
Removing the Quality Tax in Controllable Face Generation

Yiwen Huang Zhiqiu Yu Xinjie Yi Yue Wang James Tompkin
Brown University

Abstract

3DMM conditioned face generation has gained traction
due to its well-defined controllability; however, the trade-off
is lower sample quality: Previous works such as DiscoFace-
GAN and 3D-FM GAN show a significant FID gap compared
to the unconditional StyleGAN, suggesting that there is a qual-
ity tax to pay for controllability. In this paper, we challenge
the assumption that quality and controllability cannot coexist.
To pinpoint the previous issues, we mathematically formalize
the problem of 3DMM conditioned face generation. Then, we
devise simple solutions to the problem under our proposed
framework. This results in a new model that effectively re-
moves the quality tax between 3DMM conditioned face GANs
and the unconditional StyleGAN.
Project webpage: visual.cs.brown.edu/taxfreegan

1. Introduction
Face image generation has wide application in computer

vision and graphics. Among different works in this area, deep
learning generative model approaches are especially good at
generating high-quality photo-realistic face images [17, 19].
However, generative models provide limited explicit control
over their output due to their unsupervised nature, relying
instead on latent space manipulation [21]. On the other hand,
parametric models such as 3D Morphable Models (3DMMs)
embed facial attributes in a disentangled parameter space,
but their results lack photorealism [32].

In light of this, researchers have tried to build models
that can synthesize high-resolution novel face images
with control by combining 3DMM with generative model-
ing [1, 6, 8, 25, 39]. Existing attempts can be roughly divided
into two categories: rigging and conditional generation. Rig-
based methods attempt to align the 3DMM parameter space
with the latent space of a pre-trained generative model [1, 39].
Sample quality is not compromised by controllability;
however, controllability is limited by the completeness and
disentanglement of the underlying latent space [43]. Con-
ditional generation methods use 3DMM when training the
generative model [6, 8, 25]. These offer improved controlla-
bility but reduced sample quality since additional constraints
are imposed for 3DMM consistency and disentanglement.
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Figure 1. Past 3DMM-conditioned GANs show reduced image
generation quality as a ‘tax’ for their added control. Our approach
produces images of almost equivalent quality to unconditional gen-
eration while being at least as disentangled for control.

We investigate the family of 3DMM conditional GAN
models. Deng et al. state that the quality drop in conditional
models is an inevitable tax that we pay for controllability [6].
What causes this tax? We hypothesize that it is caused
by overconstraint: that, to achieve consistency with the
3DMM conditioning and disentanglement among latent
variables, current methods have unnecessary side effects that
compromise quality. We challenge the claim of a ‘quality tax’
and show that it can be largely removed if the overconstraints
can be identified and resolved. To this end, we formalize
3DMM conditioned face generation and identify minimal
solutions that satisfy controllability and disentanglement.

Practically, we accomplish this with a differentiable
3DMM renderer [7] that by construction allows differentiable
3DMM parameter estimation from images. With this, we
can directly minimize the mutual information between the
distribution of 3DMM parameters and the distribution of
images conditioned upon those 3DMM parameters. Once
trained upon a StyleGAN2 base, this leads to a 3DMM-
conditioned model that: (1) achieves significantly better
FID scores than two SOTA methods (3.93 vs. 12.2), with
a value that is almost equivalent to baseline unconditioned
StyleGAN2 (3.78); and (2) also achieves equivalent or better
disentanglement scores than two SOTA methods on two
proposed metrics. Our findings effectively remove the quality
tax of 3DMM-conditioned controllable face generation.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5364



2. Related Work
Given the specificity of our contribution, we focus on a

slice of works that explains 3DMM-conditioned GANs.

Face generation using GANs and disentangling. In 2017,
with the introduction of PGGAN [16], the long-standing
challenge of generating high resolution images had its first
breakthrough, and Karras et al.’s StyleGAN family [17–19]
has been the state-of-the-art in single domain image synthesis
since then. A natural subsequent task is controlled generation
of photorealistic images using StyleGAN. Despite numerous
attempts [3, 22, 36, 37, 42–44], achieving both image quality
and controllability remains challenging due to the lack of
tractable semantics in StyleGAN’s latent spaces.

3D prior for face modeling and synthesis. Numerous
3D methods for face generation exist. Among these, 3D
Morphable Models (3DMMs) [11, 32] constitute a statistical
approach that embeds human faces into a parameter space
consisting of a set of principal components that represent
factors including identity, expression, illumination, and pose.
In contrast, Neural Radiance Fields (NeRFs) [28] generate
photorealistic 3D scenes by leveraging a learned neural
network to model the implicit 3D geometry and appearance of
the target. While a number of 3D-aware models [4, 10] have
incorporated NeRFs to synthesize facial images with pose
variations, this approach is very computationally expensive.

3DMM-conditioned StyleGAN. The semantic inter-
pretability of 3DMM offers the potential for controllable
generation of faces. Proposed works combine 3DMM and
StyleGAN to try to gain both semantic control and image
quality. One type of such work [6, 25, 38] conditions their
model training on the 3DMM parameter space, but the added
control constraints the output quality. In contrast, another
type of work [39] rigs the StyleGAN latent space, producing
higher quality results but restricting control.

Disentangled representation learning (DRL). DRL [2]
aims to represent and disentangle the constitutional factors
lying in the data of interest. Many studies have sought to
apply DRL to GAN for disentangled face synthesis. In
particular, InfoGAN [5] and its variants [24, 31] attempt
to maximize the mutual information between latent codes
and generated samples to enforce disentangling. Peebles et
al. [33] design a regularization term that encourages the
Hessian of a model with respect to its input to be diagonal,
thereby minimizing the interdependence of target factors.

3. Background and Problem Formulation
We define face images in a dataset x̂∈X . We also define

a 3DMM code vector by p= {zid,zexp,zillum,zangle,ztrans}, a
noise vector z, and a generator model G(p,z) :P×Z→X .

Pose (ours)

Expression (ours)

Pose (StyleGAN2 + HFGI)

Expression (StyleGAN2 + HFGI)

Pose (DiscoFaceGAN)

Expression (DiscoFaceGAN)

Figure 2. Extreme pose and expression variation with our model,
StyleGAN2 using the SOTA post-hoc non-3DMM conditioning
method HFGI [42], and DiscoFaceGAN [6]. DiscoFaceGAN has no
inversion code to find style vector w for an image, so we provide a
qualitative comparison: We use the same 3DMM parameters for the
DiscoFaceGAN results as in ours, and vary the same controllers, but
non-3DMM factors are determined by a random z vector.

The goal of conditional generation is to create photorealistic
face images x according to p and z. Toward this goal, we
concern ourselves with effective conditioning via 3DMM
parameters p only; we leave open the disentangling of factors
with no supervision. For our goal, we can form two related
yet distinct objectives: consistency and disentanglement. But
first, we explain why p is a difficult conditioning space.

3DMM representation. While p itself is an option
for the consistency objective and conditioning G, previ-
ous studies show that the 3DMM parameter space P is
suboptimal compared to a more image-based represen-
tation [8, 25]. Why is this? Given each component of
p = {zid,zexp,zillum,zangle,ztrans}, zid and zexp determine the
shape S and texture T of a face as follows [6]:

S= S̄+Bidszids+Bexpzexp and T= T̄+Bidtzidt

where S̄ and T̄ denote the average shape and texture, and
Bids , Bexp, and Bidt are the PCA bases of shape identity,
facial expression, and texture. The definition of zid and zexp
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depends on external factors such as Bids,t and Bexp. Similarly,
zillum depends on the spherical harmonic basis SH. Without
informing G of the external factors that each zi∈P is defined
upon, conditioning G directly on p imposes a challenge upon
G to decipher the information encoded in p.

Tewari et al. noticed that using p as part of the optimiza-
tion objective also leads to inferior results [39, 40]. They
hypothesize that this is due to each zi ∈P having different
perceptual effects in the image space. Since each zi is
defined w.r.t. different bases, the same magnitude of variation
in different zi might lead to different magnitudes of variation
in image space. If we optimize the consistency object w.r.t.
p directly, we gain consistency in P but not in image space.

Consistency. This objective requires that x is semantically
consistent with p, i.e., p dictates the corresponding semantic
factors in x. We follow the formulation in InfoGAN [5] and
formalize the consistency objective as maximizing the mutual
information I(p;x) between p and x. This is defined as the
difference between the entropy H(p) and the conditional
entropy H(p |x):

I(p;x)=H(p)−H(p |x)
=Ex∼G(p,z)

[︁
Ep′∼P (p|x)[logP (p′ |x)]

]︁
+H(p)

=Ep∼P (p),x∼G(p,z)[logP (p |x)]+H(p) (1)

The posterior P (p|x) is not tractable in general GAN
training, but Chen et al. show that P (p|x) can be approxi-
mated by its variational lower bound [5]. As H(p) does not
depend on x, H(p) is not optimizable and so is a constant.

For 3DMM conditioned face generation, the posterior
becomes tractable when the generative distribution Pg

becomes sufficiently close to the distribution of real face
images. In such case, the posterior is exactly represented by
a pretrained face reconstruction model [7] that can accurately
predict p given x, allowing I(p;x) to be directly optimized.

Past works propose proxy objectives instead of directly
maximizing I(p; x). These objectives maximize I(p; x)
up to some deterministic transformation on p. Deng et al.
use imitative learning to enforces consistency on different
components of p, using a combination of identity loss,
landmark loss, spherical harmonic coefficient discrepancy
for illumination, and skin color loss for albedo [6]. Further,
Liu et al. proposed a consistency loss that minimizes the
pixelwise difference between x and the image representation
of p produced by a differentiable renderer [25].

We show that directly optimizing the mutual information
objective is better than optimizing proxy objectives. Further,
as the assumption that Pg is sufficiently close to the real
image distribution does not hold in general early in training,
we also introduce a progressive blending mechanism.

Disentanglement. Changing one semantic factor
should not interfere with other semantic factors. Let

P ∪ Z = {z0, z1, ... , zn} where zi denotes the latent code
for an independent semantic factor. We formally define
disentanglement following Peebles et al. [33]:

∂2G

∂zj∂zi
=0 ∀ i ̸=j (2)

Suppose we define a subset of latent factors that control
3DMM factors; zi ∈ P . For these, disentanglement is
achieved by construction via the consistency objective. The
remaining problem is to disentangle unsupervised factors
zj ∈Z from zi∈P . For example, 3DMM can control facial
expression but not head hair; we must ensure that facial
expression in p via zi does not affect head hair length as
controlled by zj . Finally, as noted, the disentangling of
unsupervised factors zj ∈ Z from each other is an open
question [26, 30] and does not relate to 3DMM conditioning.

In the simplest case where G is a scalar function and
each semantic factor zi is also a scalar, Eq. 2 indicates that
the Hessian matrix HG is diagonal. In such case, disentan-
glement can be directly encouraged by a Hessian penalty.
A fast finite difference approximation of the penalty and a
generalized version for vector-valued functions were also
proposed [33]. However, it is observed that a Hessian penalty
has a strong negative impact on image quality (measured by
FID [13]) [33] and a solution to this problem is not yet clear.

As we found for consistency, disentanglement is also
approximated by proxy objectives in previous work.
Deng et al. proposed contrastive learning to approximate
∂2G/∂zi∂zexp =0∀i ̸= exp and ∂2G/∂zhair,id∂zillum =0 [6]. Liu et
al. introduced disentangled training as an approximation
of ∂2G/∂zid∂zi = 0 ∀i ̸= id [25]. We notice that all such ap-
proximations are restrictive; they degrade image quality and
rely on hand-designed rules that only work for certain zi, or
attempt to encourage disentanglement through losses rather
than through the construction of the network architecture.

To this end, we propose an alternative approach to the
disentanglement problem. We neither attempt to directly pe-
nalize the non-diagonal entries of HG [33] nor rely on proxy
objectives to approximate a Hessian penalty [6, 25]. We show
in the following section that, in practice, disentanglement
can be achieved for free without any optimization via the
inductive bias of a carefully designed network.

4. Method
4.1. Consistency via p Rendering & Estimation

We maximize Eq. 1 to enforce semantic consistency
between p and x. However, there remains a design space of
deterministic transformations on p to obtain a more amenable
representation for conditioning and optimizing G. To this
end, we use a differentiable renderer RDR [7] to derive
a 3DMM representation that aligns with the image space
perceptually, and is independent of external factors (Fig. 3).
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Figure 3. Our simple approach uses differentiable renderer RDR
and 3DMM parameter estimator FR with only two objectives.

Specifically, we let RDR output the 3DMM rendered image
r from p, the Lambertian albedo a, and the normal map n:

r,a,n=RDR(p) (3)

We define our 3DMM representation ‘rep’ as the Cartesian
product of r, a and n: rep(p) = r× a× n. Given the new
3DMM representation, we update Eq. 1:

I(rep(p);x)=Ep∼P (p),x∼G(rep(p),z)[logP (rep(p) |x)]+C

(4)

where C is the constant term H(rep(p)).

Consistency loss. Given a pretrained face reconstruction
model FR [7]:X →P , we rewrite Eq. 4 as follows:

Lconsistency=Ep∼P (p),x∼G(rep(p),z)

[︂
∥rep(FR(x))−rep(p)∥p

p

]︂
.

(5)

The choice of p depends on our assumption about the func-
tional form of the posterior. We follow common assumptions
and assume Gaussian error, which leads to p=2. [9]

Liu et al. proposed an image-space consistency loss [25]:

LLiuetal.
consistency=Ep∼P (p),x∼G(r(p),z)

[︂
∥x−r(p)∥22

]︂
. (6)

We show in our ablation study that this formulation of the
consistency loss leads to significant quality degradation.
Eq. 6 penalizes photorealism and encourages mode collapse:
∀ z given a fixed p, Eq. 6 pushes all xz towards a single
solution r(p), therefore hindering the diversity of samples
produced by G. Further, there is a domain gap between x
and r as r is not photorealistic. A photorealistic face image
often contains objects or phenomena (indirect illumination,
eyeglasses, etc.) not modeled by the 3DMM. Eq. 6 is agnostic
to such a domain gap and pushes x away from the real image
distribution, thus compromising photorealism.

Our use of FR alleviates both these problems. FR essen-
tially functions as a filter that removes all factors in x which
are irrelevant to the 3DMM. As a result, these factors remain
free variables and are not affected by our consistency loss.

Progressive blending. The posterior P (p|x) can only
be represented by FR when Pg is sufficiently close to the
real image distribution. In early training with Eq. 5, x is
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Figure 4. Our overall model architecture. We add an additional
encoder network to condition the layer-wise synthesis process.

not a realistic image and so FR(x) is nonsensical. This
leads to instant collapse from ill-behaved Lconsistency that is
magnitudes larger than the adversarial loss, and from the
consistency loss diverging in the first few training steps. To
circumvent this problem, we introduce a progressive blending
variant of Eq. 5, following the intuition that r is always a
close enough approximation of the real face for FR:

L∗
consistency=Ep∼P (p),x∼G(rep(p),z)[d] (7)

d=∥rep(FR(αx+(1−α)r(p)))−rep(p)∥2
2

where α is a scalar that grows linearly from 0 to 1 in the first
k training images. This initializes the input of FR to r, then
the input gradually fades into x as the training progresses.
We empirically find that this simple strategy is sufficient to
solve the intractable posterior problem early in the training.

4.2. Structurally Disentangled Conditioning
Next, we discuss in detail how we use rep(p) to condi-

tion G. We generate per-layer conditioning feature maps
c={c1,...,cl} using an encoder E, and inject each ci into the
corresponding layer of the synthesis network as an auxiliary
input (Fig. 4). We show that our conditioning method approxi-
mates Eq. 2 without supervision [6,25], achieving disentangle-
ment for free as an inductive bias of the network architecture.

Conditioning feature maps. We demonstrate our approach
upon the common StyleGAN2 architecture [19]. We follow
their design and split E into different resolution stages. For
each resolution stage ei of E, we produce two sets of feature
maps c2i and c2i+1 to condition the two synthesis layers of
the corresponding resolution stage of the synthesis network:

ei=

{︄
E0(rep(p))i=0

Ei(ei−1)i ̸=0

c2i= toFeat2i(ei)
c2i+1= toFeat2i+1(ei)

(8)
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Figure 5. Encoder and feature injection module architecture.

We implement Ei as a sequence of a transition layer and two
residual blocks (Fig. 5). ‘toFeat’ is implemented by a 1×1
convolution [23] with optional downsampling [18] and leaky
ReLU activation [27]. See supplemental for more details.

Feature injection. We extend each synthesis layer li to take
an auxiliary input cn−i where n is the number of layers in the
synthesis network. The synthesis layer in [19] is implemented
by a stylized convolution where each channel fj of the input
feature maps f is scaled by sij . The per-layer scaling vector
si = {sij ∀j} is computed from the style vector wi via an
affine transformation. We note that the injected feature maps
cn−i need to be handled separately for stylization. This is
because cn−i is essentially an embedding of P while wi is an
embedding of Z . It is clear that P is not controlled by Z and
therefore cn−i should not be subject towi. To this end, we sim-
ply fix the scaling of each channel of cn−i to 1 for stylization.

In contrast to our feature injection-based conditioning,
existing conditioning methods often involve manipulating
the style vectors w+. This can be done either by providing
additional conditioning to the mapping network [6] or
directly injecting conditioning to the W+ space [25]. Such
style-based conditioning is problematic in two aspects:
1. There is no structural distinction between P and Z since

both are encoded in W+. This necessitates additional
disentanglement training objectives to decouple variation
in P from variation in Z . The disentanglement objectives
are often ad hoc [6] and can compromise quality [6, 25].

2. The expressiveness of the W+ space is limited by its
comparative low dimensionality. Encoding ‘rep’ in W+

requires high compression that might lead to information
loss. We notice obvious discrepancies between x and r in
previous work [25], and information loss might be a cause.

Our conditioning method avoids both problems and gives us
disentanglement for free. In our method, c is a feature pyramid
and each ci has the same spatial dimensions as the input of
the synthesis layer. Thus, we encode rep in c in high fidelity.

Disentanglement analysis. To simplify analysis, we omit
various details from the StyleGAN2 [19] generator (weight
demodulation, noise injection, equalized learning rate, etc.).
We formulate each layer li of the synthesis network as:

li(p,z)=Wi∗[cn−i(p);si(z)⊙σ(li−1(p,z))]+Bi (9)

id exp illum angle

Figure 6. Finite difference approximation of the partial derivative
of the injected 3DMM render features w.r.t. the 3DMM parameters
∂c/∂p. Disentanglement is mostly successful: variation in c is shown
by white regions, which are small and sparse.

Wi is the weight tensor of li, Bi is the bias tensor of li, ∗
denotes convolution, ⊙ denotes the Hadamard product,
and σ is the activation function. There are two terms in
li that depend on p: cn−i and σ(li−1). First, we analyze
disentanglement w.r.t. cn−i:

∂2li
∂z∂cn−i

=
∂

∂z

(︃
∂

∂cn−i
(Wi∗[cn−i;si⊙σ(li−1)]+Bi)

)︃
=

∂

∂z

(︃
Wi∗

∂

∂cn−i
[cn−i;si⊙σ(li−1)]

)︃
=

∂

∂z
(Wi∗[I;0])

=0 (10)

We see that variation in cn−i is perfectly disentangled from
variation in z, therefore any non-zero ∂2li

∂z∂p
must be the result

of variation in σ(li−1):

∂2li
∂z∂p

=
∂2li

∂z∂σ(li−1)

∂σ(li−1)

∂p

=

(︃
Wi∗

[︃
0;
∂si
∂z

]︃)︃
∂σ(li−1)

∂p

(11)

We examine the behavior of variation in p:

∂σ(li−1)

∂p
=

∂σ(li−1)

∂li−1

∂li−1

∂p

=
∂σ(li−1)

∂li−1

(︃
Wi−1∗

[︃
∂cn−i+1

∂p
;si−1⊙

∂σ(li−2)

∂p

]︃)︃ (12)

This analysis on ∂σ(li−1)
∂p applies recursively to ∂σ(li−2)

∂p ;

thus, ∂2G
∂z∂p →0 if ∀i.∂ci∂p →0.

In practice, we empirically find that small variation in
p does lead to little total variation in c. Variation in c tends
to be highly localized to small affected regions dictated by
p, with little variation otherwise (Fig. 6). This is likely the
combination effect of localized variation in rep w.r.t. p and
the inductive bias of locality of a convolutional encoder. We
do not consider ∂2G

∂p∂z as disentanglement in this direction
is automatically enforced by Lconsistency when pairing each
p with a set of different zs.
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Figure 7. Generated face samples with control as output from our model. To attempt to reduce any impression of cherry picking, we use the
same three input faces for each 3DMM attribute across five edit (columns). While some unwanted variation remains, identity, expression,
illumination, and angle are controlled with high fidelity and no apparent visual artifacts.

5. Experiments
Data and Face Reconstruction We use FFHQ [18] at 256
× 256 resolution to generate our training data. To preprocess
the data, we follow the method of Deng et al. [7]: We detect
facial landmarks in all FFHQ images with MTCNN [45] and
perform face alignment based on the landmarks detected.
We derive 3DMM coefficients for each image. In the
training stage, we use the aligned images as inputs and
the corresponding 3DMM coefficients as training labels.
Following DiscoFaceGAN [6], we use the pretrained face
reconstruction model from Deng et al. [7] as FR.

Baselines We compare model performance against base-
lines in terms of generation quality and semantic disentangle-
ment for editing. We use StyleGAN2 and two state-of-the-art
3DMM-based generative models, DiscoFaceGAN (DFG) [6]
and 3D-FM GAN [25], along with other frontalization meth-
ods [12, 15, 34, 41, 46]. As the leading SOTA method 3D-FM
GAN does not have public code or models, comparison is
difficult. Where possible, we took results from their paper,
but some quantitative metrics could only be computed for
our model and for DiscoFaceGAN. We do not compare
against rigging-based methods like StyleRig [39] as their
controllability is upperbounded by the disentanglement and
completeness of the existing StyleGAN2 latent space.

Controlled generation Our model achieves highly
controllable generation while preserving StyleGAN’s ability

to generate highly photorealistic images (Fig. 7). We can
see that our model can produce photorealistic faces with
diverse races, genders, and ages and control over each of the
3DMM attributes. Particularly, we use the same three people
for all attribute edits; this shows that our model can perform
robust generation with high quality. Fig. 8 compares the
images generated by our model conditioned on the same p but
different z. The identity, expression, pose, and illumination
are preserved while all other attributes are modified. This
shows that there is little overlap between attributes controlled
by p and z; that our model gains control over target attributes.

Real image inversion and editing Following [25], we
test our model’s ability to embed real images into its latent
space and perform disentangled editing (Fig. 9). On zooming,
we see that our model produces the sharpest images and that
they align closely with the target references from the 3DMM
renderer. While DiscoFaceGAN completely collapses
on this input, 3D-FM GAN gives blurry and sometimes
non-photorealistic outputs (e.g., under pose change).

We also compare on the task of face frontalization by
simply rotating the 3DMM camera to identity (Fig. 10). Our
model significantly improves frontalized quality against
most methods, and compared with the state-of-the-art face
manipulation models [6, 25], our model produces better
identity-preserved faces in a more precise frontal view.
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Figure 8. Resampling the noise vector z with the same set of 3DMM
coefficients p shows high facial consistency, while other unsuper-
vised factors like hair, hat, eyeglasses, and background vary with z.
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Figure 9. Real face editing. After inversion, for which all methods
show some error, our model shows competitive ability. In both
inversion and individual attribute edits, our model generates images
that are faithful to the 3DMM renderer outputs and the input.

5.1. Quantitative Comparison
We evaluate the performance of our model in terms of

quality and disentanglement. For image quality, we compute
the Fréchet inception distance (FID) [13] and Precision and
Recall (P&R) [20, 35] against the entire FFHQ dataset as a
measure of the generation quality. Our model outperforms
the two state-of-the-art baselines, yielding an FID much
closer to the original StyleGAN trained on 256 × 256 FFHQ
dataset (Tab. 1). Precision and recall indicate that our model
has achieved near-StyleGAN-level image generation results
while controlling and disentangling facial attributes.

Disentanglement Score Introduced in DiscoFaceGAN,
this quantifies the disentanglement efficacy of each of the
four 3DMM-controlled identity, expression, illumination,
and angle attributes. Due to ambiguity in the derivation of
this score [6], please see supplemental for details.

For attribute vector ui ∈ {zid,zexp,zillum,zangle}, we first
randomly sample 1K sets of the other three attribute vectors,
denoted by u{j} = {uj : j = 1,...,4,j ̸= i}. Then, for each

Table 1. Our conditioning provides control and almost equivalent
quality to unconditioned baseline StyleGAN2. Two baseline 3DMM
conditioning approaches do not produce comparable quality in terms
of FID. P&R were introduced after StyleGAN1 and thus these num-
bers are missing from DiscoFaceGAN (built on StyleGAN1).

Method FID↓ Precision↑ Recall↑
StyleGAN2 3.78 0.692 0.431
Ours 3.93 0.549 0.531
DiscoFaceGAN 12.9 - -
3D-FM GAN 12.2 - -

set of u{j}, we randomly sample 10 ui. In total, we have
10K 3DMM coefficients and hence generate 10K images.
Then, we re-estimate ui and u{j} using the 3D reconstruction
network [7]. For each attribute, we compute the L2 norm of
the difference between each u and the mean u vector and get
the mean L2 norm in each of the 1K sets. We then get σui

and
σuj

’s by averaging the corresponding mean L2 norm over
the 1K sets and normalize them by the L2 norm of the mean
u vector computed on the entire FFHQ dataset. Finally, we
compute the disentanglement score:

DS(ui)=
∏︂
j,j ̸=i

σui

σuj

(13)

A high DS indicates that when an attribute vector is
modified, only the corresponding attribute is changed on the
generated image while all other attributes remain unchanged.
Our model outperforms DiscoFaceGAN by large margins
in identity, expression, and pose (angle) control (Table 2).

DCI This metric was introduced in StyleSpace [43].
Given a set of attributes and a latent space, disentanglement
measures the extent to which each latent dimension controls
at most one attribute, completeness measures the extent
to which each attribute is controlled by at most one latent
dimension, and informativeness measures how well attributes
can be correctly predicted from a given latent representation.

To calculate DCI, we first sample 35K 3DMM coefficient
vectors from FFHQ and generate corresponding images using
these vectors. Then, we annotate the images by 8 binary
classifiers trained on CelebA [18] that can be controlled by
3DMM coefficients, and train a gradient boosting classifier to
predict the 3DMM coefficient vectors from the annotations.

Our model outperforms DiscoFaceGAN (Table 3). DCI
indicates that our model establishes a better one-to-one
relationship between the attributes and 3DMM coefficients,
leading to a more disentangled 3DMM parameter space.

5.2. Ablation Study

We modify our untouched model (denoted Config-A) in
three different ways to investigate its performance. All ab-
lations are conducted on the 128×128 version of FFHQ [18],
and all ablation models are trained on 5M real images.
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Figure 10. Face frontalization comparisons with DiscoFaceGAN (DFG), 3D-FM GAN and other models on LFW images [14]. Our model
achieves a good balance between image fidelity and frontal pose positions.

Table 2. Disentanglement Score comparisons with DiscoFaceGAN
across four 3DMM-controlled attributes.

Method DSid ↑ DSexp ↑ DSillum ↑ DSangle ↑
DiscoFaceGAN 0.37 1.64 47.9 829
Ours 1.02 3.22 48.7 1245

Table 3. DCI metric comparisons.

Method Disentanglement↑ Completeness↑ Informativeness↑
DiscoFaceGAN 0.66 0.73 0.98
Ours 0.83 0.78 0.99

Config-B: Conditional discriminator. The 3DMM con-
dition p or rep(p) can be used to condition the discriminator
D similarly to G. However, all past works [6, 8, 25] do
not condition D; it is unclear whether this is an intentional
design choice. To our surprise, conditioning D leads to
significantly worse FID [13], contradicting the common
belief that conditioning is always beneficial [29]. We
experiment with various conditioning methods, all of which
degrade FID considerably. This might be the result that the
conditional distribution is undersampled. Unlike traditional
class conditional generation where thousands of samples are
available for a single condition, we essentially have one real
sample for each p. The scarcity of samples might outweigh
the benefit of extra condition information. Nevertheless, this
config has improved disentanglement performance.

Config-C: Alternative consistency loss. We swap our
consistency loss with Eq. 6 proposed by Liu et al. [25]. As ex-
pected, this change leads to inferior FID. Our model converges
faster early in the training using this alternative consistency
loss, but the FID quickly plateaus and is later surpassed by
Config-A. The initial quick convergence is likely due to the
lack of progressive blending, which results in a stronger learn-
ing signal early on. However, the overconstrained nature of
Eq. 6 eventually impedes the model from further improving.

Config-D: One-layer feature injection. We remove
feature injection from all synthesis layers except the layer in
the 4×4 stage. This allows our model to emulate the behavior
of a traditional conditional generator [19, 29]. We observe

Table 4. Ablation FID and Disentanglement Score comparisons.

Method Quality Disentanglement Score
FID↓ id↑ exp↑ illum↑ angle↑

Config-A 8.73 1.07 3.19 49.5 1402
Config-B 17.5 1.14 5.97 57.2 1964
Config-C 10.9 0.694 2.71 29.2 1142
Config-D 13.3 0.41 1.25 23.2 690

drastic performance drop in disentanglement compared to
Config-A, indicating that our per-layer feature injection is
crucial to disentanglement. Interestingly, we also observe a
degradation in FID and poor adherence to p early in the train-
ing. Without per-layer injection, G has to rely exclusively
on the global features cn−1 that we inject to the first synthesis
layer, and any subtle variation in cn−1 will be amplified by
each layer afterwards, resulting in poor disentanglement.
The degradation in FID is likely due to the lack of a feature
pyramid, that some of the network capacity of the synthesis
network is wasted on decoding the highly compressed cn−1.

6. Conclusion and Future Work
We present a simple conditional model derived from

a mathematical framework for 3DMM conditioned face
generation. Our model shows strong performance in both
quality and controllability, reducing the need to choose
between the two and making control ‘tax free’. Furthermore,
our mathematical framework can be applied to future
explorations in conditional generation, allowing future
investigators to analyze other 3DMMs rigorously. However,
our model does not come without limitations. Unlike 3D-FM
GAN [25], our model is not specifically designed for image
editing. Thus, faces suffer the same inversion accuracy vs.
editability tradeoff as StyleGAN [17–19]. Future work might
consider applying the image editing techniques proposed by
Liu et al. [25] to our model for better face editing.
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