||2 ). Following this

algorithm, we progressively find the maximum loss value
step by step. Please note that if the objective also includes
finding the optimal radius, we can simultaneously consider
the gradient of the radius r while applying the ZOO opti-
mization. Hence, by considering gradients of the pertinent
parameters P , a mask of any desired shape can be sought,
transforming them into the mask MP ∈ RH×W .

During the execution of the ZOO algorithm, certain chal-
lenges may arise. One such issue occurs when the gradi-
ents vanish, particularly in regions where the points lie on
a flat surface. To address this problem, we implement a
precautionary measure by initially checking the gradient of
each point [11, 23]. When the magnitude of the gradients is
smaller than the pre-defined threshold τ , we restart the op-
timization process from another randomly chosen point P .
This approach also provides an opportunity to escape poten-
tial local maxima. Additionally, due to the sparseness and
discrete nature of our problem, we repeat the entire process
k rounds to introduce more randomness. Due to the space
constraint, the pseudocode can be found in the supplemen-
tary materials.

3.3. Object-Dependent Natural Light Generator

To simulate a realistic natural light, one possible way is
to adjust the “L” dimension in the CIELab color space as the
simulation for shadows [39]. However, we want to empha-
size that light interference with objects depends on objects
themselves. In other words, visually similar objects could
exhibit differences under identical light projection due to
their textures. Inspired by OPAD attack [12], which em-
ploys diverse color projections to compute the object-wise
and pixel-wise color transformations, we propose a super-
vised end-to-end generator-based approach to simulate the
impacts of various light sources on different objects.

Fig. 5(a) illustrates the proposed light generator. Specif-
ically, to train a generator Gθ parameterized by θ, we first
collect a paired training data, containing a undisturbed im-
age set X and a corresponding light-perturbed image set
X̃ . The object-dependent natural light generator takes the
undisturbed image x ∈ X concatenated with the mask MP

as input. The synthesized light-perturbed image xsim is
computed by adding the light perturbation derived from the
generator’s output Gθ(x,MP ) to the original image, i.e.,

xsim = x+ Gθ(x,MP ). (4)

To supervise the generator, we use the Mean Squared
Error (MSE) between the groundtruth x̃ ∈ X̃ and the gen-
erated output xsim as the loss function. The loss of object-
dependent natural light generator can be calculated as fol-
lows.

L(Gθ, x, x̃,MP) =
1

H ×W
∥xsim − x̃∥2. (5)

Equipped with an optimizer, we can obtain the optimal pa-
rameters θ of object-dependent natural light generator by
minimizing the empirical loss on the whole dataset (X, X̃).

θ∗ = argmin
θ

Ex∈X,x̃∈X̃L(Gθ, x, x̃,MP). (6)

3918



In the following, we present how we collect data in digital
domain and physical domain.

3.4. Attack in Digital Domain

Our digital light generator is constructed using a train-
ing set comprising both undisturbed images, X , and light-
perturbed photos, X̃ . The generation of this training set is
achieved through a carefully curated process. Initially, four
representative images are selected for each class within the
GTSRB and LISA datasets. The chosen images are partic-
ularly distinctive in their optical illuminations.

To simulate light interference, we manually adjust the
LAB or HLS values of color spaces for each training im-
age since the adjustment of these parameters varied across
images. This process aimed to emulate natural-like virtual
light sources, necessitating precise adjustments of the LAB
or HLS values based on the visual appearance of each im-
age to achieve an accurate representation. Once the suitable
approach for manipulating the LAB or HLS parameters for
each image is determined, we simulated light interference at
random positions with varying radius on each image. This
procedure was replicated 100 times, culminating in a di-
verse collection of light-perturbed photos. As a result, our
training set encompasses immense undisturbed and light-
perturbed images. This training set facilitates the training
of our digital light generator, optimizing its ability to simu-
late and understand the nuances of light perturbations.2

3.5. Attack in Physical Domain

The challenge of accurately simulating physical trans-
formations in the digital realm is a well-acknowledged is-
sue. Instead of using the Expectation Over Transformation
(EOT) approach commonly used in previous work [1, 27,
39], we take inspiration from [18] to bridge the gap between
the digital and physical domains.

To begin with, two videos are captured for one scene:
one clear and another with light perturbations. We then pro-
ceed to pinpoint the positions of the light sources, saving
this information in masks MP . To achieve this, we lever-
age the Euclidean distance within the CIELab color space
between the clean and perturbed video frames. This method
enables us to accurately delineate the illuminated areas. We
further apply a median filter to effectively suppress noise,
resulting in a smoother representation of the affected area.3

Utilizing the data produced through this method and the
loss function outlined in Section 3.3, we refine our initial
generator to simulate the specific physical environment with
greater precision. Earlier work, such as Meta-Attack [8],
combined meta-learning with physical attacks to create a
class-agnostic attack pipeline. In a similar vein, we have the

2You can find the dataset in our project page https://github.
com/BlueDyee/natural-light-attack .

3More implementation details can be found in Section 4.3.

flexibility to fine-tune an existing simulator or employ the
Meta-learning algorithm [9, 28, 29] to facilitate the adapta-
tion process of our generator, ensuring its performance un-
der varying circumstances.

4. Experiments

In this section, we first demonstrate the success of the
proposed method in various natural conditions using exist-
ing digital datasets. Later, we showcase the effectiveness
of the proposed method on real-world traffic signs. Finally,
we discuss the results of the ablation study conducted on the
proposed method.

4.1. Dataset and Target Model

Following [6], we use the same two datasets and clas-
sifiers. Specifically, the first dataset is LISA [25], which
is a U.S. traffic sign dataset containing 47 different road
signs. Following previous work, only 16 most common
signs are included due to its unbalance distribution. The
second one is GTSRB dataset, which is a German traffic
sign dataset containing 43 different road signs. For the tar-
get victim models, we use three state-of-the-art classifiers,
two from [6] and one from [32]. Specifically, [6] provides
two classifiers: LISA-CNN and GTSRB-CNN, achieving
91% and 95.7% accuracy on their respective dataset. In
our experiment, we referred to them as LISA-CNN-1 and
GTSRB-CNN-1, respectively. Additionally, we introduced
another classifier that achieved a 99.7% accuracy on the GT-
SRB Kaggle test [32]. Furthermore, we re-implemented
this classifier on LISA and achieved 99.2% accuracy. We
denoted them as GTSRB-CNN-2 and LISA-CNN-2, re-
spectively. Due to space constraint, we provide the details
of the model architecture in supplementary materials.

4.2. Evaluation in Digital Domain

Experiment Setting. Due to the difference in the physical
light sources used during the day (solar) and at night (flash-
light), we split the original dataset based on the average L
value in CIELAB space of each image: images with the av-
erage L ranged in (10, 30) were categorized as night traffic
signs, while those with the average L greater than 60 were
categorized as day traffic signs. We excluded extremely
dark cases due to their low confidence, which makes them
susceptible to attacks. We also removed the middle range of
cases where it is challenging to distinguish between white
signs in dark conditions and dark signs in day.
Results. To evaluate the performance of the proposed
natural light attack, Tab. 1 shows the attack success rate
(ASR) of the proposed method across varying query num-
bers against different classifiers. The results manifest that
ASR becomes greater under nighttime conditions on GT-
SRB dataset (both models increase around 30%). However,
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Dataset Scene Model Original ASR at different queries
Accuracy 40 60 80 120 160 200 260 320 400

GTSRB
Day CNN-1 [6] 91.5% 50.4% 57.6% 59.2% 65.1% 68.4% 66.8% 69.3% 73.1% 75.2%

CNN-2 [32] 98.5% 49.2% 53.1% 55.9% 60.9% 66.8% 68.3% 69.9% 69.9% 71.9%

Night CNN-1 [6] 93.3% 93.8% 95.0% 94.6% 94.2% 96.3% 96.7% 95.4% 96.25% 97.5%
CNN-2 [32] 98.8% 85.6% 89.9% 89.9% 93.4% 94.6% 94.2% 94.6% 94.2% 94.9%

LISA
Day CNN-1 [6] 99.9% 76.0% 77.2% 81.9% 82.2% 83.2% 84.2% 85.3% 84.6% 86.5%

CNN-2 [32] 99.9% 63.8% 70.4% 71.2% 73.0% 76.2% 76.5% 76.2% 75.4% 76.5%

Night CNN-1 [6] 99.2% 76.1% 78.8% 83.0% 87.3% 86.9% 89.2% 90.0% 90.0% 90.3%
CNN-2 [32] 99.2% 94.2% 97.3% 98.1% 98.8% 99.2% 99.2% 99.2% 99.2% 99.2%

Table 1. Attack Success Rate under Different Dataset and Queries.

we do not observe this trend on LISA dataset. This is proba-
bly because its training data contains a large amount of night
data, while GTSRB does not, making LISA more robust
than GTSRB in nighttime scenarios. In terms of the num-
ber of queries, the results indicate that ASR becomes greater
as the number of queries increases. However, in almost ev-
ery case, the ASR saturates after 120 queries. It appears
that the loss value obtained within 120 queries is sufficient
to mislead the classifier. Even though higher query num-
bers may yield higher loss values, they do not contribute to
an improvement in attack success rate. Consequently, we
choose 120 queries to carry out attacks due to its efficiency
and ASR (over 60% in all cases, with an average of 79%).

4.3. Evaluation in Physical Domain

Experiment Setting. To assess the efficacy and practical-
ity of our proposed natural light attack, we ventured be-
yond simulation-based evaluations and took our tests into
real-world settings. Specifically, we conducted our experi-
ments around traffic signs situated throughout our campus.
To ensure that our light generator was tailored to the in-
tricacies of these real-world scenarios, we adopted a fine-
tuning approach. For each target sign, we captured a 20-
second video detailing the light interference experienced
by that sign. The video data then served as the substrate
upon which our light generator was refined, ensuring it was
well-calibrated to the unique lighting conditions and pre-
sented by each specific environment. We then identified
the light interference by labeling the pixels that displayed
a significant visual difference in Euclidean distance within
the CIELab color space. We then established whether a
pixel belonged to the illuminated area based on a predefined
threshold, and used a median filter to eliminate any noise.
However, we noticed a challenge when dealing with traffic
signs that featured black text; the Euclidean distance for the
areas containing black text remained relatively small, even
under illumination. To rectify this, we employed an aver-
age blur function, followed by several iterations of pixel
clipping to zero for values below a certain threshold, after

the denoising process. This technique effectively resolved
the issue, allowing for the accurate determination of light
locations and facilitating the fine-tuning of our light gener-
ator. After fine-tuning, we follow the pipeline in Fig. 5(b)
to search the adversarial pattern via ZOO optimizer for sim-
ulating the adversarial pattern. Fig. 6 demonstrates several
attacked images. It can also be observed that the results
from real photos are similar to those from simulated pho-
tos. This indicates that our light generator can effectively
simulate light after fine-tuning.
Results of Day Attack with Sunlight. To achieve a more
controlled and refined light interference on road signs, we
employed a round mirror to reflect sunlight onto the signs.
We conducted experiments using four different signs, and
the results of these experiments are presented on the left
side of Fig. 6. It is evident that our method has notable at-
tack efficacy, as all four real-working traffic signs became
adversarial after light perturbation while maintaining a vi-
sually unsuspicious appearance.
Results of Night Attack with Flashlight. For nighttime
conditions, we utilized flashlight as the source of light in-
terference, which is commonly used for night illumination.
We also conducted experiments using the same four road
signs as in the daytime. As shown in Fig. 6, we can observe
that the visual differences due to light interference are more
pronounced compared to the daytime condition, while still
keeping a stealthy appearance, especially in the samples in
the middle two rows, leading to a more successful attack. At
the bottom row of Fig. 6, the confidence of misleading the
sign from “General caution” to “Right-of-way at the next in-
tersection” increased significantly, rising from 62% to 99%.

4.4. Ablation Study

Here, we conduct an ablation study to understand the
contributions of each component of natural light attack.
Improvement of Using ZOO. We compared ZOO to the
optimization methods proposed by previous works, namely
“Random Restart Search” in AdvLB [5] and “PSO” in
Shadow [39], with some modifications to fit our task. The
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Figure 6. A demonstration of our Natural Light Attack on real working signs under different conditions. For each image, we indicate
the corresponding prediction (colors varying based on the type of image) and the confidence score (shown in black) provided by the victim
classifier. This figure shows that all four out of four real working traffic signs can be successfully attacked during the day with a mirror or
at night with a flashlight, both of which are light sources commonly encountered in our daily lives.

results are shown in Figs. 7 and 8 in supplementary mate-
rial . Firstly, the loss generally increases with the number
of queries across all cases, albeit with some noise. Sec-
ondly, while ZOO performs slightly worse initially, it con-
sistently outperforms the other methods as the number of
queries increases. This can be attributed to ZOO’s con-
vergence property, improving steadily with more updates,
unlike the other methods that rely more on randomness un-
related to the number of queries.

Different Shapes. As stated in Sec. 3.2, our ZOO frame-

work simplifies the optimization of different shapes, al-
lowing evaluation of their performance. We compared the
performance of several shapes, namely “Circle,” “Ellipse,”
“3- D P” (where “dimensional” is abbreviated as “D” and
“polygon” as P), “4-D P,” and “5-D P.” We conducted
evaluations on 100 test data samples from the each dataset
(Tab. 2). All shapes were optimized using 120 queries.

The results in the tables indicate that the “Circle” shape
demonstrates superior time efficiency and attack effective-
ness compared to the other shapes. This could be attributed
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GTSRB Circle Ellipse 3-DP 4-DP 5-DP

ASR 81.3% 82.3% 68.8% 78.1% 79.2%
Avg Time 7.4s 46.2s 28.6s 49.2s 84.5s

LISA Circle Ellipse 3-DP 4-DP 5-DP

ASR 63.2% 50.5% 29.5% 40.0% 43.1%
Avg Time 7.3s 49.3s 30.6s 52.1s 86.7s

Table 2. Comparison of different shape of light in digital eval-
uation (“dimensional” is abbreviated as “D”).

not only to the faster calculation of circles but also to their
rarity in the training data of classifier as “perfect” circles
are less common compared to other shapes. Since “Circle”
is a special case of “Ellipse”, “Ellipse” may achieve more
promising results. However, it might require more iterations
for ’Ellipse’ to surmount the performance of “Circle”.
Pre-training vs. Meta Learning. For more precise sim-
ulations, adapting our light generator to fit specific objects
and light sources is imperative. Two methods are possible
to fulfill it: pre-training and meta learning 4. Both method-
ologies utilized 20 distinct digital signs as digital sources
(resulting in 8000 pairs of photos) and 5 physical signs as
physical sources (yielding 7500 pairs of photos) for train-
ing data. The amalgamation of digital and physical sources
constituted a hybrid source.

After applying either of the two approaches, we fine-
tuned our model on a dataset composed of physical signs
(comprising 1500 pairs of photos). The hyperparameters
used were identical to those in the “Pre-Train” scenario, but
training extended for 61 epochs during the fine-tuning stage.
The results are illustrated in Fig. 8. Fig. 8(a) suggests that
digital sources do not enhance the performance of the physi-
cal task with meta-learning, whereas pre-training does con-
tribute positively. In contrast, Fig. 8(b) demonstrates that
physical sources can augment the performance under both
methodologies, a finding that aligns intuitively with our ex-
pectations. Ultimately, we selected the “Pre-Train” method,
coupled with fine-tuning, as our final adaptation technique.
This selection was motivated by its capacity to effectively
utilize both types of sources, as shown in Fig. 8(c).

4.5. Defense of Natural Light Attack

Although a robust defense against unrestricted attacks
remains an area of active research, we have undertaken
comprehensive evaluations of a spectrum of defense meth-
ods. These span from preprocessing strategies such as

4Under the pre-training approach, we initially train our light genera-
tor using normal setting employing a batch size of 16, a learning rate
of 0.0002, and betas set at (0.5, 0.999) over 21 epochs. As for meta
learning, we opted fundamental first-order Model-Agnostic Meta-Learning
(MAML) [28]. The parameters included a batch size of 8, 100 outer steps,
and 3 inner steps.

JPEG R&P NRP advTrain
(Ours)

GTSRB
CNN-1 61(-4) 67(+2) 68(+3) 18(-47)
CNN-2 66(+5) 63(+2) 64(+3) 17(-44)

LISA
CNN-1 76(-6) 76(-6) 78(-4) 21(-61)
CNN-2 68(-5) 77(+4) 77(+4) 12(-61)

Table 3. Our attack under different defences.. We report the
corresponding ASR(%) in day with 120 queries under different
defenses. The decrease and increase of ASR are respectively high-
lighted by green and red colors.

JPEG [14], R&P [36], and NRP [26], to more involved
adversarial training methodologies [23]. As evidenced in
Tab. 3, adversarial training emerges as the most potent
countermeasure against our proposed natural light attack.
In other words, the robustness of traffic sign classification
models is substantially bolstered when trained with adver-
sarial samples generated by our approach. This suggests an
intrinsic value in our proposed attack not just as a challenge
but as a tool for model enhancement. Conversely, other
generic defense strategies seem to falter in the face of our
natural light attack, underscoring the nuanced complexities
introduced by our method and emphasizing the importance
of specialized countermeasures.

5. Conclusion

In this paper, we show that natural light sources such
as sunlight and flashlights, which are commonly encoun-
tered in our daily lives, can menace image classification
task. Consequently, we proposed “Natural Light Attack”
a simple strategy that can be executed by anyone. Our pro-
posed method is not only remarkably simple but also unsus-
picious, making it a great concern for the ongoing advance-
ments in the field of computer vision. In the future, we plan
to explore the possibility of natural light attacks in other ap-
plication areas, e.g. other types of object recognition tasks,
facial recognition, or even image-based authentication.
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