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Abstract

We consider the problem of cross-sensor domain adapta-
tion in the context of LiDAR-based 3D object detection and
propose Stationary Object Aggregation Pseudo-labelling
(SOAP) to generate high quality pseudo-labels for station-
ary objects. In contrast to the current state-of-the-art in-
domain practice of aggregating just a few input scans,
SOAP aggregates entire sequences of point clouds at the in-
put level to reduce the sensor domain gap. Then, by means
of what we call quasi-stationary training and spatial consis-
tency post-processing, the SOAP model generates accurate
pseudo-labels for stationary objects, closing a minimum of
30.3% domain gap compared to few-frame detectors. Our
results also show that state-of-the-art domain adaptation
approaches can achieve even greater performance in com-
bination with SOAP, in both the unsupervised and semi-
supervised settings.

1. Introduction

LiDAR sensors are commonly used in autonomous driv-
ing and other safety-critical robotic applications to provide
accurate 3D localization of objects. State-of-the-art (SOTA)
LiDAR-based object detectors currently use deep neural
networks trained via supervised learning, requiring a large
amount of realistic data labelled by human annotators. An-
notation is expensive, motivating the re-use of existing la-
belled datasets, but these typically have a limited domain,
e.g., a specific sensor configuration and relatively few geo-
graphic locations and weather conditions. It is well known
that detectors trained with a dataset from one domain ex-
perience a significant degradation of performance when fed
data from a different domain.

In this work, we tackle the cross-sensor domain adap-
tation problem that arises whenever a detector is required
to interpret data from a sensor different to that on which
it was trained. Specifically, given a detector trained on la-
belled point clouds collected using one sensor (the source
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Figure 1. Scan lines are evident in point clouds when only few
input frames are used (a)(b), appearing as obvious modes in CDF
plots that largely differ because of the modes (c). Aggregating
many more frames removes visible scan lines (d)(e) and makes
CDFs for similar objects in different datasets more alike (f)

domain), we aim to improve the detector’s performance on
point clouds collected using a different sensor (the target
domain), either with no labels (unsupervised) or with only
a small number of labels from the target domain (semi-
supervised). This situation arises commonly when a Li-
DAR sensor is updated or a fleet of autonomous vehicles
uses multiple sensors.

Cross-sensor domain adaptation can present a
formidable challenge because similar objects scanned
by different LiDAR sensors may have very different scan
patterns, even after the widely-adopted few-frame input ag-
gregation. Figures 1a and 1b show point clouds of vehicles
at similar distances from their respective sensors, created
by aggregating 10 frames from nuScenes [2] and 5 frames
from Waymo [16] datasets, respectively. There are evident
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scan lines and obvious visual dissimilarities between the
point clouds. There are also significant differences in the
corresponding cumulative density function (CDF) plots of
the z-component of point positions (Fig. 1c).

Current SOTA 3D object detectors, while achieving im-
pressive in-domain performance, still have a considerable
performance gap when they are applied to cross-sensor
point clouds, whether using single- or few-frame input.
This is demonstrated in Table 1, where we compare the per-
formance of a VoxelNeXt [4] model trained and evaluated
on the nuScenes [2] and Waymo [16] datasets.

We attribute this drop in performance in large part to
the different scan patterns mentioned above. This view is
supported by a recent study based on simulation [8] that
suggests the difference in scan patterns alone can have a
substantial impact on the performance of existing object
detectors. At the same time, we observe that aggregat-
ing many more frames tends to reduce the scan patterns.
This is illustrated in Figs. 1d and 1e, which show dense
point clouds created by aggregating 400 nuScenes and 200
Waymo frames, respectively. There are no visible scan lines
and the multi-modality evident with few frames has disap-
peared from the CDF plots in Fig. 1f.

SOTA methods in cross-sensor domain adaptation often
employ pseudo-labelling, where a model trained on labelled
data is used to generate labels for unlabelled data. Various
approaches have been proposed to improve pseudo-label
quality and regularize training with pseudo-labels [21, 25,
26], but these approaches do not appear to explicitly address
the important difference in scan-patterns between different
domains.

Given all of the above, we propose Stationary Object
Aggregation Pseudo-labelling (SOAP) to improve cross-
sensor pseudo-label accuracy by exploiting scene-level full-
sequence aggregation of input point clouds to close the do-
main gap caused by scan-patterns.

SOAP uses sequential point clouds produced under real-
istic driving conditions by existing LiDAR sensors that are
widely used in autonomous driving systems. It enhances ex-
isting pre-trained detectors, improving their stationary ob-
ject performance while retaining dynamic object pseudo-
labels. SOAP pseudo-labels can be used for updating de-
tectors or bootstrapping annotations.

SOAP is motivated by the facts that (i) aggregation im-
proves the representation of sparsely-scanned objects [19],
(ii) sensor-specific scan patterns are reduced by full-
sequence aggregation (Fig. 1), and (iii) stationary objects
respond well to full-sequence aggregation and are a statisti-
cally important component of object detection: at least two
thirds of cars are stationary at some point in sequences in
major realistic driving datasets [2, 10, 16, 22].

Extensive experiments using nuScenes and Waymo
datasets show SOAP pseudo-labels can close a minimum

# frames AP ∆

nuScenes → Waymo 1 7.0 –70.5
5 20.4 –57.1

Waymo in-domain 5 77.5

Waymo → nuScenes 1 42.7 –40.8
10 49.0 –34.5

nuScenes in-domain 10 83.5

Table 1. Degradation (∆) w.r.t. in-domain performance of SOTA
detector VoxelNeXt [4] in Waymo ↔ nuScenes cross-sensor set-
ting. Increasing the number of aggregated frames improves over
single-frame input, but there is still a substantial performance gap.

of 30.3% overall domain gap compared to few-frame de-
tectors without access to any target domain labels. SOAP
also complements other SOTA domain adaptation methods,
including ST3D [26] and SSDA3D [21], improving their
already impressive results in both unsupervised and semi-
supervised settings. In nuScenes → Waymo setting using
CenterPoint [29], for example, using SOAP closes 42.6%
domain gap compared to the 9.5% closed by ST3D. With
only 1% target domain labels, SOAP closes 86.8% domain
gap compared to the 81.4% closed by SSDA3D.

Our main contributions are as follows:

• We propose SOAP to effectively utilize full-sequence
scene-level aggregation and exploit the properties of
the pseudo-labels.

• We demonstrate that full-sequence scene-level aggre-
gation, though not optimal for in-domain settings, can
be used to improve cross-sensor performance.

• We conduct extensive experiments to demonstrate
SOAP’s high quality pseudo-labels and synergy with
SOTA domain adaptation methods.

2. Related Work

Domain adaptation for 3D object detection: Many
methods have been proposed to address the domain adap-
tation problem for 3D object detection. One line of work
involves improving model robustness via regularization [19,
23]. Other works attempt to close the domain gap via do-
main mapping [1,5] or input [17,18,20], feature [12,28,31],
and output [6] alignment. To take advantage of available tar-
get domain data, SOTA methods often use pseudo-labelling.
Pseudo-labels can be improved via tracking-based refine-
ment [9,30] or iterative self-training [25,26]. When a small
amount of target labels are available, CutMix and MixUp
have also been shown to be effective techniques to incor-
porate labelled target data [21]. As we will show, SOAP is
parallel to and can complement existing work in this area.
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Figure 2. Overview of Stationary Object Aggregation Pseudo-labelling (SOAP) pipeline. (a) We first perform Full-Sequence Aggregation
(FSA) using pose transforms. (b) We propose Quasi-Stationary Training (QST) to train a SOAP model to detect stationary objects. (c) The
predictions are refined via Spatial Consistency Post-processing (SCP). (d) The predictions from a pre-trained single-/few-frame detector
and the SOAP model are combined using Weighted Box Fusion (WBF) [15]. (e) The final SOAP pseudo-labels can be used in combination
with SOTA methods to fine-tune a target domain detector.

Offline pseudo-labelling: Previous studies have shown
that increasing the number of frames aggregated at scene-
level leads to diminishing returns [2] or even performance
degradation [3], especially for dynamic objects [27]. As a
result, SOTA offline pseudo-labelling methods use a single-
or few-frame detector to generate initial predictions, fol-
lowed by offline tracking and a second stage refinement
that utilizes full-sequence point clouds aggregated at object-
or track-level [7, 13, 14, 24]. Offline pseudo-labelling has
achieved impressive in-domain results, even surpassing hu-
man performance, but they have not yet been explored in
cross-sensor setting. SOAP, on the other hand, takes a com-
pletely different view from the aforementioned works and
directly uses scene-level aggregated point clouds as input to
provide better pseudo-labels than single- or few-frame de-
tectors for cross-sensor domain adaptation setting.

3. Our approach: SOAP

In this section, we describe the details of Stationary Ob-
ject Aggregation Pseudo-labelling (SOAP). The main com-
ponents of SOAP are: (i) Scene-level Full-sequence Ag-
gregation (SFA), which produces aggregated point clouds
from the entire input sequence; (ii) Quasi-Stationary Train-
ing (QST) that is used to train a pseudo-labelling model
to detect stationary objects; and (iii) Spatial Consistency
Post-processing (SCP) that enhances pseudo-labels by ex-
ploiting the stationarity of the predictions. SOAP is used
in combination with a pre-trained model to generate high
quality pseudo-labels for stationary objects while retaining
dynamic object pseudo-labels. An overview of the SOAP
pipeline is shown in Fig. 2.

3.1. Scene-level Full-sequence Aggregation

Scene-level full-sequence aggregation (SFA) involves
projecting a sequence of point clouds to a global coordinate
system, where the point clouds are concatenated into a sin-
gle dense point cloud, as illustrated in Fig. 2a. Formally,
given a sequence of point clouds P1, P2, . . . , PN , where
Pi = {p1i , p2i , . . . , p

Mi
i } ⊂ R3, and corresponding sequence

of SE(3) pose transformations T1, T2, . . . , TN , which trans-
form the point clouds from the local LiDAR or vehicle co-
ordinate system to a common global coordinate system, the
point cloud aggregation process in the global coordinate
system is defined by

P ∗ =
⋃

i=1,2,...,N

{
Tip

j
i

}
j=1,2,...,Mi

. (1)

During training, for a given frame i, the aggregated point
cloud P ∗ is transformed back to the local coordinate system
using the inverse pose transform T−1

i .
Scene-level aggregation of a few frames in a short time

window has been shown to be effective at producing denser
input point clouds and consequently better detection perfor-
mance [2]. On the other hand, due to the diminishing re-
turns [2] and performance degradation [3, 27] observed for
scene-level aggregation with large temporal windows, full-
sequence aggregation has only been attempted at object-
and track-level [7, 13, 14, 24].

Compared to few-frame aggregation, SFA increases
point density and provides richer geometric information for
stationary objects. In addition, unlike object- and track-
level aggregation used by prior work, SFA does not rely on
object annotations or initial predictions produced by single-
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Figure 3. Example of a point cloud generated by FSA. Dynamic
objects are distorted while stationary objects are densified.

or few-frame detectors, which we show are unreliable in the
cross-sensor setting Table 1. SFA is therefore very suitable
for its proposed application, since P ∗ can be obtained for
both the source and (unlabelled) target domains.

SFA tends to distort dynamic object point clouds, due
to the motion of the objects not being corrected during ag-
gregation. This is depicted in Fig. 3. By contrast, station-
ary objects are densified with a more complete and accurate
geometry compared to single- or few-frame point clouds.
As noted above and in Fig. 1, the aggregation process also
weakens the LiDAR-specific scan patterns.

3.2. Quasi-Stationary Training

Although annotations are available for the source do-
main, training a model to detect stationary objects from ag-
gregated point clouds is not straightforward. A naive ap-
proach is by filtering the ground truth annotations during
training based on speed estimates or the overall displace-
ment of the object. However, since the speed of an object
can change over time, especially for sequences that span a
large time window, the object can be near stationary dur-
ing part of the sequence and moving in other parts. If the
majority of the observed points come from the part of the
sequence where the object is near stationary, the object’s
aggregated point cloud will have little distortion, as if the
object were stationary for the entirety of the sequence.

We refer to such objects as quasi-stationary objects. Fig-
ure 4 depicts an example of such an object, which would be
excluded based on a naive speed or displacement criterion.
Doing so would result in undistorted objects remaining in
the aggregated point clouds, but without a positive label,
causing confusion and reducing model performance.

To avoid excluding these quasi-stationary objects, we
formally define the notion of quasi-stationarity using a
quasi-stationary score (QSS) that takes into account both
the movement of the objects and how much each observa-
tion contributes to the final aggregated point clouds.

Definition 1 (QSS) Let {b1, b2, . . . , bN} be a set of N
bounding boxes of an object annotated in a sequence within
a common coordinate system and C(bi) be the number of

points observed in the bounding box bi. For a given bound-
ing box observation bi, QSS is defined as the average IoU
between bi and other bounding boxes bj , weighted by the
fractions of points contributed by bj:

QSS(bi) =

N∑
j=1

C(bj)∑N
k=1 C(bk)

IoU(bi, bj) (2)

Intuitively, the QSS can be interpreted as how likely it
is that the point cloud for a given object is undistorted at
the location of bi. For example, if another observation bj
has little overlap with bi (indicating object movement) but
contains only a few points, then the final aggregated point
cloud is not likely to be distorted by bj . Alternatively, if bj
has a large overlap with bi and also contains a large fraction
of points, then the object is likely to undistorted at location
bi.

Finally, the most likely location b∗ of the object in the
aggregated point clouds and the degree s∗ of the point cloud
being free from distortion can be estimated as follows:

b∗ = argmaxi QSS(bi) (3)
s∗ = maxi QSS(bi) (4)

We refer to b∗ as the quasi-stationary bounding box and s∗

as the corresponding QSS. Objects with a large QSS s∗ > ϵ
for some ϵ can be considered quasi-stationary. For instance,
the object in Figure 4 has QSS s∗ = 0.91.

Out-of-sight quasi-stationary objects: In the labelled
source domain dataset, we notice objects not visible from
the current frame are sometimes not labelled. Since SFA
utilizes the entire sequence to create a dense representation
of the scene, out-of-sight quasi-stationary objects will also
be densified in the corresponding aggregated point cloud.
This creates inconsistent labels where in a given frame,
some dense objects have annotations while others do not.
To address this problem, we construct spatially consistent
training labels by projecting the quasi-stationary bounding
boxes b∗ to all frames in the sequence, even if the object is
not observed in some frames.

3.3. Spatial Consistency Post-processing

Since the SOAP model is tasked to detect only quasi-
stationary objects from aggregated point clouds, a detected
object should have consistent predictions in the global co-
ordinate system across multiple frames. To utilize this sta-
tionarity property of the pseudo-labels, we propose Spatial
Consistency Post-processing (SCP) to eliminate false posi-
tive predictions and recover false negative objects, improv-
ing pseudo-label quality.

As illustrated in Fig. 2c, SCP is performed by obtain-
ing per-frame predicted bounding boxes (denoted by Bi

FSA

for frame i) using the SOAP model and then gathering
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(a) Aggregated point cloud (b) Object trajectory (BEV)

Figure 4. Example of a quasi-stationary object. This object
reached a maximum speed of 1.4 m/s with a total displacement
of 3.9 m, and thus would be eliminated by naive filtering.

all predictions in the global coordinate system. Gathering
all predictions requires transforming per-frame predictions
(bounding boxes) using the corresponding ego pose trans-
formation Ti:

BFSA =
⋃

TiB
i
FSA (5)

The bounding boxes BFSA are clustered based on an
IoU threshold µ. To ensure the pseudo-labels are consis-
tent across multiple frames, we eliminate the clusters with
a number of detections fewer than threshold η that depends
on the frame rate of the dataset.

For the remaining clusters, the boxes in each cluster are
combined into a single bounding box per cluster, similar to
Weighted Boxes Fusion (WBF) [15]. Specifically, we use
the heading θ of the most confident prediction in each clus-
ter and average other attributes, including position (x, y, z),
size (w, l, h) and velocity (vx, vy), weighted by the confi-
dence of each box. Finally, non-maximum suppression is
applied to remove any overlapping predictions in the global
coordinate system. The final bounding boxes in the global
coordinate system are denoted by BSCP .

To obtain the pseudo-labels Bi
SCP for each frame i in

the sequence, we transform BSCP back to each frame’s lo-
cal coordinate system using the inverse pose transformation
T−1
i , defined as follows:

Bi
SCP = T−1

i BSCP (6)

Since an object may be occluded in a frame and have
very few or no points in the sparse point cloud, we re-
move any bounding boxes that contain no points, so that
the pseudo-labels are reasonable with respect to the frame’s
sparse point cloud.

3.4. SOAP pseudo-labels

In order to recover a complete set of pseudo-labels for
both stationary and dynamic objects, SOAP utilizes the pre-
dictions from a pre-trained single- or few-frame detector
capable of detecting dynamic objects. The SOAP and pre-
trained models are calibrated separately with Beta Calibra-
tion [11] using source domain data. Let Bi

S be the bounding

boxes predicted by the pre-trained detector for frame i, then
the SOAP pseudo-labels, denoted by Bi

SOAP , are obtained
by combining Bi

S and Bi
SCP using WBF [15].

Our results show that this simple approach can improve
existing sparse pseudo-labels by a large margin. We leave
it as future work to study more optimal ways of combining
pseudo-labels or obtaining dynamic pseudo-labels directly
from aggregated point clouds.

4. Experiments
SOAP is evaluated in both unsupervised and semi-

supervised domain adaptation settings. This section
presents the experimental setup, domain adaptation results,
and ablation study.

4.1. Datasets

We evaluate SOAP using two large-scale autonomous
driving datasets for 3D object detection: nuScenes [2] and
Waymo [16]. In what follows, we use the syntax source do-
main dataset → target domain dataset to denote the training
and testing setting, respectively.

The NuScenes dataset [2] contains 1,000 sequences of 20
seconds each, collected in Boston and Singapore. The vehi-
cle is equipped with a single Velodyne HDL-32E 32-beam
top-mounted rotating LiDAR operating at 20 Hz, yield-
ing ≈400 point cloud scans per sequence, from which 40
keyframes are selected uniformly and annotated. Unless
specified otherwise, all models trained on the nuScenes
dataset use 10 sweeps (–0.5 s) as input.

The Waymo dataset [16] contains 1,150 sequences of 20
seconds each, collected in San Francisco, Mountain View,
and Phoenix. The Waymo dataset uses a 5-sensor setup with
a single proprietary 64-beam top-mounted rotating LiDAR
operating at 10 Hz, and four side-mounted close-range Li-
DARs. All point clouds (≈200) in each sequence are an-
notated with bounding boxes. Due to much higher anno-
tation frequency compared to nuScenes, we use 20% uni-
formly sampled frames for training. Consistent with the
nuScenes models, all models trained on the Waymo dataset
use 5 sweeps (–0.5 s) as input.

In addition to the difference in the point cloud and
annotation frequency, the nuScenes dataset annotates 23
classes with 8 attributes, 10 of which are used in the ob-
ject detection task, whereas Waymo contains annotations
for only Vehicle, Cyclist, and Pedestrian. Following previ-
ous work [12,17,18,20,25,26,28,30], we select the common
vehicle/car class for training and evaluation for all experi-
ments.

4.2. Evaluation

For nuScenes evaluation, we consider two primary met-
rics: mean Average Precision (mAP) and NuScenes Detec-
tion Score (NDS). Following the official evaluation, mAP
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Architecture Method Training
Data

Overall 0–30 m 30–50 m
Level 1 Level 2 Level 1 Level 2 Level 1 Level 2

CenterPoint [29]

Direct {S} 23.5 20.2 49.3 48.3 12.0 10.5
SOAP (ours) 50.9 +51.0% 45.4 +51.2% 69.4 +47.0% 68.4 +47.1% 47.5 +55.5% 43.6 +55.5%

ST3D [26] {S, TP } 28.6 +9.5% 24.6 +8.9% 56.5 +16.8% 55.3 +16.4% 18.7 +10.5% 16.5 +10.1%
ST3D + SOAP (ours) 46.4 +42.6% 40.6 +41.5% 68.6 +45.1% 67.5 +45.0% 41.8 +46.6% 37.6 +45.5%

Oracle {T } 77.2 69.4 92.1 91.0 76.0 70.1

VoxelNeXt [4]

Direct {S} 20.4 17.5 44.2 43.3 9.5 8.4
SOAP (ours) 50.9 +53.4% 45.6 +53.8% 67.5 +48.5% 66.4 +48.3% 48.6 +58.5% 44.7 +58.6%

ST3D [26] {S, TP } 35.0 +25.6% 30.2 +25.3% 60.7 +34.4% 59.5 +33.9% 27.9 +27.5% 24.8 +26.5%
ST3D + SOAP (ours) 45.6 +44.1% 40.0 +43.1% 65.9 +45.2% 64.8 +45.0% 41.8 +48.4% 37.7 +47.3%

Oracle {T } 77.5 69.7 92.2 91.1 76.3 70.3

S: labelled source domain; T : labelled target domain; TP : pseudo-labelled target domain

Table 2. Unsupervised domain adaptation results for nuScenes → Waymo, where Waymo dataset is unlabelled. The percentages represent
the amount of the Direct–Oracle domain gap closed.

Architecture Method Training
Data

Overall 0–30 m 30–50 m
mAP NDS mAP NDS mAP NDS

CenterPoint [29]

Direct {S} 51.7 69.6 67.6 78.9 27.6 49.7
SOAP (ours) 61.4 +30.3% 76.9 +39.2% 73.1 +21.7% 83.9 +33.3% 41.9 +40.1% 64.4 +60.2%

ST3D [26] {S, TP } 59.3 +23.8% 72.9 +17.7% 74.2 +26.1% 82.4 +23.3% 34.1 +18.2% 52.7 +12.3%
ST3D + SOAP (ours) 61.5 +30.6% 75.4 +31.2% 73.9 +24.9% 83.0 +27.3% 42.5 +41.7% 60.4 +43.9%

Oracle {T } 83.7 88.2 92.9 93.9 63.3 74.1

VoxelNeXt [4]

Direct {S} 49.0 68.3 62.5 76.5 28.8 50.6
SOAP (ours) 61.5 +36.2% 77.0 +44.2% 72.5 +32.5% 83.5 +40.5% 43.9 +45.5% 65.3 +65.3%

ST3D [26] {S, TP } 54.2 +15.1% 70.8 +12.7% 64.6 +6.8% 77.8 +7.5% 38.0 +27.7% 55.3 +20.9%
ST3D + SOAP (ours) 56.0 +20.3% 72.7 +22.3% 64.6 +6.8% 78.3 +10.4% 43.7 +44.9% 61.2 +47.1%

Oracle {T } 83.5 88.0 93.3 93.8 62.0 73.1

S: labelled source domain; T : labelled target domain; TP : pseudo-labelled target domain

Table 3. Unsupervised domain adaptation results for Waymo → nuScenes, where nuScenes dataset is unlabelled. The percentages represent
the amount of the Direct–Oracle domain gap closed.

is calculated based on four distance thresholds (0.5, 1.0,
2.0, 4.0) and averaged. As distance-based mAP does not
penalize other types of bounding box errors, NDS is used
in combination to reflect the average translation, scale, ori-
entation, velocity, and attribute errors for the true positive
predictions. All evaluations are performed on the validation
split consisting of 150 sequences.

For Waymo evaluation, we use the official evaluation
suite and report the Level 1 and Level 2 AP scores. Differ-
ent from nuScenes mAP, Waymo AP is calculated based on
3D IoU with a threshold of 0.7. Level 1 evaluation includes
only objects with more than 5 points within the bounding
box, while Level 2 evaluation considers all objects. All
evaluations are performed on the validation split consisting
of 202 sequences.

4.3. Unsupervised domain adaptation

We first evaluate SOAP pseudo-labels in the unsuper-
vised domain adaptation setting, where annotations from
the target domain are unavailable. We compare SOAP with
two baseline approaches: “Direct” and ST3D [26]. Direct is
where a few-frame detector is trained on the source domain

and directly evaluated on the target domain data. ST3D is
a SOTA unsupervised domain adaptation method based on
pseudo-labelling and self-training.

In the baseline comparison, ST3D utilizes the Direct
model to generate pseudo-labels for self-training. To
demonstrate the quality of the SOAP pseudo-labels and the
complementary nature of SOAP with other approaches, we
further consider ST3D + SOAP, where ST3D uses SOAP
pseudo-labels. Both ST3D experiments use the official code
release.

SOAP is validated using two object detection architec-
tures: CenterPoint [29] and VoxelNeXt [4]. CenterPoint
is a widely-adopted voxel-based dense 3D object detector.
VoxelNeXt is a SOTA architecture representing recent ad-
vances in fully-sparse 3D object detectors. Both architec-
tures are based on the implementation in the open-source
library OpenPCDet. We use the Direct model predictions
as few-frame predictions to construct final SOAP pseudo-
labels. More implementation detail and hyper-parameters
can be found in the supplementary material. The main re-
sults are shown in Tables 2 and 3.
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Method Training
Data

Overall 0–30 m 30–50 m
Level 1 Level 2 Level 1 Level 2 Level 1 Level 2

Direct {S} 23.5 20.2 49.3 48.3 12.0 10.5

Co-training
{S, T⊂}

58.4 +65.0% 51.3 +63.2% 79.3 +70.1% 78.1 +69.8% 55.7 +68.3% 50.3 +66.8%
CutMix [21] 58.6 +65.4% 51.6 +63.8% 78.9 +69.2% 77.6 +68.6% 55.4 +67.8% 50.0 +66.3%
SOAP (ours) 69.4 +85.5% 63.1 +87.2% 84.6 +82.5% 83.5 +82.4% 67.8 +87.2% 63.0 +88.1%

SSDA3D [21] {S, T⊂, TP } 67.2 +81.4% 59.8 +80.5% 84.5 +82.2% 83.3 +82.0% 65.1 +83.0% 59.4 +82.0%
SSDA3D + SOAP (ours) 70.1 +86.8% 62.6 +86.2% 86.1 +86.0% 84.9 +85.7% 68.5 +88.3% 62.8 +87.8%

Oracle {T } 77.2 69.4 92.1 91.0 76.0 70.1

S: labelled source domain; T : labelled target domain; T⊂: small subset of T ; TP : pseudo-labelled target domain

Table 4. Semi-supervised domain adaptation results for nuScenes → Waymo, where 1% of Waymo data is labelled. The percentages
represent the amount of the Direct–Oracle domain gap closed.

Method Training
Data

Overall 0–30 m 30–50 m
mAP NDS mAP NDS mAP NDS

Direct {S} 51.7 69.6 67.6 78.9 27.6 49.7

Co-training
{S, T⊂}

64.1 +38.8% 76.4 +36.6% 80.3 +50.2% 85.9 +46.7% 35.1 +21.0% 55.5 +23.8%
CutMix [21] 63.6 +37.2% 76.7 +38.2% 82.3 +58.1% 87.4 +56.7% 29.9 +6.4% 52.7 +12.3%
SOAP (ours) 74.0 +69.7% 83.5 +74.7% 86.4 +74.3% 90.6 +78.0% 49.6 +61.6% 68.0 +75.0%

SSDA3D [21] {S, T⊂, TP } 72.7 +65.6% 81.3 +62.9% 88.1 +81.0% 90.4 +76.7% 42.8 +42.6% 60.1 +42.6%
SSDA3D + SOAP (ours) 76.8 +78.4% 83.1 +72.6% 88.3 +81.8% 90.4 +76.7% 52.9 +70.9% 65.6 +65.2%

Oracle {T } 83.7 88.2 92.9 93.9 63.3 74.1

S: labelled source domain; T : labelled target domain; T⊂: small subset of T ; TP : pseudo-labelled target domain

Table 5. Semi-supervised domain adaptation results for Waymo → nuScenes, where 1% of nuScenes data is labelled. The percentages
represent the amount of the Direct–Oracle domain gap closed.

Pseudo-label performance: Overall, SOAP pseudo-
labels improve over the Direct pseudo-labelling baseline by
a significant margin. In the nuScenes → Waymo setting
(Tab. 2), both architectures receive a 25–30 point improve-
ment in mAP, with over 50% domain gap closed. SOAP
is as effective in the Waymo → nuScenes setting (Tab. 3),
with both architectures showing a 10-point improvement in
mAP and over 30% domain gap closed.

More importantly, SOAP consistently improves object
pseudo-labels at different ranges, with the largest improve-
ments observed for objects at the 30–50 m range in all set-
tings, closing 40–60% of the domain gap. We suppose this
is because objects farther away from the sensor have sparse
point clouds and are sometimes occluded. The results high-
light the benefits of full-sequence aggregation, as far ob-
jects are densified, and occlusion can be alleviated by ag-
gregating multiple viewpoints. The supplementary material
includes qualitative examples that further illustrate the ac-
curacy of SOAP pseudo-labels at long range.

Adaptation performance: SOAP complements the
SOTA domain adaptation technique ST3D. We observe that
when equipped with SOAP pseudo-labels, ST3D + SOAP
provides better overall performance than ST3D. In the
nuScenes → Waymo setting (Tab. 2), ST3D + SOAP closes
20–30% more domain gap than ST3D. While the difference
is smaller in the Waymo → nuScenes setting (Tab. 3),
there is still a noticeable improvement, with around 5%

more domain gap closed for mAP and over 10% more
domain gap closed for NDS. Moreover, the aforementioned
improvement over far objects can also be seen after self-
training with ST3D. Using SOAP pseudo-labels achieves
significantly higher performance compared to ST3D.

4.4. Semi-supervised domain adaptation

In the semi-supervised domain adaptation setting, where
a small amount of target domain annotations are available
for training, SOAP can also be used to improve pseudo-
label quality. To demonstrate this, we compare SOAP with
three methods: Direct, Co-training [21], and SSDA3D [21].
As in the unsupervised case, Direct is where the model is
trained only on source domain data. Co-training is where
the model is trained with a combination of labelled source
and labelled target domain data. SSDA3D is a recent SOTA
semi-supervised domain adaptation technique. SSDA3D
consists of a pseudo-labelling stage with inter-domain Cut-
Mix augmentation to improve pseudo-label quality (which
we denote CutMix), followed by a target domain training
stage with intra-domain MixUp augmentation as regulariza-
tion. Additionally, we explore the SSDA3D + SOAP config-
uration, where we replace the SSDA3D pseudo-labels with
SOAP pseudo-labels for second-stage target domain train-
ing.

Following SSDA3D [21], we use CenterPoint for ex-
periments in this section and consider 1% sequences la-
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1-frame 5-frame SFA QST SCP Overall Stationary
Level 1 Level 2 Level 1 Level 2

(a) ✓ 7.0 -23.5% 6.0 -22.0% 5.9 -21.9% 4.9 -20.5%
(b) ✓ 20.4 17.5 18.6 15.6

(c) ✓ ✓ 35.7 +36.6% 31.2 +35.6% 38.0 +50.1% 32.6 +48.3%
(d) ✓ ✓ ✓ 46.7 +46.1% 41.6 +46.2% 52.1 +57.7% 45.8 +57.9%
(e) ✓ ✓ ✓ ✓ 50.9 +53.4% 45.6 +53.8% 57.2 +66.4% 50.6 +67.0%

Oracle 77.5 69.7 76.7 67.8

Table 6. Ablation study results for nuScenes → Waymo unsupervised domain adaptation. The percentages represent the amount of domain
gap closed relative to the 5-frame baseline detector.

belled in the target domain. Note that, unlike experiments
in SSDA3D, we uniformly sample entire sequences instead
of individual frames. Following how SSDA3D’s pseudo-
labelling model is trained, the SOAP model is trained on
both labelled source and labelled target sequences with Cut-
Mix, among other standard augmentation, applied to aggre-
gated point clouds. We use the SSDA3D CutMix predic-
tions as sparse predictions to construct final SOAP pseudo-
labels.

The main results are shown in Tables 4 and 5.

Pseudo-label performance: Compared to the pseudo-
labels generated by Co-training and SSDA3D CutMix,
SOAP pseudo-labels are much more accurate, closing
85.5% and 69.7% domain gap for nuScenes → Waymo
(Tab. 4) and Waymo → nuScenes (Tab. 5), respectively.
Similar to the results in the unsupervised settings, the im-
provement is particularly noticeable for objects at 30–50 m,
further illustrating the benefits of full-sequence aggregation.

Adaptation performance: SOAP improves the already
impressive domain adaptation performance achieved by
SSDA3D, closing 5–10% more overall performance gap
in both settings. Moreover, we observe the improvements
in pseudo-labels for objects at 30–50 m translate to the
model after adaptation. In the Waymo → nuScenes setting
(Tab. 5), training with SOAP pseudo-labels achieves 10.1%
higher mAP and 5.5% higher NDS for 30–50 m objects.

4.5. Ablation study

In this section, we investigate the benefits of QST and
SCP in the nuScenes → Waymo unsupervised domain adap-
tation setting, using the VoxelNeXt architecture. The results
are presented in Table 6.

We use the 1-frame and 5-frame detectors as baselines in
lines (a) and (b), respectively, and progressively introduce
each component of SOAP. In line (c), SFA augments the 5-
frame detector with stationary object predictions using ag-
gregated point clouds. The model is trained by naively fil-
tering object speed based on a threshold of 0.2 m/s. Line
(d) enables QST, replacing naive filtering. While the SFA
pseudo-labels improve over both the 1-frame and 5-frame
baselines, especially for stationary objects, it is still sig-

nificantly outperformed by QST. This highlights both the
effectiveness of full-sequence aggregation in cross-sensor
settings and the importance of constructing robust training
labels for stationary objects using QST. Moreover, incorpo-
rating SCP in line (e) further improves the AP by over 4%,
demonstrating the benefit of exploiting the stationarity of
the detected objects.

5. Limitations
SOAP has three principal limitations. First, construct-

ing aggregated point clouds requires the point cloud data
to be collected sequentially and the ego pose estimates to
be available. This is applicable in most current self-driving
datasets but may not work in other applications where se-
quential information is not available. Second, SOAP as-
sumes the ego vehicle–hence the sensor–is moving rela-
tive to the static environment. It is not applicable to road-
side detection where the sensor stays stationary. Finally,
since SOAP is designed to detect stationary objects to aug-
ment sparse pseudo-labels, for objects like pedestrians or
environments with mostly dynamic objects, SOAP may
be less effective. However, in major realistic self-driving
datasets [2,10,16,22], we find that at least two thirds of ve-
hicles are stationary at some point in the sequence, making
SOAP effective for practical applications. Detailed statis-
tics can be found in the supplementary material.

6. Conclusion
We have presented Stationary Object Aggregation

Pseudo-labelling (SOAP), a novel method that utilizes full-
sequence scene-level aggregation to generate high-quality
pseudo-labels for the cross-sensor domain adaptation set-
ting. We have provided extensive evaluation that demon-
strates SOAP can provide high-quality pseudo-labels and
improves the already impressive results achieved by SOTA
methods such as ST3D and SSDA3D.

As future work, we want to exploring the benefits of
tracking and second-stage refinement, as used by in-domain
pseudo-labelling methods, in the domain adaptation setting.
It will also be interesting to explore the synergy of SOAP
with other domain adaptation approaches.
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