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Abstract

We study how to utilize the mobility of an embodied agent
to improve its ability to recognize human activities. We in-
troduce the embodied human activity recognition problem,
where an agent moves in a 3D environment to recognize the
category of ongoing human activities. The agent must make
movement decisions based on its egocentric observations
acquired up to the current time, with the goal of choosing
movements to obtain new views that lead to accurate human
activity recognition. Towards this goal, we propose a rein-
forcement learning approach that learns a policy controlling
the agent’s movements over time. We evaluate our approach
with two realistic human activity datasets. Results show that
our approach can learn to move effectively to achieve high
performance in recognizing human activities.

1. Introduction
Building embodied agents that exhibit sensitivity and

responsiveness to the presence of humans [1, 46] is a long-
standing goal of artificial intelligence. Sensitivity refers to
the agents’ capability to perceive and understand their sur-
rounding environments - e.g., what humans are doing here.
Meanwhile, responsiveness entails the agents’ ability to react
promptly to their environments.

A key aspect of such human-centered embodied intelli-
gence is that agents cannot afford the luxury of waiting for
the complete execution of human activities. In many ap-
plications, this becomes particularly critical. This includes
robotics applications such as assistants in nursing homes,
social robots in human environments, or telepresence. For
example, in nursing homes, by capturing the subtle signs
manifested in individuals’ ongoing gaits - such as trembling
gaits indicative of body balance loss - these assistive robots
can recognize fatal activities, like falls, at an early stage.

In general, an agent could be almost anywhere in a 3D
environment. The initial visual observations acquired from
the agent’s egocentric sensors can be highly unconstrained
due to its arbitrary starting positions. These unconstrained
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Figure 1. Embodied Human Activity Recognition. An embodied
agent is operating in a 3D environment. The agent is tasked to intel-
ligently move around using cues from its egocentric observations
so that it can accurately classify an ongoing human activity without
seeing the future.

visual observations raise challenges in recognizing ongoing
human activities. For example, identifying trembling gaits
can be very hard by visually sensing from the individual’s
head level from a top-down view. However, by navigating
to observe the individual from the front, the agent can more
easily capture the subtle signs of gait progression. Thus, the
agent’s perceptual sensitivity can benefit from its mobility of
moving around to respond proactively. Simultaneously, en-
hanced perception can guide the agent to plan its movements
over time by informing a more accurate understanding of the
current progression of human activity.

Motivated by these factors, we introduce a novel task:
Embodied Human Activity Recognition (EHAR). In this
task, an agent must plan its movements in an environment to
recognize the category of an ongoing human activity based
on its past and current egocentric observations. As shown
in Fig. 1, the human activities occurring in the environment
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Figure 2. Limitations of stationary cameras placed externally in en-
vironments: they require a well-structured environment and cannot
proactively respond to dynamic scenarios.

display complex and diverse temporal dynamics. Given that
human activities evolve over time, the good viewpoints for
observing humans are also expected to change in response to
the temporal progression of the activities. This necessitates
the agent to continuously reason the activity progression to
plan its movements over time strategically.

Our task is related to but different from prior efforts on
Human Activity Recognition (HAR) from a third-person
sensing perspective. In third-person approaches, sensors
such as stationary cameras are placed externally in the envi-
ronment. As shown in Fig. 2, these cameras are placed so
that humans of interest are expected to be centered within
their field of view. However, these camera positions are
manually pre-determined, requiring prior knowledge of the
environment, including the floor plan and furniture geometry.
Consequently, these approaches are not directly applicable
to unknown and unstructured environments. In addition, sta-
tionary cameras cannot proactively respond to dynamic sce-
narios, particularly when occlusions caused by unexpected
objects occur or when good viewpoints change in line with
human motions.

Towards addressing the EHAR task, we propose a deep
reinforcement learning framework where an agent learns a
navigation policy for how to move to early recognize the
ongoing human activity. Our key insight is the agent should
establish an association between recognition quality changes
and its movements. Our proposed agent consists of a recog-
nition model and a policy model, where the latter receives
an accumulated recognition state from the former. We eval-
uate our approach with realistic human activity data with
diverse activity classes and complex human motion dynam-
ics. Our agent successfully learns to move around effectively
to classify human activity early, outperforming the passive
and several heuristic embodied agents. The project page is
https://github.com/husha1993/embodied_
human_activity_recognition.

2. Related Work

Human Activity Recognition. As a core problem in com-
puter vision, Human Activity Recognition (HAR) aims to
recognize and understand human actions in videos, and has
achieved remarkable progress due to deep neural networks.
From a data-centric view, early attempts primarily focused
on handling RGB data [32]. To capture 3D information and
extend the application, recent work pays attention to skele-
ton [20, 35], point cloud [13] and depth [43] data. These
video datasets are captured by stationary cameras, and pri-
marily from a manually selected angle focusing on the hu-
mans of interest. However, for EHAR, the robots (or agents)
are not static from optimal views. It is required to react
to the environment and adjust the camera adaptively from
noisy data. From a model-centric view, prior work consid-
ered two-stream 2D CNNs [59], RNNs [15], 3D CNNs [16],
Transformers [48] and GCNs [12]. These models designed
for conventional HAR implicitly assume offline data inputs.
However, EHAR is proposed for a more challenging setting
of online data streams which necessitates robust and accurate
prediction even if the action data are partially observed. The
partial observation makes it hard to understand the actions,
as the unobserved segments can contain some crucial infor-
mation. Though Early Human Activity Recognition [23, 53]
is relevant in the case of recognizing unfinished actions, it
still focuses on the data captured by a static camera. On the
one hand, it makes EHAR very challenging as the camera
view is dynamic, thereby introducing noise and data shifts;
on the other hand, it also enables the agents to adaptively
react in the environment and avoid accumulated errors from
the past states. Therefore, conventional HAR models are not
readily applicable to EHAR, and more attention on this task
is important.

Robot-centric Perception of Humans. In order to expand
the habitats of robots from isolated environments to shared
human workspaces and social zones, it is essential for robots
to understand human behavior through their onboard sensors.
Prior work has explored two intertwined aspects of human
behavior understanding in the context of robotics: (1) Devel-
oping visual sensing of human behaviors tailored for robotic
tasks, such as emotion recognition for robot-assisted ther-
apy [38], human trajectory prediction for social robot naviga-
tion [39], human intention prediction [54] for human-robot
interactions, and human grasp estimation [55] for human-
to-robot handovers, etc. (2) Controlling robots to perceive
humans within their vicinity, such as drone trajectory op-
timizations to reconstruct 3D human meshes [41, 47, 60],
human tracking in unstructured environments with unpre-
dictable occlusions and motion dynamics [11,21,40], human
social groups detection via ground robots [61, 62], etc. Our
work closely aligns with this line of work as we aim to
control an autonomous agent to observe human activities.
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Utilizing the opportunity offered by the mobility of robots
to yield remarkably flexible human sensing capabilities be-
comes particularly relevant in light of the rapid growth of
various types of commercial affordable robots. Selecting
what to see for better perceptual understanding is also re-
lated to works on frame or camera selection for HAR.

Frame Selection or Camera Selection for HAR. Prior
works on frame selection [4, 17, 31, 44, 67–69, 74] aim for
efficient and precise human action understanding in long
videos by selecting salient frames or clips. However, these
approaches either receive a complete action video as input
in a passive offline setting [4, 17, 31, 67, 69, 74] or passive
streaming setting [44, 68], which are not immediately appli-
cable to an active setting where viewpoints can be manip-
ulated. View selection among multiple cameras [6, 52, 64]
aims to select views that offer the best visibility for human
action filming or that are most beneficial for human action
recognition. However, these approaches are not designed
to handle the potentially arbitrary spawning positions and
movements of autonomous robots. [26, 58] also tackle se-
quential viewpoints selections for object recognition, with
their focus being on static objects. Consequently, their works
do not consider the transient nature of human behaviors in a
dynamic real world.

Human-centered Embodied AI. In addition to exposing
autonomous agents directly to the physical world, embodied
AI research provides a complementary paradigm to train
and test agents, fueled by the rapid advancements in simu-
lators [2, 37, 56, 70] and the availability of large-scale 3D
datasets [3, 71]. However, only a few of these support tasks
involve sensing and responding to realistic human activi-
ties. [66] learns to control embodied agents to respond to
human gestures via a Virtual Reality interface. [50, 51] aims
to build assistive agents to interact with virtual humans in
household tasks, where these virtual humans are simulated
using classical motion planners. The employment of mo-
tion planners to simulate virtual humans [36, 45, 73] finds
widespread use in both embodied AI tasks and graphic ani-
mations.

There are distinctions between the control of embodied
agents for robotic tasks and virtual camera control for human
motion animations [5, 7, 8, 18, 27, 34]. The primary goal
of virtual camera control is to produce storytelling videos
of 3D human characters. These studies typically assume
full knowledge of the environments, including 4D human
motions, while embodied agents can only act on egocentric
observations up to the current time. Additionally, a virtual
camera agent is not subject to physical constraints, meaning
the translation of the camera’s position between consecutive
time steps can be arbitrarily large. In contrast, the movement
strategy for embodied agents needs to account for these
constraints of a physical body, which necessitates careful
long-horizon planning.

3. Task Formulation

We introduce the novel task of Embodied Human Activity
Recognition (EHAR). In this task, an autonomous agent
starts at an arbitrary location in a 3D environment and is
required to recognize an ongoing human activity. The agent
observes human activities merely with its onboard sensors.
Our goal is to learn a policy that controls the agent to move
around intelligently to recognize the category of human
activity at each step of its movement.

Episode Specification. An episode is defined by 1) a dy-
namic human activity scenario h and 2) the agent’s starting
position p0. The human scenario h is specified by 4D spatial-
temporal human skeletons hk and the activity category hc.
H, Hc and P0 denote the human scenario space, activity
category space, and the agent’s starting position space, re-
spectively. In each episode, we sample a human activity sce-
nario h ∼ P (H) and an agent’s initial position p0 ∼ P (P0).
In this work, we assume the human motions are within a
3D space of interest. In addition, the center of the space of
interest is known a priori and used as the origin of the world
coordinate system. The episode length is L, meaning the
agent is allowed to take up to L actions. Since the task ob-
jective is to recognize the activity before fully observing its
execution, each task episode begins after the human activity
starts and terminates before the activity completes. This is
practically simulated by a trimmed activity dataset (with no
frames of blank activity) as detailed in Sec. 5.1.

Sensory Input and Action Space. The agent makes move-
ment decisions only using its egocentric visual and GPS
sensory input. These sensory inputs are not ground-truth
human states hk, so they are referred to as partial observa-
tions. Concretely, the agent receives egocentric 2D human
skeletons vt and its 3D localization pt as observation at ev-
ery step, denoted as ot = (vt, pt) ∈ O. vt is represented
as a graph with 2D human joint locations as nodes and
limbs as edges [12, 72]. The human joint locations are in
the pixel coordinate system. In our simulation, vt is com-
puted by a perspective projection model. For real-world
deployment, vt could be the output of a 2D pose estimator.

𝜙
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𝜌

Figure 3. Spherical coor-
dinate system

As shown in Fig. 3, pt =
(ρ, θ, ϕ), where ρ/θ/ϕ repre-
sents the agent’s distance to the
world origin/azimuth/elevation,
respectively. pt is defined on
a spherical coordinate system
centered on the area of interest,
which is a common coordinate
system for drone cinematogra-
phy [10, 22, 25]. This work as-

sumes the agent’s visual perception frame always points
towards the center of the space of interest, and the visual per-
ception frame and the actuation frame are identical. There-
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fore, the action space of the agent reduces to 3 degrees
of freedom (DOF). We further discretize the 3-DOF ac-
tion space into small translation ∆ρ ∈ {+0.1m,−0.1m}
and rotation ∆θ,∆ϕ ∈ {+3.6◦,−3.6◦}. At each time
step, the agent chooses to hover or picks one direction of
(ρ, θ, ϕ) to move by ∆. Thus, the action space A consists of
1 + 3× 2 = 7 discrete actions.

EHAR as a Contextual POMDP. To highlight the disjoint
training/test episodes setting of EHAR, we adopt the Con-
textual Partially-Observable Markov Decision Process (Con-
textual POMDP) framework [29], which essentially defines
a distribution of POMDPs by introducing a context vari-
able c. Formally, the EHAR task space is defined by a
tuple T = ⟨C, L,S,O,A, T,R⟩, where C denotes the con-
text space. Each task episode τ ∈ T is uniquely specified
by a human scenario h and an agent spawning position p0.
Thus, the context space C can be given by C = H × P0.
S represents the hidden state space, including human mo-
tions in 3D space and the ground-truth activity category.
T : S × A → S represents the state transition probability
function. R : S ×A → R represents the reward function.

Oracle. To probe an upper-bound on the performance
of an embodied agent, we define an oracle agent that
first imagines trying all actions exhaustively and receives
the ground-truth consequent observations, then makes a
hindsight action decision that can yield the lowest cross-
entropy loss given the ground truth activity label hc, i.e.,
at = argmin

a∈A
Lce(h

c, ĥc
t+1), where ĥc

t+1 is the predicted

human activity label after receiving the consequent next time
observation ot+1 and Lce is the cross entropy loss. Note that
this agent is near-optimal rather than optimal since it acts
myopically based on one-step cross-entropy reduction. In
addition, it is not realistic in real-world development because
it requires knowing the true label and acting with hindsight
by peeking into the future.

4. Approach

We approach the EHAR task with reinforcement learning.
The agent aims to build an incrementally accurate under-
standing of the ongoing human activities by moving around
to gather high-quality observations. Therefore, the move-
ment policy should be informed by the agent’s recognition
state. Additionally, the agent should be capable of reasoning
how the recognition quality changes along with its move-
ments to better plan actions.

Our goal is to learn a policy guided by an activity recogni-
tion model. The policy controls the agent movements given
the agent’s sensory input and accumulated visual compre-
hension computed by the activity recognition model. We
next describe our agent’s architecture and its staged training.
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Figure 4. Overview of our agent architecture for EHAR. It has two
main components: an activity recognition network and a policy
network.

4.1. Agent Architecture

As shown in Fig. 4, our agent has two main components:
an activity recognition network and a policy network. At
each time step t, the activity recognition network receives
observed human skeletons up to the present v0:t and predicts
the activity label ĥc

t . The policy network aims to predict an
action at executed by the agent. After moving in the 3D
space by action at, the agent acquires a new observation
ot+1 = (vt+1, pt+1), including a new egocentric observa-
tion of human skeletons vt+1 and the agent’s new 3D loca-
tion pt+1. The perception-action loop continues until the
agent reaches the task episode horizon L.

Activity Recognition Network. We adopt the Channel-wise
Topology Refinement Graph Convolution Network (CTR-
GCN) [12], which achieves start-of-the-art performance on
skeleton-based human action recognition. The CTR-GCN
consists of a skeleton feature extraction component fE and
a recognition component fR.

Policy Network. Movement decisions demand an un-
derstanding of the recognition model’s state, the current
progress of human activities, and the relation between recog-
nition quality and agent position. We encode these three
types of information with three separate encoders to inform
movement decision-making.
Accumulated recognition state encoder fA. Concretely, the
recognition state, obtained from internal representations of
the activity recognition network, represents the agent’s accu-
mulated comprehension of human activities. We introduce
fA to compute the accumulated recognition state sat . It re-
ceives visual observations embeddings e0:t extracted from
the activity recognition network and outputs sat .
Visual encoder fV . It informs the agent of the current
progress of human activities. The current visual observa-
tion vt is fed to fV to compute visual features svt .
Position encoder fP . It computes position features spt . spt
conveys spatial cues, which help the agent to anchor the
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relative locations of future high-quality views to its current
location.

Those three encoders together enable the agent to reason
about how the recognition quality evolves with its move-
ments in 3D space, leading to a better sequential movement
policy for long-horizon episodes.

The state encoder fS receives a concatenation of the
above three states [sat , s

v
t , s

p
t ] and outputs a fused state em-

bedding st. st is transformed to a probability distribution
over the action space and value of the current state through
an actor-critic network.

4.2. Agent Training

Following previous works [24, 28, 47], we adopt staged
agent training. Namely, we first train the activity recog-
nition network. Then we freeze and plug in the activity
recognition network to train the policy network. This staged
training is simple yet effective. On the other hand, some
prior works [26] also find joint training can lead to a better
synergy between perception and action. We leave end-to-end
agent training for future work.
Activity Recognition Network Training. The activity
recognition network is trained by supervised learning us-
ing the cross entropy loss. We collect pairs of visual se-
quences and ground-truth categories at predetermined posi-
tions spread out in the 3D space in training episodes. Con-
cretely, we determine 32 positions by a uniform grid of 32
nodes spanning P0. These positions aim to construct a visual
pre-train dataset captured from a wide range of viewpoints.
We follow the hyperparameters and optimizers from the prior
work [12] to train the activity recognition network.
Rewards. The policy is trained with the objective of max-
imizing accumulative rewards. The policy aims to achieve
high overall recognition accuracy over the whole task hori-
zon L. For this purpose, We formulate a dense reward racct

to encourage the agent to act to maximize accuracy at every
step. In addition, we want the agent to recognize correctly as
early as possible. We therefore define a sparse recognition
improvement reward rimp

t that captures the recognition im-
provement. Typically, the agent outputs incorrect categories
in the first few steps, and the correct recognition appears
in a certain time step. We want this turning step to happen
as early as possible. Towards this goal, the agent should
be positively rewarded if it improves its recognition accu-
racy by moving to produce a better recognition than the last
timestep. On the other hand, the agent should be penalized
if the newly acquired observations lead to worse recognition.
Specifically, the reward at each step rt is given as follows:

rt =

{
1
Lr

acc
t t = 1

1
Lr

acc
t + rimp

t 2 ≤ t ≤ L
(1)

where racct = 1 if ĥc
t = hc else 0. rimp

t = racct − racct−1.

The ratio 1
L aims to balance racct and rimp

t .
Two-phase Policy Training. We follow a two-phase training
paradigm [9, 42] for policy training. We pre-train the policy
with Imitation Learning (IL) [49] and then fine-tune the
policy with Proximal Policy Optimization (PPO) [57].

For the IL phase, we first collect a static demonstration
dataset from Oracle. It’s widely acknowledged [9, 42] that
the difficulty of obtaining high accumulated rewards expo-
nentially increases with task horizon. To provide enough
demonstrations to overcome the complex optimization land-
scape of the EHAR task, we collect 10k trajectories of oracle
performing task episodes randomly sampled from Ctrain.
We employ the standard behavior cloning objective [49] for
IL. For the RL fine-tuning phase, the PPO objective consists
of a value network loss, an actor network loss, and an action
entropy loss which encourages exploration. See Supp. for
details like PPO hyperparameters and network architectures.

5. Experiments

To simulate an embodied agent which can move and per-
ceive realistic human activities in 3D space, we use real mo-
tion capture data from the Extreme Pose Interaction (ExPI)
dataset [19] and the AIST++ dataset [33]. To the best of our
knowledge, our work is the first step towards intelligently
moving an embodied agent in 3D environments to recognize
ongoing human activities. Since there is no existing simula-
tor that can render real human activities within real scenes,
we leave experimenting in environments of complex scenes
with obstacles and real human activities to future works.

5.1. Experimental Setup

Episode Dataset Preparation. The episode dataset is
constructed as combinations of human scenarios and agent
starting positions.
ExPI [19]: ExPI consists of two couples of dancers per-
forming various collective activities. There are 7 classes
of common activities performed by different couples of
dancers. Each category has 10 mocap sequences, split in
5/5 for training/test set. We further split the training set into
training/validation sets in a ratio of 0.85:0.15. The training
set is divided into two subsets: one for activity recognition
network training and the other for policy training, with the al-
location ratio being 0.4:0.6. We take sub-sequences of length
L = 60 from each sequence to construct episodes with equal
temporal horizon, similar to the data preprocessing in the
prior work [19]. The starting frame of each sub-sequence is
decided by a sliding window of length L and stride s. Strides
are set to s = 1/1/60 for train/val/test, respectively. This
results in 5658/998/135 human activity scenarios for train-
ing/validation/test sets, i.e., |Htrain| = 5658, |Hval| = 998,
and |Htest| = 135.
AIST++ [33]: AIST++ consists of 10 classes of single-
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acc@10 acc@30 acc@50 acc@70 acc@90 acc@100 acc

ORACLE 55.56 67.41 80.74 89.63 93.33 94.81 77.53

PASSIVE NO-ACT 49.63 47.41 51.85 57.04 61.48 62.96 52.79

EMBODIED

Heuristic

TOWARDS 48.89 42.96 50.37 57.78 59.26 59.26 50.64
H-ROTATE 44.44 48.15 55.56 46.67 33.33 29.63 45.23
V-ROTATE 45.19 48.15 57.04 62.22 60.74 60.00 54.52
RANDOM 49.93 ± 1.44 45.78 ± 1.22 51.26 ± 0.62 56.74 ± 2.07 60.59 ± 2.74 62.07 ± 3.12 52.45 ± 0.86

Learning
PPO ONLY 46.07 ± 0.81 50.52 ± 1.43 62.07 ± 3.53 67.11 ± 4.40 65.63 ± 5.70 65.48 ± 6.28 58.51 ± 2.45
IL ONLY 49.33 ± 1.12 53.04 ± 1.12 63.70 ± 2.10 65.33 ± 2.53 65.78 ± 2.64 63.70 ± 3.98 59.61 ± 0.78

OURS 50.81 ± 1.24 56.30 ± 1.05 66.37 ± 1.62 71.70 ± 2.06 74.81 ± 1.57 74.96 ± 1.77 64.27 ± 0.33

Table 1. Embodied human activity recognition performance on ExPI. Performances of learning-based methods are reported as mean over 5
independent training runs with different seeds.

person activities. Each category has 21 mocap sequences,
split in 14/7 for training/test set. We use a process similar to
ExPI to sample sub-sequences. See Supp. for more details.
Starting Positions: The agent starting positions p0 are sam-
pled from P0 uniformly at random, and P0 is defined as
follows: 1) The distance ρ between the initial positions
and the world origin ranges from 5m to 15m; 2) The az-
imuth θ ranges from 0◦ to 360◦; 3) The elevation ϕ ranges
from 0◦ to 90◦, meaning that agent is spawned above the
ground; and 4) P0 is a large finite set obtained by a uniform
grid spaced by (∆ρ = 0.1m,∆θ = 3.6◦,∆ϕ = 3.6◦), i.e.,
|P0| = 100 ∗ 100 ∗ 25 = 250k.
Task Space: As defined in Sec. 3, each episode is uniquely
specified by a human scenario and an agent starting position.
The training task space Ctrain is an exhausted combination of
scenario space and position space, e.g., for ExPI, |Ctrain| =
5859 ∗ 250k. val/test episodes are obtained by assigning a
single position uniformly sampled from P0 to each scenario,
e.g., |Cval| = 140 and |Ctest| = 135 for ExPI.
Evaluation Metrics. We use standard metrics [53, 64]: 1)
accuracy at an observation ratio of x% denoted as acc@x,
where x ∈ {10, 30, 50, 70, 90, 100}; and 2) the average ac-
curacy across all time steps, denoted as acc. acc measures
the overall early recognition accuracy over different obser-
vation ratios. We also plot the accuracy against observation
ratios as a curve.
Baselines. We compare against the following methods:

• No-Act: an agent takes no movement action and holds
its starting position for all steps, representing a passive
policy.

• Random: an agent randomly selects an action from the
action space A.

• Towards: an agent moves towards the humans so that it
is likely to recognize the activity better.

• H-Rotate [75]: an agent undergoes a constant horizontal
rotation to observe human activity from a wide range of
viewpoints.

• V-Rotate: an agent always decreases its elevations to
move towards an identical horizontal level with humans.
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Figure 5. Curve of accuracy against observation ratios on ExPI.
Our full model shows increasing accuracy as acquiring more ob-
servations. This suggests that our model can learn more effective
movement behaviors than other baselines.

5.2. Results and Findings

Our Model Outperforms Baselines across Observation
Ratios. Table. 1 and Table. 2 show the accuracy results
across observation ratios and the average accuracy on ExPI
and AIST++, respectively. Passive agents perform poorly
compared to embodied agents that can move. This proves
that embodied agents capable of navigating within a 3D
environment can better perceive human activity.

All variants of learning-based methods outperform the
heuristic baselines in overall early recognition accuracy acc,
showing that our proposed model can learn an intelligent
policy that can more effectively control an agent in gathering
high-quality views.

We show the curve of accuracy against observation ra-
tios on ExPI in Fig. 5. Our full model outperforms others
across different observation ratios. In addition, our model
shows an increasing trend in accuracy as more observations
are acquired. This means our model can better leverage the
observations acquired up to the current timestep and strategi-
cally move around for enhanced recognition in subsequent
timesteps. In contrast, H-Rotate on ExPI shows a signif-
icant drop in accuracy when acquiring more observations.
By examining the sequential observations of H-Rotate,
we find that the egocentric human skeletons in pixel space
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acc@10 acc@30 acc@50 acc@70 acc@90 acc@100 acc

ORACLE 21.24 40.71 57.52 60.18 69.91 69.03 51.22

PASSIVE NO-ACT 20.35 30.97 37.17 41.59 40.71 43.36 32.68

EMBODIED

Heuristic

TOWARDS 19.47 29.20 36.28 35.39 39.82 42.48 31.86
H-ROTATE 19.47 27.43 35.39 39.82 40.70 44.24 32.77
V-ROTATE 16.81 23.01 33.63 34.51 37.17 39.82 28.08
RANDOM 18.89 ± 1.02 27.14 ± 0.51 36.87 ± 0.51 38.94 ± 0.51 37.61 ± 3.13 41.15 ± 3.13 32.06 ± 1.09

Learning
PPO ONLY 17.88 ± 1.58 35.04 ± 3.10 46.90 ± 2.34 53.81 ± 3.62 58.58 ± 3.51 59.47 ± 3.88 42.59 ± 1.57
IL ONLY 17.26 ± 0.51 31.42 ± 2.11 42.04 ± 1.53 45.58 ± 3.27 45.13 ± 1.91 43.58 ± 2.64 36.38 ± 0.63

OURS 19.25 ± 1.96 37.61 ± 1.14 50.00 ± 2.34 58.41 ± 2.17 63.72 ± 2.29 67.04 ± 3.34 46.06 ± 0.50

Table 2. Embodied human activity recognition performance on AIST++. Performances of learning-based methods are reported as mean over
5 independent training runs with different seeds.

undergo substantial transformations over time as the agent
constantly changes its azimuths within an episode. These
observation transformations include both 2D joints positions
of each person and relative positions of person to person.
This temporal incoherence in the pixel space between con-
secutive frames within one episode, resulted by changes in
viewpoints, is known as shotcuts [14], which can adversely
impact recognition accuracy. More observations do not nec-
essarily lead to improved recognition. We also notice that
H-Rotate on AIST++ does not show decreases in acc@x
when x increases in Table. 2. Since activities from AIST++
only involve a single person, the observation transformations
of H-Rotate do not include relative positions between
humans, resulting in less recognition confusion.
EHAR is a Hard-Exploration Problem and IL helps. To
better understand the challenges posed by the EHAR task,
we ablate various training stages of our learned agents in
Table. 1 and in Table. 2.

The PPO-ONLY agent, which learns an intelligent mov-
ing policy better than other heuristic baselines, shows that
manual reward engineering and action entropy regularization
(Sec. 4.2) can to some extent mitigate the hard exploration.
However, we empirically find that the stability of PPO train-
ing curves depends on the network initialization and action
sampling, both of which are determined by experimental
seeds. Moreover, the learned policies are prone to converge
to a naive behavior mode, wherein a specific action consis-
tently has a high probability throughout an episode. Policy
initialization and sampled actions heavily influence the ini-
tial behavior trajectories during training. These trajectories
subsequently impact the initial policy optimization, often
resulting in a sub-optimal strategy. Thus, we conjecture that
the unstable and sub-optimal behaviors of PPO-ONLY agents
stem from an inefficient exploration of the environments at
the beginning of policy learning, and they struggle to recover
in later interactive training.

The IL-ONLY agent, which learns a policy through super-
vised learning on a static demonstration dataset, shows more
stable learning than PPO from scratch. In addition, the IL
agent converges to diverse modes of action selection behav-
ior instead of a single mode. Thus, we hypothesize that IL

acc@10 acc@50 acc@100 acc

w/o fA 50.93 ± 1.64 64.81 ± 0.96 67.59 ± 2.86 61.32 ± 0.80
w/o fV 48.33 ± 1.64 62.96 ± 1.35 71.30 ± 2.52 61.41 ± 0.86
w/o fP 52.35 ± 0.43 66.91 ± 0.43 70.62 ± 3.50 63.36 ± 0.81

ours 50.81 ± 1.24 66.37 ± 1.62 74.96 ± 1.77 64.27 ± 0.33

Table 3. Ablation of policy components of our agent on ExPI.

helps with the hard-exploration issue of EHAR. Furthermore,
by fine-tuning the IL pretrained agent with PPO, the agent
obtains further performance improvement. We hypothesize
that the improvement of OURS over IL-ONLY results from
mitigating the difficulty of imitating an oracle that requires
privileged information [65]. Such privileged information, in-
cluding hindsight action selection by peeking into the future
and ground truth activity label, is not available as observa-
tions to the agent during training. The interactive training
with environments through PPO fine-tuning can bypass the
imitation difficulty of privilege absence.

Ablations of Policy Components. To study the different
roles of policy inputs for EHAR, we report the ablation of
policy input components on ExPI in Table. 3. The accumu-
lated recognition state encoder fA plays an important role
in the overall performance. This suggests the importance of
encoding accumulated visual understanding over a sequence
of visual observations acquired up to the present. Given that
fV is learned with visual observations acquired by a policy
online, it can encode visual features that match with the pol-
icy behavior, accounting for the view transformations along
with movements during both training and testing phases. The
pose encoder fP is also critical since it informs the agent
of its spatial positions, building an implicit association of
recognition quality and its current 3D position over time.

Behavior Mode of the Learned Agent. We provide statis-
tics and analysis on the behavior mode of the learned agent
on ExPI. Fig. 6 and Fig. 7a-7d show the agents’ temporal and
spatial behavior patterns, respectively. As shown in Fig. 6,
the spatial positions of the agent exhibit a broad distribution
across various elevations ϕ, distance to the world origin ρ,
and azimuths θ. This implies that the agent’s navigational
trajectories span widely across 3D space, indicating that
the agent learns to actively adjust its positions within its
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Figure 6. Histograms of distance (m), azimuth (degree), and eleva-
tion of agent positions (degree).

environment. In addition, the distributions over the three
dimensions are nearly uniform. It means that there is no
canonical position that is especially favored for EHAR; in-
stead, high-quality views are acquired from diverse positions.
Finally, the peaks at elevations between ranges of 85◦and
90◦(i.e., p(ϕ ∈ [85◦, 90◦]) ≈ 0.2 in Fig. 6c suggest that
the learned agent tends to move to positions at a same hor-
izontal level with humans. This tendency can explain the
relatively good performance of V-Rotate among other
heuristic agents.

Fig. 7a shows the probability distribution of the agent’s
actions computed from 135 test episodes. We further in-
vestigate the distribution of the agent’s actions across dif-
ferent stages of episodes. We segment the full episode into
three stages of equal timesteps, i.e., t ∈ [1, 20] in Fig. 7b,
t ∈ [21, 40] in Fig. 7c, t ∈ [41, 60] in Fig. 7d. This helps to
understand the evolution of the agent’s behavior patterns over
time. The action indexes are defined as follows: a = 0/1
means move to increase/decrease ρ by ∆ρ; a = 2/3 means
move to increase/decrease θ by ∆θ; a = 4/5 means move
to increase/decrease ϕ by ∆ϕ; a = 6 means hovering.

We notice that the probability of hovering (i.e., at = 6)
tends to increase as the episodes progress. This trend might
result from the agent’s active adjustments of its 3D positions
in the initial stages of the episodes, followed by its tendency
to keep static after moving to some good viewpoints. How-
ever, the probability of taking other actions to move around
(i.e., at ̸= 6) is still high in the later stage, indicating that
the good viewpoints keep changing. Since human activity
is dynamic through time, the good viewpoints for observing
humans are also expected to change over time along with the
temporal progression of human motions.

Visualizations of Learned State Representations. We ex-
amine the state representations st, which are the outputs of
the state encoder fS at each timestep of episodes, to un-
derstand the learned agent’s successful performance in the
EHAR task. Fig. 7e shows the t-SNE [63] visualization of
st on ExPI. Each point, denoting a state representation, is
colored by the ground truth human activity label of the cor-
responding episode. We find that the clusters can correspond
well to the human activity classes. Given that the agent’s
actions are directly mapped from the state representations,
we conclude that the agent learns to move by considering
the activity semantics. This means that our agent builds a
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Figure 7. (a), (b), (c), (d) represent histograms of the agent’s ac-
tions across different stages of episodes. (e) is the t-SNE visualiza-
tion of learned state embeddings.

tight synergy between its perception and action.
Predictability of Human Activity for Embodied Percep-
tion. The predictability of human activity varies across
activity types and perception settings. We show that the pre-
dictability of human activity in the embodied setting is differ-
ent from the passive setting. Specifically, the predictability
of human activity is defined by the portion of an activity
sequence that needs to be observed before being classified
correctly [20, 30]. Following prior works, three categories
of predictability are defined: Instantly preditable (IP), Early
preditable (EP), and Late preditable (LP). IP/EP/LP means
the activity sequence can be correctly classified after observ-
ing 10%/50%/100%, respectively. As shown in Table. 4,
though the number of activity types that are instantly or early
predictable is larger for embodied perception than for passive
perception, it’s still challenging to recognize most activity
types given less than 50% observations in both settings.

Instantly Predictable Early Predictable Late Predictable

Passive
Perception noser cartwheel; rog-classic

around-the-back;
coochie;

a-frame; toss-out

Embodied
Perception noser; rog-classic

toss-out; coochie;
cartwheel a-frame; around-the-back;

Table 4. Embodied predictability and passive predictability of
different human activities on ExPI.

6. Conclusion

In this work, We introduce the EHAR task – an agent
is spawned in a 3D environment and is able to move in
order to recognize ongoing human activities by acquiring
high-quality observations. To tackle this task, we propose
a reinforcement learning approach to learn an intelligent
movement policy. Through quantitative comparisons with
various baselines, we demonstrate the importance of strate-
gic movements for EHAR. In addition, through several abla-
tion experiments and qualitative analysis, we show that our
proposed agent can learn effective movement behavior to
achieve high performance in recognizing human activities.
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[47] Aleksis Pirinen, Erik Gärtner, and Cristian Sminchisescu.
Domes to drones: Self-supervised active triangulation for 3d
human pose reconstruction. Advances in Neural Information
Processing Systems, 32, 2019. 2, 5

[48] Chiara Plizzari, Marco Cannici, and Matteo Matteucci.
Skeleton-based action recognition via spatial and temporal
transformer networks. Computer Vision and Image Under-
standing, 2021. 2

[49] Dean A Pomerleau. Alvinn: An autonomous land vehicle in
a neural network. Advances in neural information processing
systems, 1, 1988. 5

[50] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu
Wang, Sanja Fidler, and Antonio Torralba. Virtualhome:
Simulating household activities via programs. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8494–8502, 2018. 3

[51] Xavier Puig, Tianmin Shu, Shuang Li, Zilin Wang, Yuan-
Hong Liao, Joshua B. Tenenbaum, Sanja Fidler, and Antonio
Torralba. Watch-and-help: A challenge for social perception
and human-{ai} collaboration. In International Conference
on Learning Representations, 2021. 3

[52] Dmitry Rudoy and Lihi Zelnik-Manor. Viewpoint selection
for human actions. International journal of computer vision,
97:243–254, 2012. 3

[53] Michael S Ryoo. Human activity prediction: Early recog-
nition of ongoing activities from streaming videos. In 2011
international conference on computer vision, pages 1036–
1043. IEEE, 2011. 2, 6

[54] Michael S Ryoo, Thomas J Fuchs, Lu Xia, Jake K Aggarwal,
and Larry Matthies. Robot-centric activity prediction from
first-person videos: What will they do to me? In Proceedings
of the tenth annual ACM/IEEE international conference on
human-robot interaction, pages 295–302, 2015. 2

6456



[55] Alessio Sampieri, Guido Maria D’Amely di Melendugno,
Andrea Avogaro, Federico Cunico, Francesco Setti, Geri Sk-
enderi, Marco Cristani, and Fabio Galasso. Pose forecasting
in industrial human-robot collaboration. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXXVIII, pages 51–
69. Springer, 2022. 2

[56] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu,
Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform
for embodied ai research. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 9339–
9347, 2019. 3

[57] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 5

[58] Soroush Seifi, Abhishek Jha, and Tinne Tuytelaars. Glimpse-
attend-and-explore: Self-attention for active visual explo-
ration. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 16137–16146, 2021. 3

[59] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. In Ad-
vances in Neural Information Processing Systems, 2014. 2

[60] Rahul Tallamraju, Nitin Saini, Elia Bonetto, Michael Pabst,
Yu Tang Liu, Michael J Black, and Aamir Ahmad. Aircaprl:
autonomous aerial human motion capture using deep rein-
forcement learning. IEEE Robotics and Automation Letters,
5(4):6678–6685, 2020. 2

[61] Angelique Taylor, Darren M Chan, and Laurel D Riek. Robot-
centric perception of human groups. ACM Transactions on
Human-Robot Interaction (THRI), 9(3):1–21, 2020. 2

[62] Angelique Taylor and Laurel D Riek. Regroup: A robot-
centric group detection and tracking system. In 2022 17th
ACM/IEEE International Conference on Human-Robot Inter-
action (HRI), pages 412–421. IEEE, 2022. 2

[63] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9(11),
2008. 8

[64] Boyu Wang, Lihan Huang, and Minh Hoai. Active vision
for early recognition of human actions. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1081–1091, 2020. 3, 6

[65] Luca Weihs, Unnat Jain, Iou-Jen Liu, Jordi Salvador, Svetlana
Lazebnik, Aniruddha Kembhavi, and Alex Schwing. Bridging
the imitation gap by adaptive insubordination. Advances in
Neural Information Processing Systems, 34:19134–19146,
2021. 7

[66] Qi Wu, Cheng-Ju Wu, Yixin Zhu, and Jungseock Joo. Com-
municative learning with natural gestures for embodied nav-
igation agents with human-in-the-scene. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 4095–4102. IEEE, 2021. 3

[67] Wenhao Wu, Dongliang He, Xiao Tan, Shifeng Chen, and
Shilei Wen. Multi-agent reinforcement learning based frame
sampling for effective untrimmed video recognition. In Pro-
ceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 6222–6231, 2019. 3

[68] Zuxuan Wu, Caiming Xiong, Yu-Gang Jiang, and Larry S
Davis. Liteeval: A coarse-to-fine framework for resource
efficient video recognition. Advances in neural information
processing systems, 32, 2019. 3

[69] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher,
and Larry S Davis. Adaframe: Adaptive frame selection
for fast video recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1278–1287, 2019. 3

[70] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra
Malik, and Silvio Savarese. Gibson env: Real-world per-
ception for embodied agents. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
9068–9079, 2018. 3

[71] Karmesh Yadav, Ram Ramrakhya, Santhosh Kumar Ramakr-
ishnan, Theo Gervet, John Turner, Aaron Gokaslan, Noah
Maestre, Angel Xuan Chang, Dhruv Batra, Manolis Savva,
et al. Habitat-matterport 3d semantics dataset. arXiv preprint
arXiv:2210.05633, 2022. 3

[72] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal
graph convolutional networks for skeleton-based action recog-
nition. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018. 3

[73] Ruolin Ye, Wenqiang Xu, Haoyuan Fu, Rajat Kumar Jena-
mani, Vy Nguyen, Cewu Lu, Katherine Dimitropoulou, and
Tapomayukh Bhattacharjee. Rcareworld: A human-centric
simulation world for caregiving robots. 2022.

[74] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-Fei.
End-to-end learning of action detection from frame glimpses
in videos. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2678–2687, 2016. 3

[75] Xiaowei Zhou, Sikang Liu, Georgios Pavlakos, Vijay Ku-
mar, and Kostas Daniilidis. Human motion capture using a
drone. In 2018 IEEE international conference on robotics
and automation (ICRA), pages 2027–2033. IEEE, 2018. 6

6457


