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Abstract

The Space-Time Video Super-Resolution (STVSR) task
aims to enhance the visual quality of videos, by simultane-
ously performing video frame interpolation (VFI) and video
super-resolution (VSR). However, facing the challenge of
the additional temporal dimension and scale inconsistency,
most existing STVSR methods are complex and inflexible in
dynamically modeling different motion amplitudes. In this
work, we find that choosing an appropriate processing scale
achieves remarkable benefits in flow-based feature propa-
gation. We propose a novel Scale-Adaptive Feature Aggre-
gation (SAFA) network that adaptively selects sub-networks
with different processing scales for individual samples. Ex-
periments on four public STVSR benchmarks demonstrate
that SAFA achieves state-of-the-art performance. Our SAFA
network outperforms recent state-of-the-art methods such
as TMNet [83] and VideoINR [10] by an average improve-
ment of over 0.5dB on PSNR, while requiring less than half
the number of parameters and only 1/3 computational costs.

1. Introduction
Constrained by the filming, processing, and distri-

bution pipelines, the majority of videos are commonly
stored and displayed at limited resolution and frame rates.
Within the sphere of industry, space-time video super-
resolution (STVSR) is practical for synthesizing smooth
high-definition videos. New applications and software have
continuously created demands for improving the perfor-
mance and efficiency of STVSR models. From a scholarly
perspective, the STVSR methods inspire insights into mo-
tion modeling for many video processing tasks [62,80]. For-
mally, given two low-resolution (LR) frames {ILR

0 , ILR
1 }

and a target time-step t ∈ [0, 1], our goal is to synthesize the
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Figure 1. Performance comparison on the Adobe240-Center
dataset [72]. SAFA outperforms the other methods in terms of
inference speed and PSNR (dB) metric.

high-resolution (HR) frame IHR
t at moment t. The STVSR

task contains two correlated subtasks of video frame in-
terpolation (VFI) and video super-resolution (VSR). Both
are among the most studied problems in Computer Vi-
sion. A traditional approach to efficiently aggregate in-
formation across frames involves estimating the dense dis-
placement field. This is represented as f0→1 for a pair
of frames {I0, I1}, known as the optical flow. This tech-
nique is widely used in VSR. Besides, most VFI meth-
ods [1, 28, 33, 49, 85] focus on approximating the back-
ward flow fields {ft→0, ft→1} starting from the intermedi-
ate frame It. It is different from the former (because It
is to be predicted) but very related. Successively perform-
ing VFI [1, 39] and VSR [5, 78] would overlook their inter-
correlation on motion modeling.

Recent one-stage STVSR methods [10,81,83] have made
great progress. They model temporal motion [28] by incor-
porating motion representation operators, e.g., deformable
convolution [12] and DConvLSTM [81], into the convolu-
tional neural network (CNN) backbones. Integrating ad-
ditional components into these STVSR models would in-
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Figure 2. 8× VFI using RIFE [28] under different resolution
scales of flow computing on the X4K1000FPS dataset [68]. Dif-
ferent video clips have respective suitable processing scales.

crease their complexity and overhead, which is not con-
ducive to fulfilling the flexible requirements of diverse sce-
narios. Therefore, the complex structures adopted by previ-
ous methods might impede the progress of future STVSR
methods. Motion estimation components have become
more and more complex to manage various scenes and reso-
lutions. Many models are trained on small (e.g., 256× 256)
patches [86], yet relying on hand-crafted multi-stage and
multi-scale strategies [39, 53] to process high-resolution
videos [56, 68]. Even with these efforts, current method
still perform considerably differently as the processing res-
olution changes and per video. We show the results of a toy
experiment in Figure 2 and put the specific analysis in §3.2.

To mitigate the issue of excessive model complexity,
it is imperative to develop efficient and streamlined one-
stage STVSR models. As suggested by [5, 58], we decou-
ple various functional components and integrate promising
techniques from high-level vision. Since the input frames
of STVSR are in low resolution, we focus on aggregat-
ing contextual features to supplement the lack of informa-
tion in pixel-wise alignment [28, 39, 53]. To improve mo-
tion estimation and model efficiency, we propose a Scale-
Adaptive Flow Estimation (SAFE) block to construct our
model, Scale-Adaptive Feature Aggregation (SAFA).

Firstly, the flow estimation blocks recurrently update
an intermediate hidden state that encodes motion informa-
tion based on the contextual feature. Then, we use the
dynamic routing technique [14] to adapt SAFA to diverse
moving objects and motion scales. Specifically, we intro-
duce a data-dependent scale selector using a Bernoulli dis-
tribution, enabling SAFE to well utilize the scalable ad-
vantage of motion estimation. The multi-branch selection
reduces the computational overhead and helps SAFA fit
the data more accurately. The propagation of image infor-
mation and contextual features complement each other for

better STVSR performance. Experiments on these mod-
ules further validate that SAFA is a simple yet effective
method that outperforms state-of-the-art STVSR methods.
As shown in Figure 1, SAFA is faster and achieves over
0.5dB higher PSNR results than the comparison STVSR
methods like VideoINR [10], TMNet [83], and RSTT [16]
on the Adobe240 [72] dataset.

In summary, our contributions are three-fold:
• We introduce an innovative SAFE block that estimates

motion in an iterative manner with trainable block-
wise scale selection.

• With SAFE block, we propose an efficient SAFA
method for STVSR. The modular design of SAFA
makes it a simple yet efficient solution for STVSR with
input-adaptive inference customization.

• Experiments show that SAFA quantitatively and qual-
itatively outperforms state-of-the-art STVSR methods,
while exhibiting faster inference speed and fewer pa-
rameter amounts.

2. Related Work
2.1. Optical Flow Estimation

Optical flow estimation has garnered increasing attention
in recent research. Pioneering works such as FlowNet [13]
and FlowNet2.0 [31] have paved the way by learning to es-
timate dense optical flow fields from synthetic datasets. Ef-
ficient networks like PWC-Net [74] and LiteFlowNet [29]
have been constructed by warping features and computing
cost volume at various pyramid levels, thereby calculating
optical flow in a coarse-to-fine manner [24,59]. RAFT [76]
has achieved a significant breakthrough by iteratively updat-
ing a flow field through a recurrent ConvGRU [66]. The it-
erative framework introduced by RAFT has further evolved
into new variants [34, 73]. Transformer-based flow esti-
mation models such as GMFlow [84], FlowFormer [27],
and VideoFlow [67] have also shown promising advance-
ments in the field. Moreover, several studies have success-
fully generalized optical flow techniques for downstream
tasks [17, 86]. In this work, we introduce scale-adaptive
path selection into task-oriented flow-based propagation for
efficient STVSR.

2.2. Video SuperResolution

In recent years, research on VSR has gradually shifted
from sliding-window framework [77, 78, 86] to recurrent
framework [5, 15, 26, 32]. The recurrent framework can
leverage long-term motion information for better perfor-
mance. The deformable-model-based alignment scheme [6,
78] is an extension of flow-based alignment and is widely
used. Benefiting from in-depth research on long-term fea-
ture alignment and propagation, the work of BasicVSR [5,
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Figure 3. Architecture of our SAFA. (a) We design SAFA with low intra-module design complexity. The motion is iteratively estimated
using SAFE blocks. (b) A SAFE block consists of several neural layers. We warp the image feature and update the hidden state g. We
use a scale selector S to choose a suitable processing scale. (c) The scale selector is a small neural network with a differentiable sampling
STE [2, 92]. (d) The adaptive selection of the sub-network is block-wise.

7] has achieved very competitive performance. We refer
readers to [7] for detailed technologies of long-term motion
modeling. There are also some explorations of reusing op-
tical flow between different frames [90]. These techniques
are orthogonal to ours, as we focus more on streaming video
processing schemes that do not rely on many distant frames.

2.3. Video Frame Interpolation

Most existing VFI methods can be divided into two main
paradigms: kernel-based methods [54, 55] and flow-based
methods [28, 33, 39, 49, 57, 88]. They share the idea that
the pixels of the generated frames come from nearby re-
gions of the adjacent frames. The kernel-based methods,
e.g., AdaConv [54] and SepConv [55], implicitly model the
motion by estimating spatially adaptive kernels for different
output pixels. On the other hand, flow-based methods ex-
plicitly model the motion of objects. Specifically, DVF [49]
predicts the intermediate flow and occlusion mask jointly
using CNN. SuperSloMo [33] uses two U-Net [61] models
to estimate the bi-directional flows and occlusion mask suc-
cessively. The research on optical flow is gradually deepen-
ing. ABME [57] explores asymmetric motion estimation.
RIFE [28] and IFRNet [39] propose to build more refined
models and learn intermediate flow estimation via knowl-
edge distillation. AdaCoF [42] and EDSC [11] explore the
integration of both paradigms under the multi-flow collabo-
ration framework. Some recent works focus on specific sce-
narios, such as animations [9, 70] and near-duplicate pho-
tos [60]. Despite that VFI models are becoming more so-
phisticated, such as VFIformer [50] and EMA [87], we no-
tice that the critical path is still the feature extraction and
motion estimation. With this clue, our designed model is
modular with efficient flow-based feature aggregation.

2.4. SpaceTime Video SuperResolution

Standing on the early pioneer explorations [51, 63, 64],
STVSR has achieved new developments in the era of deep
learning. FISR [37] is among the pioneering work to unify
VFI and VSR networks. As concurrent work, Xiang et
al. [81] proposed to aggregate temporal information by a
unified deformable ConvLSTM [12]. Haris et al. [18] pro-
posed the STARnet to leverage mutually informative re-
lationships between temporal and spatial dimensions, and
fuse contexts at different resolution scales. To further im-
prove STVSR performance, the work of STVUN [36], MB-
Net [91], and YOGO [22] exploit the inter-correlation, in-
teraction, and integration of propagation schemes between
VSR and VFI tasks, respectively. Besides, TMNet [83]
modulates the deformable convolution kernels for arbitrary-
time frame interpolation. CycMu-Net [21] makes full use of
spatial-temporal correlations via mutual learning between
two processing dimensions. VideoINR [10] utilizes im-
plicit neural representation for the arbitrary scale of tem-
poral and spatial super-resolution. Our work focuses on im-
proving the overall performance of STVSR through explicit
and scale-adaptive feature aggregation.

3. Proposed Method
Here, we first overview SAFA for STVSR in §3.1. Then,

we describe the scale inconsistency issue and scale-adaptive
flow estimation in §3.2. Finally, we provide the training
details in §3.3 for reproducible research.

3.1. Overall Network

Following previous settings [81,83], we first use bicubic
interpolation to upsample the input LR frames {ILR

0 , ILR
1 },

by a scaling factor of 4×. Here, we still keep the index
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Figure 4. Architecture of a single-path SAFE block Fi (a) and
reconstruction model R (b). Multiple inputs of each module
are combined with concatenate operator. The hidden layers use
PReLU [19] as nonlinear activation. nc is a hyper-parameter that
controls the complexity of SAFA.

“LR” on the upsampled frames as {ILR
0 , ILR

1 } for descrip-
tive convenience. Thus, in SAFA, the input and output
frames are of the same size. As shown in Figure 3, the pro-
posed SAFA basically contains three parts: a spatial feature
extractor fθ, our proposed SAFE network F for temporal
feature aggregation, and a reconstruction module R.

SAFA network firstly extracts the feature maps c0 and c1
of the two adjacent frames ILR

0 and ILR
1 , respectively, by

the feature extractor fθ. That is, fθ(ILR
0 ) = c0, fθ(ILR

1 ) =
c1. The extracted feature maps will be employed to cal-
culate the intermediate flow field and further propagated to
fuse the latent feature of the frame at a target intermedi-
ate moment t. In the era of deep learning, there are many
milestone works extracting useful representations from im-
ages [20, 41, 43, 69]. Inspired by the successful FPN net-
works [8, 44], we employ the ResNet-18 [20] as our feature
extractor fθ and integrate the feature maps output by the in-
put stem, stage-1, and stage-2. To seamlessly integrate these
feature maps of varying sizes, we use a 1× 1 convolutional
layer and bilinear upsampling to adjust the channel numbers
and spatial sizes, respectively, illustrated in Appendix.

With the extracted feature maps {c0, c1}, we then per-
form temporal feature aggregation by SAFE blocks. The
SAFE network F estimates the bidirectional intermediate
flow fields ft→0 and ft→1, as well as a fusion map m ∈ [0, 1]
to model object occlusion [33, 49]. That is,

(ft→0, ft→1,m) = F(c0, c1, t). (1)

To synthesize accurate target frame at moment t, we further
propagate the LR frames {ILR

0 , ILR
1 } and the feature maps

{c0, c1} to those at the target intermediate moment t. This is
implemented by pixel-wise backward warping

←−
W with the

flow fields {ft→0, ft→1}, as follows:

Ît←0 =
←−
W(ILR

0 , ft→0), Ît←1 =
←−
W(ILR

1 , ft→1), (2)

ct←0 =
←−
W(c0, ft→0), ct←1 =

←−
W(c1, ft→1), (3)

After obtaining the propagated frames {Ît←0, Ît←1} and
feature maps {ct←0, ct←1}, we estimate a residual refine-
ment ∆ of the SR frame ÎSR

t by the reconstruction module:

∆ = R(ct←0, ct←1). (4)

Finally, the reconstructed frame ÎSR
t is obtained by

ÎSR
t = [m⊙ Ît←0 + (1−m)⊙ Ît←1] + ∆, (5)

where ⊙ means pixel-wise multiplication.
The obtained target frame ÎSR

t is consisted of two parts:
the pixel-wise fusion of the predicted intermediate frames
{Ît←0, Ît←1} propagated from the input LR images [49,93]
and the residual refinement ∆. f, m and ∆ are of the
same sizes with the HR frame. We have 0 ≤ m ≤ 1 and
−1 ≤ ∆ ≤ 1, since m and ∆ are obtained by the Sigmoid
and Tanh functions, respectively. The feature maps c0 and
c1 are at 1/2 resolution of the input frames. When warp-
ing the feature maps {c0, c1}, we need to resize the flow
fields bilinearly to match their resolution. The reconstruc-
tion module R is mainly consisted of ResBlocks [20] and
SubPixel [65] operator, as shown in Figure 4.

3.2. ScaleAdaptive Flow Estimation

The versatile motion amplitudes and object sizes bring great
challenges into flow estimation [53, 68, 76]. In high-level
vision tasks like image classification, researchers often en-
large the size of input images to obtain more accurate pre-
diction results [75]. However, the effective receptive fields
of flow-based video synthesizing models [28] may not fully
cover the objects of interests and their large motions in HR
frames. We not only want the spatial information provided
by the HR frame, but also want the receptive field of the
model to cover the large motion of the object. This inspires
us to design dynamic inference paths in the model to handle
different scenarios.
Scale inconsistency issue. We clarify the scale inconsis-
tency issue by a toy experiment. We use a pre-trained VFI
model, RIFE [28], to perform 8× time scale VFI on the
X4K1000FPS [68] benchmark. The details of the evalu-
ation settings are consistent with those in [68]. We use
RIFE [28] to infer the flow fields at different scales and then
interpolate the intermediate frames. As shown in Figure 2,
each video clip gains improvement on PSNR with differ-
ent inference scales, even if RIFE [28] has equipped the
coarse-to-fine flow estimation [25, 74]. By default, RIFE
selects the 1/4× scale and achieves an average PSNR of
30.58dB. It further gains an improvement of about 0.4dB if
we manually pick the inference scales with best results for
each video clip. This demonstrates that it is useful to select
an adaptive inference scale for each video clip. However, it
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is laborious to manual inspection and selection of the infer-
ence scale clip by clip.
Intermediate flow estimation. We follow the trial-and-
error manner for flow estimation [30,31,74,76]. That is, the
model estimates an optical flow field and uses the current
field to warp the spatial information of the original input
frame or feature map, and so on. We encode the time-step t
as a separate channel [28, 39], and feed it into the flow es-
timation module along with the image features. We employ
a bidirectional network to project the features {c0, c1} from
both directions to that at the moment t, under an iterative
trial-and-error manner. Formally, we denote the ith SAFE
block as Fi, as shown in Figure 4. They share the same
model structure, but with independent parameters:

F = {F1,F2, ...,FK}. (6)

Here, we set K = 6 in SAFA.
As shown in Figure 3, we iteratively update the hidden

state g that encodes motion. In each iteration, we use the
current estimated flow field to propagate extracted feature c
to obtain the bidirectional feature maps {ci−1t←0, ci−1t←1} of the
intermediate frame at a target moment t. Then these feature
maps are input to the next SAFE block. The calculation
process of K iterations is as follows:

g0 = Conv3×3(Concat(c0, c1)), (7)

gi = Fi(ci−1t←0, ci−1t←1, gi−1, t), i = 1, 2, ...,K. (8)

Finally, we get iteratively refined flow fields {ft→0, ft→1}
and an occlusion mask map m, which will be used to prop-
agate spatial information of input frames and their feature
maps, as described in §3.1.
Input-adaptive scale selection. To endow SAFA with the
ability of dynamic scale selection, we propose a SAFE
block to update the hidden states g = F(x) on different
scales, and select the one with the best performance, as
shown in Figure 3. The computational costs for calculat-
ing the state g1/s with 1/s resolution are 1/s2 of that in
the original resolution. This provides SAFA an appropriate
path to predict the intermediate frame at a target moment t
from two given frames.

We introduce the STE sampling [2, 23, 92] for multi-
branch selection. The neural network of scale selector S

estimates the selection probability Pi of B branches, where
i = 0, 1, ..., B − 1 and 0 ≤ Pi ≤ 1. We then choose a
branch based on Pi:

Forward : pi ∼ Bernoulli(Pi), pi ∈ {0, 1}, (9)

v0 = p0, v1 = (1− p0) ∗ p1, (10)

v2 = (1− p0) ∗ (1− p1) ∗ p2, ..., (11)

g =

B−1∑
i=0

vi ∗ gi, (12)

Backward :
∂o

∂Pi
=

∂o

∂pi
, (13)

where we calculate g in multiple branches gated by the
branch choice vi, o is the objective function. Essentially,
the above formula performs multiple dual-branch selections
to construct a computable multi-branch selection.

In practice, we use three branches of different scales
{g1, g1/2, g1/4}, i.e., B = 3. During training, our multi-
branch design increases the training overhead by 30% com-
pared to that with a single branch g1. In the inference
stage, only one branch needs to be calculated. The pa-
rameters of the different branches here are shared. On the
Adobe240 benchmark [72], the runtime of SAFA is 60% of
non-adaptive SAFA. The scale selector S occupies only 2%
of computation overhead by SAFA model.

3.3. Implementation Details

SAFA model is optimized from scratch (random initial-
ization) by Adam [38]. We train SAFA end-to-end using
L1 loss function with 32 × 32 down-sampled patches for
600, 000 iterations. The batch size in training is 24. We
gradually reduce the learning rate from 2× 10−4 to 0 using
cosine annealing scheme [81, 83] during the training pro-
cess. We use a sliding window with a length of 9 to select
frames from videos. In one training sample, we select the
first and last frames of the sliding window as the inputs and
the intermediate frames are taken as the ground truths. The
corresponding time-step t is from {0, 1

8 ,
2
8 , ..., 1}. Note that

we randomly select one intermediate frame for STVSR pre-
diction during the training stage. We randomly augment
the training sample by horizontal and vertical flipping, ro-
tating (90◦, 180◦ and 270◦), temporal order reversing. The
training is performed on four Pascal TITAN X GPUs, which
takes about 50 hours. For comparison, VideoINR [10] and
TMNet [83] require more than one week for training.

4. Experiments

4.1. Datasets and Evaluation Metrics

For STVSR methods, a typical training or testing sample
of video frame tuples is {ILR

0 , IHR
t , ILR

1 , t}. Here, the in-
put LR frames ILR

0 and ILR
1 are bicubicly down-sampled by

0.25× from the corresponding HR frames IHR
0 and IHR

1 ,
respectively. Following VideoINR [10], we train the com-
parison methods on the Adobe240 training dataset [72],
which contains 100 720p videos and each video has about
3, 000 frames. Our evaluation is on the following datsets:
Vid4 [46] is a popular test set containing 171 frames of
480p. On this dataset, we conduct STVSR experiments for
single-frame interpolation. Following VideoINR [10], the
metrics reported on Vid4 differ from some previous litera-
tures [81, 83] due to using a smaller sliding window.
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Table 1. Quantitative comparison on the Vid4 [45], GoPro [52], and Adobe240 [72] datasets. We omit some results of methods that can
only synthesize frames at fixed times t = 0.5. Some of the previous methods are reported by VideoINR [10].

VFI
Method

VSR
Method

Vid4 GoPro-Center GoPro-Average Adobe-Center Adobe-Average # Param
(M)PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DAIN [1] EDVR [78] 23.48 0.6547 28.01 0.8239 26.37 0.7964 27.06 0.7895 26.01 0.7703 44.7
DAIN [1] BasicVSR [5] 23.43 0.6514 28.00 0.8227 26.46 0.7966 27.07 0.7890 26.23 0.7725 30.3

IFRNet [39] EDVR [78] 23.68 0.6515 28.49 0.8379 26.41 0.7980 27.31 0.7981 26.12 0.7710 25.7
IFRNet [39] BasicVSR [5] 23.76 0.6603 28.55 0.8392 26.58 0.8012 27.44 0.8005 26.35 0.7769 11.3

Zooming SloMo [81] 25.72 0.7717 30.69 0.8847 - - 30.26 0.8821 - - 11.1
TMNet [83] 25.96 0.7803 30.14 0.8692 28.83 0.8514 29.41 0.8524 28.30 0.8354 12.3
RSTT-L [16] 25.94 0.7801 30.37 0.8762 - - 30.13 0.8754 - - 7.7

VideoINR-fixed [10] 25.78 0.7730 30.73 0.8850 - - 30.21 0.8805 - - 11.3
VideoINR [10] 25.61 0.7709 30.26 0.8792 29.41 0.8669 29.92 0.8746 29.27 0.8651 11.3

non-adaptive SAFA 25.82 0.7759 30.97 0.8871 30.01 0.8719 30.79 0.8854 29.92 0.8736 5.0
SAFA 25.98 0.7807 31.28 0.8894 30.22 0.8761 30.97 0.8878 30.13 0.8782 5.0

Adobe240 [72] contains 17 videos in its test subset. We
take the first frame out of every eight frames (i.e., 1st, 9th,
17th frame,...) to produce the input LR frames, and use
them to interpolate the intermediate frames.
GoPro [52] contains 11 720p and 240FPS videos. These
videos are mostly street scenes captured by action cam-
eras. We pre-process these videos in the same way as the
Adobe240 [72] test set. We do not use the training set [52].
X4K1000FPS is a high frame rate 4K dataset [68] contain-
ing 15 street scenes for testing.

For Adobe240 [72] and GoPro [52] datasets, we sepa-
rately evaluate the average metrics of the center (i.e., 1st,
5th, 9th, ...) frames and all output frames, which are de-
noted as -Center and -Average, respectively. We use the
metrics of Peak Signal-to-Noise Ratio (PSNR) and struc-
tural similarity (SSIM) [79] for quantitative evaluation. Fol-
lowing previous works [10, 81, 83], the generated images
will be evaluated on Y channel of YCbCr space. All the
methods are tested on a Pascal TITAN X GPU. To report
the runtime, we calculate the average process time for 100
runs after a warm-up process.

4.2. Comparisons to StateoftheArts

Comparison methods. We compare SAFA with six two-
stage “VFI+VSR” methods and four one-stage state-of-the-
art STVSR methods [10,16,81,83]. We reproduce the other
methods following VideoINR [10]. For two-stage methods,
we employ DAIN [1] and IFRNet [39] for VFI, and em-
ploy Bicubic Interpolation, EDVR [78], and BasicVSR [5]
for VSR, both trained on the Adobe240 training set [72].
The one-stage VideoINR [10], RSTT [16], and Zooming
SloMo [81] are trained in similar settings with SAFA. With
an additional training stage on Vimeo90K [86], TMNet [83]
is fine-tuned on the Adobe240 [72] training set. As sug-
gested in [10], VideoINR has a variant fixing the interpola-
tion time as t = 0.5, denoted as VideoINR-fixed.
Quantitative results. As shown in Table 1, the two-stage

Table 2. Quantitative comparison for different time scales on
the GoPro dataset [52].

Time Scale TMNet [83] VideoINR [10] SAFA
6× 30.49dB 30.78dB 31.67dB
8× 28.83dB 29.41dB 30.22dB

12× 26.38dB 27.32dB 27.97dB
16× 24.72dB 25.81dB 26.32dB

methods consuming more parameters perform worse than
the one-stage methods on STVSR. This is consistent with
previous literature [71,81,83] that demonstrated the benefits
of one-stage model design for STVSR methods.

For one-stage methods, SAFA enables arbitrary time-
step interpolation and achieves clearly better perfor-
mance than the comparison methods on Gopro [52] and
Adobe240 [72]. Due to small inter-frame object motion,
SAFA is only on par with TMNet [83] on Vid4 [45].

The original -Average evaluation regime can be taken
as 8× time scale evaluation. To study the ability of dif-
ferent methods on modeling time-step t, we also conduct
6×, 12×, and 16× experiments on GoPro [52]. As shown
in Table 2, SAFA consistently achieves substantial advan-
tages on all regimes over TMNet [83] and VideoINR [10].

Visual effects. In Figures 5 and 6, we compare SAFA with
TMNet [83] and VideoINR [10]. SAFA recovers better
the details of different scenes, especially on the frames at
t = 0.5. The reconstruction of frames at t = 0.5 is rela-
tively difficult because it is far from both input frames. We
provide some video results in Supplementary Materials.

Runtime. We test all comparison methods on the same plat-
form. As shown in Figure 7, SAFA has about 0.25× infer-
ence time when compared to TMNet [83]. The most effi-
cient two-stage method, i.e., IFRNet [39] + BasicVSR [5],
is considerably slower than SAFA.
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Figure 5. Qualitative comparisons on the GoPro dataset [52].
(a) VideoINR [10], (b) SAFA, (c) ground truth. We perform 8×
time scale interpolation and 4× super-resolution. Three of the
eight results are shown. The PSNR annotations are calculated on
the full 720p frame. We crop 120× 300 patches for visualization.

4.3. Ablation Study

We perform extensive ablation studies shown in Table 3.
(a) Feature extractor. The feature extractor in SAFA is
built on out-of-the-box ResNet-18 [20]. We denote the de-
fault setting as {R18: stem, s1, s2}, indicating that SAFA
fuses the features output by the stem and the first two stages.
Using only deep features (a1, a2) brings severe perfor-
mance degradation. The reason is that more down-sampling
layers lead to location confusion [48] and make feature
alignment difficult. Fusion of multi-level features improves
the performance of SAFA (a1 vs. a3). However, advanced
models [82] (a4, a5) that perform better in high-level tasks
may not be suitable for the STVSR task. We found the bot-
tleneck block of ResNet-50 can lead to a performance drop
in STVSR. More encoding layers may require additional
techniques to preserve spatial information.
(b) Information aggregation. SAFA (b1) computes optical
flow for explicit propagation of both image information and
features, while implicit propagation [5,81] usually works on
features. The variants (b2, b3) using only image or feature
propagation suffer from clear performance drop.
(c) Setting of flow estimation. In the modular design of
SAFA, we can perform speed-accuracy trade-off by ad-
justing the number of flow estimation iterations (c1-c4).

Figure 6. Qualitative comparisons on the Adobe240
dataset [72]. We perform 8× time scale interpolation and 4×
super-resolution. Two of the eight results are used for presenta-
tion. We crop 320× 240 patches for visualization.
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Figure 7. Inference time on different up-sampling time scales.
SAFA is efficient and has high accuracy.

Similar to the finding in the supervised optical flow esti-
mation [76], the iterative estimation indeed improves the
STVSR performance of SAFA. However, sharing weights
between different SAFE blocks (c5) brings about 0.2dB
performance drop. Multi-branch selection contributes
0.31/0.18dB improvements and increases the speed (c4 vs.
c6, Figure 7). The weights between different scales can
also be shared, which reduces model parameters and makes
SAFA more effective (c4 vs. c7). Directly optimizing the
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Table 3. Ablation studies on the Gopro-Center [52] and
Adobe240-Center [72] datasets. The default settings of SAFA are
marked using gray backgrounds.

Setting GoPro Adobe240 # Param
PSNR PSNR (M)

Feature Extractor fθ
a1: {R18: s2} 31.09 30.77 5.0
a2: {R18: s3} 31.01 30.68 7.0
a3: {R18: stem, s1, s2} 31.28 30.97 5.0
a4: {R50: stem, s1, s2} 31.23 30.94 6.0
a5: {ResNeXt101: stem, s1, s2} 31.17 30.87 7.0
Information Aggregation
b1: image + feature fusion 31.28 30.97 5.0
b2: image fusion 30.57 30.25 3.3
b3: feature fusion 31.15 30.77 5.0
Setting of SAFE block
c1: K = 1 iteration 30.73 30.61 2.5
c2: K = 2 iterations 31.04 30.77 3.0
c3: K = 4 iterations 31.21 30.90 4.0
c4: K = 6 iterations 31.28 30.97 5.0
c5: + cross-block weight sharing 31.07 30.81 2.5
c6: non-adaptive flow estimation 30.97 30.79 5.0
c7: w/o cross-scale weight sharing 31.25 30.91 6.8
c8: w/o scale selector 30.89 30.71 5.0
Initialization of Feature Extractor
d1: from scratch 31.28 30.97 5.0
d2: supervised pre-trained [20] 31.34 31.02 5.0
d3: DINO pre-trained [4] 31.38 31.12 5.0
Peak Learning Rate β, number of channels nc
e1: β = 2× 10−4, nc = 80 31.28 30.97 5.0
e2: nc = 60 31.17 30.85 2.8
e3: β = 1× 10−3 31.22 30.91 5.0
e4: β = 4× 10−5 30.94 30.62 5.0

Table 4. Statistics of scale selection for different input resolution
and performance impact.

Input Resolution 4K 2K 540p 270p
Ratio of scale=1/4 0.71 0.58 0.49 0.41
Ratio of scale=1/2 0.17 0.18 0.15 0.16
Ratio of scale=1 0.12 0.24 0.36 0.43
Fix scale=1 PSNR 27.05 25.50 23.55 21.62
SAFA PSNR 32.28 29.02 24.90 22.11
VideoINR [10] PSNR 29.70 26.64 23.09 20.56

scale selector (c8) rather than associating it with the in-
puts [47] brings a performance drop, which confirms the
importance of input-adaptive scale selector.

We study how SAFE block is benefited from selecting
model branches. We perform 8× time scale and 4× space
scale STVSR on the X4K1000FPS dataset [68]. We bilin-
early down-sample the original frames to get video clips of
different resolution. As shown in Table 4, SAFA tends to
select larger scales when processing videos in higher res-
olution. When fixing scale=1, the receptive field may not
cover large motions, bringing performance degradation.

(d) Benefited from pre-trained methods. Based on out-of-
the-box CNN architectures, the feature extractor of SAFA
can benefit from the research on other tasks. Due to the
huge difference between low-level and high-level vision
tasks, using the paradigm of fine-tuning pre-trained mod-
els in low-level tasks is still challenging [40]. SAFA can
utilize pre-trained models to improve its STVSR perfor-
mance, especially using unsupervised pre-trained parame-
ter weights (e.g., DINO [4]) (d3). For a fair comparison
with the comparison methods, we initialize from scratch the
parameters of the feature extractor in SAFA. We reported
these results to show potential future improvements for in-
spiring future work.
(e) Choice of hyper-parameters. We set the number of
channels nc = 80 in SAFA. Reducing model size could in-
crease speed, but also decrease performance (e2). Choosing
a larger or smaller peak learning rate degrades the perfor-
mance (e3,e4).

5. Conclusion

We developed a powerful network for STVSR. Specif-
ically, we proposed a Scale-Adaptive Flow Estimation
(SAFE) block to perform scale selection for accurate mo-
tion modeling. We further introduced an iterative estima-
tion scheme into SAFA to perform scale-adaptive feature
propagation and fusion for efficient STVSR performance.
Experimental results demonstrated that SAFA outperforms
predecessors comprehensively. Extensive ablation studies
confirm the efficacy of our approach. We envision SAFA
as a solid foundation for future research. Further direction
includes exploring the potential of SAFA on the real-world
STVSR task and more advanced feature extractor.
Limitation. Limited by the studied topic, our work may
not cover some scenarios. Firstly, following the setting of
VideoINR [10], SAFA focuses on using two input images.
For multi-frame inputs, SAFA could benefit from more im-
plicit feature propagation [5, 35, 81]. SAFA is suitable for
streaming systems as it does not depend on distant future
frames. Secondly, our experiments are done with PSNR and
SSIM as quantitative metrics to objectively measure the ca-
pability of the models [3]. SAFA can be readily changed to
use the perceptual losses to cater the perception. Thirdly,
SAFA may not tackle the diverse degradation that exists in
real-world videos currently. To this end, it is necessary to
train SAFA using additional training data and specialized
training pipelines designed for real-world STVSR [89].
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