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Abstract

Given an untrimmed video and a natural language query,
video moment retrieval (VMR) aims to retrieve video mo-
ments described by the query. However, most existing VMR
methods assume a one-to-one mapping between the input
query and the target video moment (single-target VMR),
disregarding the possibility that a video may contain multi-
ple target moments that match the query description (multi-
target VMR). Previous methods tackle multi-target VMR by
incorporating false negative moments with the original tar-
get moment for multi-target training. However, existing
methods cannot properly work when no false negative mo-
ments exist in the video, or when the identified false negative
moments are noisy but are still being utilized as pseudo-
labels. In this paper, we propose to tackle multi-target VMR
by Semantic Fusion Augmentation and Semantic Boundary
Detection (SFABD). Specifically, we use feature-level aug-
mentation to generate augmented target moments, along
with an intra-video contrastive loss to ensure feature con-
sistency. Meanwhile, we perform semantic boundary detec-
tion to adaptively remove all false negatives from the neg-
ative set of contrastive loss to avoid semantic confusion.
Extensive experiments conducted on Charades-STA, Activ-
ityNet Captions, and QVHighlights show that our method
achieves state-of-the-art performance on multi-target met-
rics and single-target metrics. The source code is available
at https://github.com/basiclab/SFABD.

1. Introduction

Recognizing and locating meaningful events within
videos is a crucial challenge in computer vision since it de-
mands the model ability of comprehensive understanding.
Although there has been notable progress in temporal action
localization [21,24,25], these models can only identify pre-
defined simple action classes, such as swimming or running.
To overcome this limitation, video moment retrieval with
natural language query (VMR) has emerged as a more flex-

A guy is playing the saxophone. A guy is playing the saxophone again.

(a) One-to-one mapping (single-target) setting previous VMR papers

A guy is playing the saxophone. A guy is playing the saxophone again.

(b) One-to-many mapping (multi-target) setting in real-world scenario.

Figure 1. The comparison of single-target and multi-target VMR.
The query and video are taken from ActivityNet Captions.

ible approach to temporal action localization. VMR neces-
sitates models to recognize and localize events described by
complex natural language queries, rather than being limited
to a predefined set of action classes. As such, VMR can fa-
cilitate a variety of real-world applications, such as finding
user-defined moments of interest in surveillance videos [9].

Most of the existing Video Moment Retrieval (VMR)
methods operate under the single-target assumption, which
posits a one-to-one mapping between the input query and
its target moment in a video (Figure 1a). This assumption
results in some methods predicting only a singular output
moment for each input query [6, 12, 16, 17, 19, 28]. The
primary rationale behind this assumption is the nature of
commonly used VMR datasets, which predominantly of-
fer single-target samples. However, a recent study by [14]
highlights the presence of false negative moments in VMR
datasets. This study recollected five annotations for some
testing samples in Charades-STA [5] and ActivityNet Cap-
tions [10], allowing researchers to evaluate the multi-target
performance of their models, which are solely trained on
single-target samples.

However, training solely on single-target samples can in-
troduce a single-target prediction bias, where models tend
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to identify only the moment most closely related to the
query [34]. Addressing this, [32, 34] pioneered the multi-
target assumption to mitigate such biases. Their core con-
cept is to perform multi-target training using only the origi-
nal single-target annotations. They introduce an auxiliary
model branch designed to detect false negative moments
in videos that are not explicitly labeled. By incorporating
these detected moments with the original single-target la-
bels, multi-target samples are created for multi-target train-
ing. This innovative approach has demonstrated significant
performance improvements on Charades-STA and Activ-
ityNet Captions datasets in multi-target testing scenarios.
However, a limitation of their methods is the reliance on the
existence of false negative moments in videos, which are
then used as pseudo-labels to create multi-target samples.
Additionally, these pseudo-labels can sometimes be noisy,
potentially compromising model performance.

To this end, we propose a general framework called
Semantic Fusion Augmentation and Semantic Boundary
Detection (SFABD) to better tackle multi-target VMR.
Specifically, to generate multi-target samples, we propose
to utilize feature-level mixup augmentation, which mixes
the original positive moment and another randomly selected
moment in the video. Then, we propose using intra-video
contrastive loss to utilize the property of multi-target labels,
ensuring the feature consistency between different positive
moments. Given that false negative samples can lead to se-
mantic confusion during optimization [3, 8], we modify the
approach from [3] and design an adaptive strategy to deter-
mine the semantic boundary to find false negative samples
in VMR datasets, which are then removed from the nega-
tive set of contrastive loss. Compared to previous multi-
target VMR methods [32, 34], our SFABD does not require
the existence of false negative moments in the video to gen-
erate multi-target samples. Furthermore, the quality of the
generated multi-target samples can be maintained by con-
trolling the intensity of the augmentation. Extensive ex-
periments conducted on Charades-STA, ActivityNet Cap-
tions, and real multi-target dataset QVHighlights [11] show
that our SFABD achieves superior performance compared
to previous VMR methods in both multi-target and single-
target metrics. The main contributions of this work are sum-
marized as follows.

• We introduce a novel strategy for generating multi-
target samples that eliminates the necessity for false
negative moments.

• We propose an intra-video contrastive loss for multi-
target samples, along with an adaptive strategy for
false negative elimination.

• Experimental results demonstrate that our proposed
SFABD achieves state-of-the-art performance on both
multi-target and single-target datasets.

2. Related Works
Single-Target VMR. Various methods have been proposed
to address the problem of VMR, and they can be broadly
categorized into proposal-free and proposal-based methods.
Proposal-free methods treat VMR as either a regression or
classification problem. Some approaches [6, 12, 16, 27, 29,
33] directly regress the start and end timestamps of the tar-
get moment. Others classify the probability that each frame
is the starting or ending frame [6, 17, 19, 28]. However, a
major limitation of most proposal-free methods is that they
are designed to predict a single output moment. While these
methods perform well on simgle-target samples, they are
unable to handle multi-target samples due to their inabil-
ity to generate multiple predictions. On the other hand,
proposal-based methods tackle VMR using a proposal-and-
rank framework. Approaches such as [1, 5] employ sliding
windows to generate multi-scale proposals, which are then
compared independently with the query to obtain similarity
scores. [2] proposed to use a predefined set of anchors start-
ing from each frame to efficiently compute similarity scores
for multi-scale proposals. More recently, [31] introduced
temporal max-pooling to construct a 2D temporal proposal
map and employed convolutional networks to capture rela-
tionships between neighboring proposals. Proposal-based
methods have a natural advantage in generalizing to multi-
target VMR compared to most proposal-free methods, pri-
marily due to their ability to generate multiple predictions.
Multi-Target VMR. While VMR methods with multiple
predictions can be generalized to multi-target testing sce-
narios, their optimization goals still primarily focus on
single-target prediction. Models trained solely on single-
target samples tend to develop a bias towards predicting
the most matched moment with the query, rather than gen-
erating diverse predictions that encompass all target mo-
ments [34]. To address this issue, [34] leveraged the verbs
and nouns in the query to identify false negative moments
within the same video, which were then used as pseudo-
labels for multi-target training. Similarly, [32] proposed the
use of video captioning techniques to reconstruct the query
for each proposal moment, allowing them to measure the
similarity scores between the reconstructed queries and the
input query to identify false negative moments for multi-
target training. However, both [34] and [32] rely on the ex-
istence of false negative moments in the video to generate
multi-target samples. Moreover, the quality of the generate
multi-target samples cannot be guaranteed.
False Negative Detection. False negative samples share
the same semantic concept as the query, but are mistakenly
assigned to the negative set of contrastive loss. This may
lead to the model discarding shared semantic information
between the positive sample and the false negative sam-
ple [8]. To perform false negative detection, approaches
such as [32, 34] consider negative samples whose similar-
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Video

A guy is playing the saxophone.

Query

Figure 2. The pipeline of our proposed SFABD. Based on the video feature extracted by the pre-trained video encoder, we perform semantic
fusion augmentation for generating augmented target moments. Afterward, we transform the sequence into a 2D temporal proposal map,
following by a proposal encoder. The semantic boundary detection is then performed to adaptively detect false negative samples and
remove them by generating a proper negative mask. Finally, the video proposals and queries are projected into a common embedding space
for contrastive learning. (The video proposals and queries from different batch indices are denoted in different colors in this figure.)

ity score with the anchor (query in VMR) exceeds a fixed
threshold as false negative samples. [3] mentioned that false
negative samples found at the early stage of training are not
reliable and will gradually become more reliable as training
progresses. Therefore, they design a candidate-and-accept
method that first finds false negative candidates by cluster-
ing, and then gradually accepts the candidates by linearly
increasing the acceptance rate. Once false negative samples
are identified, there are two common approaches to handle
them. The first is false negative attraction, which uses false
negative samples as pseudo-labels [8, 32, 34]. The second
is false negative elimination, which removes false negative
samples from the negative set [3]. Although false negative
attraction may improve performance by increasing data di-
versity, it could also degrade performance if the found false
negative samples are noisy. On the other hand, false nega-
tive elimination is more tolerant to noisy false negative sam-
ples, making it a more stable option.

3. Method

3.1. Problem Formulation

Given an untrimmed video V and a natural language
query Q, VMR aims to predict temporal moments M ∈
RK×2 that semantically match the input query, where K is
the number of predicted moments and the second dimen-
sion represents the start and end timestamps of the pre-
dicted moment. The ground truth moments are denoted as
M̂ ∈ RK̂×2, where K̂ is the number of ground truth mo-
ments. It is important to note that the terms “target mo-
ments”, “positive moments”, and “ground truth moments”
are interchangeable in this context.

We use v = EV(V) ∈ Rlv×dv to denote the video fea-

tures obtained by a pre-trained video encoder EV , where
lv is the length of the extracted features and dv is the di-
mension of feature space. As for the query, we use q =
EQ(Q) ∈ Rde to represent the query feature, where EQ is
the pre-trained sentence encoder and de is the dimension of
the query feature space.

3.2. Method Overview

To enable multi-target training, we first generate multi-
target samples through semantic fusion augmentation
(Sec.3.3). Subsequently, we transform the video features
into a 2D proposal map using the same procedure as
[22, 31]. Finally, we utilize semantic boundary detection
to adaptively detect false negative samples (Sec.3.5) and re-
move them from the negative set of both contrastive loss
(Sec.3.4) and cross-entropy loss (Sec.3.6).

3.3. Semantic Fusion Augmentation (SFA)

To enable multi-target training on datasets that contain
only single-target samples, we employ mixup augmenta-
tion [4, 20, 23, 26] on the video feature to generate aug-
mented target moments. Specifically, we blend the feature
sequence of the target moment into the feature sequence of
a randomly selected background moment using a weighted
averaging approach. This process expands the number of
target moments in V without requiring direct access to the
original video. We have observed several advantages of em-
ploying feature-level augmentations instead of frame-level
augmentations. First, the video encoding process is not re-
quired. When using VGG as the video encoder in Charades-
STA, a training speed of approximately 10 times faster can
be achieved using feature-level augmentation compared to
frame-level augmentation. Most importantly, as shown later
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in ablation study (Sec.4.4), the performance gap is negligi-
ble. Second, obtaining the data pre-processing details and
the pre-trained weight of each video encoder is not required.
In VMR, the data-preprocessing details and the pre-trained
weight of the video encoder are usually not provided.

3.4. Intra-Modal Contrastive Loss

When conducting multi-target training, it is advanta-
geous to leverage the inherent label structure within multi-
target samples. Specifically, all positive moments within
the multi-target samples share the same semantic of the
query; hence the proposal encoder should extract consis-
tent proposal features from these positive moments. To en-
sure and guide this behavior, we propose using intra-video
contrastive loss specifically designed for multi-target sam-
ples. We consider a batch of video features {vb}Bb=1, along
with their corresponding proposal features {F (vb)}Bb=1,
where F : Rlv×dv → RN×N×de represents the proposal en-
coder [22, 31], B denotes the batch size, de indicates the
dimension of the embedding space, and N is the number of
units to which the video feature is divided. To simplify the
notation, we use a one-dimensional index i ∈ [1 . . N ′] to
refer to the proposal feature at position (x, y) ∈ [1 . . N ]2

within a two-dimensional feature matrix, denoted as f b
i =

F (vb)xy ∈ Rde , where the superscript b ∈ [1 . . B] refers
to the index within the batch, N ′ represents the number of
proposals in the 2D feature matrix, x and y indicate the start
time and the end time, respectively. For a query Qb, we
calculate the intersection over union (IoU) between the pro-
posal moments and the target moments. We extract the top-
k proposals with the highest IoU for each target moment as
positive proposals. The indices of these positive proposals
are represented as a set Ib+.

For the positive proposal pair (f b
i , f

b
i+
) where i, i+ ∈ Ib+,

the proposed intra-modal contrastive loss is formulated as
follows:

p(f b
i+ | f b

i ) =

exp
(
(sbbii+ −mvv)/τvv

)
exp

(
(sbbii+ −mvv)/τvv

)
+

B∑
b′=1

N ′∑
j=1

M b′

j exp
(
sbb

′

ij /τvv
) ,
(1)

where sabij = fa
i · f b

j /(∥fa
i ∥ · ∥f b

j ∥) represents the cosine
similarity between fa

i and f b
j , mvv is the intra-video mar-

gin, and τvv is the intra-video temperature. Furthermore,
M b′

j represents the negative mask that indicates which pro-
posal feature f b′

j is negative w.r.t. f b
i . Specifically,

M b′

j =

{
0 if b′ = b and j ∈ Ib+
1 Otherwise

. (2)

For consistency, we re-express the inter-modal con-

trastive loss [22] of our backbone using our notation:

p(qb | f b
i+) =

exp
(
(ϕbb

i+
−mvq)/τvq

)
exp

(
(ϕbb

i+
−mvq)/τvq

)
+

B∑
b′=1,b′ ̸=b

exp
(
ϕbb′

i+ /τvq
) , (3)

p(f b
i+ | qb) =

exp
(
(ϕbb

i+
−mqv)/τqv

)
exp

(
(ϕbb

i+
−mqv)/τqv

)
+

B∑
b′=1

N ′∑
j=1

M b′

j exp
(
ϕb′b
j /τqv

) .
(4)

Here ϕab
i = fa

i ·qb/(∥fa
i ∥·∥qb∥) represents the cosine simi-

larity between the proposal feature fa
i and the query feature

qb = Eq(Qb), where a and b refer to the indices within
the batch. Additionally, mvq and τvq denote the inter-video
margin and temperature, respectively. Similarly, mqv and
τqv denote the inter-query margin and temperature, respec-
tively. The negative mask M b′

j is defined in Eq.(2).

3.5. Semantic Boundary Detection (SBD)

To accurately identify false negative samples, setting a
proper semantic boundary is crucial. However, previous ap-
proaches [3,32,34] simply set a fixed semantic boundary for
all samples to detect false negative samples, without consid-
ering the differences between each sample. We modify the
candidate-and-accept approach in [3] and design an adap-
tive strategy to determine the proper semantic boundary for
each sample, which takes the differences between each sam-
ple into consideration.
Adaptive Threshold. Instead of using clustering to find
false negative candidates [3], we adopt a more efficient
threshold-based method. We assume that the query is at
the center of its semantic cluster, allowing us to build a set
of false negative candidates by comparing the similarities
between the negative samples and the query. Instead of us-
ing a fixed similarity threshold for all queries [32, 34], we
propose using the maximum similarity between query and
positive proposals to identify false negative candidates.

γb = max
i+

{
ϕbb
i+

}
. (5)

This approach takes into account the varying distributions
of semantic clusters in the embedding space, as illustrated
in Figure 3. By setting the threshold based on the maximum
positive similarity, we can adapt to the sparsity or density of
the query semantic cluster. This ensures that false negatives
are not omitted in sparse clusters and avoids misclassifying
hard negatives as false negatives in dense clusters.
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Figure 3. Illustration of a dense cluster (upper left) and a sparse
cluster (lower right) for adaptive threshold. Best viewed in color.

Adaptive Acceptance Rate. [3] assumes that all samples
will be progressively learned by the model, as depicted in
Figure 4a. Therefore, they use the same linearly increasing
acceptance rate to gradually trust the false negative candi-
dates for all samples. However, we observed that not all
samples exhibit learning progress that closely matches the
ideal scenario. As shown in Figure 4b, the curve µb

+ does
not show a consistent improvement and is sometimes lower
than that of µb

−. Importantly, when the contrastive gap
δb = µb

+ − µb
− is lower or even negative, it indicates that

the sample is not well represented in the embedding space.
Therefore, the use of the same linearly scheduled accep-
tance rate for all samples is not a favorable choice. To ad-
dress the variable learning progress of each sample, we pro-
pose using the contrastive gap δb as an indicator. A larger
contrastive gap implies that positive and negative samples
can be easily separated by the learned representation, while
a smaller contrastive gap suggests that the model struggles
to distinguish between positive and negative proposals. We
employ a simple function to transform the contrastive gap
into the acceptance rate:

rb = max(min(α · δb, 1), 0), (6)

where α ∈ R+ is a constant hyper-parameter.
The procedure of our SBD is summarized as follows.

First, we use the adaptive threshold γb to identify false neg-
ative candidates for the query feature qb:

Φb =
{
ϕbb
i

∣∣∣ i ∈ [1 . . N ′], i /∈ Ib+, ϕ
bb
i ≥ γb

}
, (7)

where Ib+ represents the positive proposals defined in
Sec. 3.4. The next step involves selecting the top-k ele-
ments from Φb, based on the adaptive acceptance rate rb:

Ibfalse =
{
i
∣∣∣ ϕbb

i is in top k of Φb
}
, k =

⌈
rb ·

∣∣Φb
∣∣⌉. (8)

For Eq.(1) and Eq.(4), we utilize the following negative
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(a) Ideal curves of average similarity scores. Video ID is 342XO.
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(b) Unfavorable curves of average similarity scores. Video ID is 8YKGP.

Figure 4. Average similarity scores of ideal and unfavorable sam-
ples in the Charades-STA dataset. Here, µb

+ =
∑

i+
ϕbb
i+/K̂ rep-

resents the average positive pair similarity scores for query feature
qb, and µb

− =
∑B

b′=1

∑N′

i=1 ϕ
b′b
i /(BN ′ − K) represents the av-

erage negative pair similarity scores for qb, where b refers to the
index within the batch, K̂ is the number of ground truth moments
and δb = µb

+ − µb
−. Best viewed in color.

mask when SBD is applied:

M b′

j =

{
0 if b′ = b and j ∈ Ib+ ∪ Ibfalse

1 Otherwise
. (9)

3.6. Loss Functions

Similar to previous approaches [22, 31], we adopt the
scaled IoU loss Liou. It is important to note that the false
negative proposals in Ibfalse are also eliminated from the
scaled IoU loss. Additionally, the contrastive constraints
are learned by optimizing the negative log likelihood:

Lintra =
−1

B|Ib+|2
B∑

b=1

∑
i,i+∈Ib

+

log p(f b
i+ | f b

i ) (10)

Linter =
−1

B|Ib+|

B∑
b=1

∑
i+∈Ib

+

(
log p(qb | f b

i+) + log p(f b
i+ | qb)

)
(11)

The overall loss function is defined as:

L = Liou + λinterLinter + λintraLintra, (12)

where λinter and λintra are loss weights.
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4. Experiments
4.1. Datasets

Charades-STA. (Charades) [5] This dataset consists of
5, 338 videos with 12, 408 single-target queries in the train-
ing set and 1, 334 videos with 3, 720 single-target queries
in the testing set. Moreover, [14] proposed a relabeled test
set with 1, 000 queries and 5 target moments for each query,
and we refer to this testing set as Charades-multi.
ActivityNet Captions. (ActivityNet) [10] This dataset con-
sists of 10, 009 videos with 37, 417/17, 505/17, 031 single-
target queries in the training/validation/testing set. Ad-
ditionally, [14] proposed a relabeled test set with 1, 288
queries and 5 target moments for each query, and we refer
to this testing set as ActivityNet-multi.
QVHighlights. [11] This dataset is a high-quality multi-
target dataset that consists of 10, 310 multi-target queries
associated with 18, 367 moments in 10, 148 videos. The
videos are recently collected from YouTube and contain
content from three main categories: Daily Vlog, Travel
Vlog, and News. This dataset serves as a fair benchmark
as the testing performance can only be evaluated by submit-
ting predictions to the official evaluation server1.

4.2. Evaluation Metrics

Following previous work on single-target VMR, we
use the R@n, IoU=m metric [5] to evaluate single-target
datasets. This metric measures the percentage of queries
that have at least one correctly retrieved moment (IoU
> m) among the top-n output moments. To evalu-
ate Charades-multi and ActivityNet-multi, we adopt the
R@(n,G), IoU=m metric [33]. This metric calculates the
percentage of the G target moments that have at least one
matched prediction (IoU > m) among the top-n predicted
moments. To evaluate QVHighlights, we use the mean aver-
age precision mAP@m metric [11], where m represents the
IoU threshold for correct detection. Average results across
IoU thresholds ranging from 0.5 to 0.95 (inclusive) with a
step size of 0.05 are denoted as mAP@avg.

4.3. Evaluation Results

For the sake of fairness, we only compare methods that
use the same pre-trained video encoder. If a different in-
put data source is utilized, it will be clearly specified in
the tables. When comparing our method with existing
approaches on Charades-multi and ActivityNet-multi, as
shown in Table 1 and Table 2, our method outperforms all
previous methods. Unlike DTG and DTG-SPL that rely
on the existence of false negative moments in a video, our
method does not have such a limitation. Even if the video
does not contain any false negative moments, our method

1https://codalab.lisn.upsaclay.fr/competitions/
6937

Method Feature R@(5,5)
IoU=0.5 IoU=0.7

2DTAN [31] VGG 49.30 -
MMN† [22] VGG 56.68 30.16

SFABD (Ours) VGG 57.62 30.52
DRN [27] C3D 46.63 -

SFABD (Ours) C3D 58.38 31.06
2DTAN [31] I3D 54.56 -
DeNet [33] I3D 56.30 -
DTG [34] I3D 60.72 -

DTG-SPL [32] I3D 61.88 -
SFABD (Ours) I3D 65.14 36.16

Table 1. Evaluation results on Charades-multi. Note that † means
that the results are evaluated on the official pre-trained model.

Method Feature
R@(5,5)

IoU=0.5 IoU=0.7
2DTAN [31] C3D 56.35 -
DeNet [33] C3D 58.46 -
MMN† [22] C3D 59.39 42.47

SFABD (Ours) C3D 61.97 44.80
2DTAN [31] I3D 55.08 -

DTG [34] I3D 58.51 -
DTG-SPL [32] I3D 59.32 -
SFABD (Ours) I3D 60.79 43.77

Table 2. Evaluation results on ActivityNet-multi. Note that †
means that the results are evaluated on the official pre-trained
model.

Method mAP@0.5 mAP@0.75 mAP@avg
momentDETR [11] 60.51 35.36 36.14

UMT† [13] 53.38 37.01 38.08
QD-DETR [15] 62.52 39.88 39.86
QD-DETR† [15] 63.04 40.10 40.19
SFABD (Ours) 62.38 44.39 43.79

Table 3. Evaluation results on the QVHighlights test set. The
symbol † indicates that the source feature includes video and au-
dio. Otherwise, the input feature consists of video only.

can still generate high-quality multi-target samples, result-
ing in consistently superior performance.

Table 3 shows the results on QVHighlights. Our method
achieves current state-of-the-art and has a large perfor-
mance gap compared to previous work [15]. The major
difference between our method and previous methods lies
in the intra-video modality. Previous methods all adopted
transformer-based model that used self-attention for video
sequence encoding. However, their self-attention process
was unsupervised and did not fully utilize the information in
multi-target labels. In contrast, our method fully utilizes the
label information by using the intra-video contrastive loss to
supervise the relationships between positive moments. This
aspect is particularly important in multi-target VMR where
different positive moments may share the same semantics
but have a very different visual appearance.

In addition, we also evaluate our method in the single-
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Figure 5. Visualization of multi-target prediction. It is worth noting that MMN∗ is implemented in our code base.

Method
C3D video features I3D video features
R@1 R@5 R@1 R@5

IoU=0.7 IoU=0.7 IoU=0.7 IoU=0.7
DRN [27] 26.40 55.38 31.75 60.05

VSLNet [28] 30.19 - - -
MS-2D-TAN [30] 23.25 48.55 36.21 61.13

DTG [34] - - 39.38 66.91
DTG-SPL [32] - - 40.13 67.12

BMRN [18] 28.37 57.19 42.46 67.65
SFABD (Ours) 30.51 59.96 40.21 68.65

Table 4. Evaluation results on Charades with the C3D feature and
the I3D feature. Due to space limitations, the results for IoU=0.5
are provided in Appendix E.

Method R@1 R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

VSLNet [28] 43.22 26.16 - -
MS-2D-TAN [30] 45.50 28.28 79.36 61.70

DTG [34] 47.03 26.12 78.47 59.54
DTG-SPL [32] 47.04 - 79.16 -
SFABD (Ours) 49.22 30.97 81.03 66.81

Table 5. Evaluation results on ActivityNet with the I3D feature.

target scenario to ensure that the single-target performance
is maintained. It turns out that our method establishes new
state-of-the-arts in some settings. Table 4 shows that our
method achieves comparable results compared to the re-
cent single-target VMR method [18]. Furthermore, Ta-
ble 5 shows that our method outperforms recent multi-target
VMR methods [32, 34] and previous single-target VMR
methods on ActivityNet using the I3D feature. The incor-
poration of SFA and intra-video contrastive loss actually
shares a similar concept with self-supervised image pre-
training, which ensures the image encoder to extract consis-
tent features of the original image and the augmented one,
resulting in a more robust image encoder. Therefore, a more
robust and consistent proposal encoder is learned by using
SFA and intra-video contrastive loss. Our semantic bound-

ary detection further eliminates the negative effect of false
negative samples during batch-wise contrastive learning, re-
sulting in further improvement.

We would like to clarify the potential challenge of
achieving a concurrent improvement between R@(5,5) and
R@1 in Charades and ActivityNet. The core issue stems
from the assumption that target moments in a multi-target
sample hold equal priority. Consequently, even a well-
trained multi-target model cannot ensure that the prediction
with the highest confidence aligns precisely with a single-
target label. As a result, R@(5,5) cannot guarantee simulta-
neous enhancement with R@1. For illustrative examples of
this phenomenon, please consult Appendix D. We consider
this to be a primary factor that contributes to the slightly
lagging performance of SFABD in Charades I3D features
compared to BMRN [18]. However, it is worth noting that
while BMRN concentrates on refining the proposal bound-
aries of the 2D temporal proposal map, our approach fo-
cuses on enhancing proposal features for multi-target VMR.
These two methods are orthogonal and can be synergisti-
cally combined to create a powerful model.

4.4. Ablation Studies

Method Ablation. We further investigate the effective-
ness of each module in our proposed method, including
SFA, intra-video contrastive loss, and SBD. In Table 6, we
present the ablation results of Charades with the VGG fea-
ture, while the results for other datasets can be found in
the Appendix E. We observe that SFA (second row) can
slightly increase overall performance by adding data diver-
sity. Using SBD (third row) also improves overall perfor-
mance compared to our baseline model [22] (first row) by
eliminating the negative effect of false negative samples.
Combining SFA with intra-video contrastive loss (fourth
row) leads to further improvements by utilizing the multi-
target labels information to ensure feature consistency be-
tween positive moments. Using all methods together (fifth
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Linter SFA Lintra SBD R@1 R@5 R@(5,5)
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

✓ 48.24 29.15 83.79 60.01 55.46 30.56
✓ ✓ 48.11 29.61 84.96 59.00 57.26 30.60
✓ ✓ 48.82 29.50 85.04 60.17 57.1 30.66
✓ ✓ ✓ 48.60 29.96 85.94 60.45 57.22 30.36
✓ ✓ ✓ ✓ 50.23 31.38 85.62 61.07 57.62 30.52

Table 6. Full Method Ablation on Charades-STA with the VGG Feature.

Method Proposal
Encoder

R@1 R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

MMN ConvNet 47.31 27.28 83.74 58.41
MMN† ConvNet 46.99 27.95 83.33 59.41
SFABD ConvNet 47.04 29.50 83.71 59.14

MMN† ResNet-18 48.24 29.15 83.79 60.01
SFABD ResNet-18 50.23 31.38 85.62 61.07

Table 7. Evaluation results on Charades with the VGG feature
and different proposal encoders. ConvNet is the encoder officially
used by MMN [22]. Note that † denotes that the implementation
is based on our code base.

Threshold Acceptance
Rate

R@1 R@5 R@(5,5)
IoU=0.7 IoU=0.7 IoU=0.7

Fixed Linear 29.79 65.36 43.66
Fixed Adaptive 30.16 65.95 42.61

Adaptive Linear 30.47 66.14 43.51
Adaptive Adaptive 30.97 66.81 43.77

Table 8. SBD ablation on ActivityNet with the I3D feature.

row), the best overall performance is achieved.
Proposal Encoder. Table 7 compares the performance of
different proposal encoders. To provide a fair compari-
son, we conducted a hyperparameter search for MMN when
combined with ResNet-18 [7]. The results demonstrate that
our method outperforms MMN using both types of encoder.
By transitioning from a ConvNet to ResNet-18, our ap-
proach achieves a more substantial performance improve-
ment compared to MMN. One possible explanation is that
ResNet-18 possesses a higher learning capacity than a sim-
ple ConvNet, enabling it to recognize more patterns with
increased supervision.
Semantic Boundary Detection. In Table 8, we compare
the performance of different threshold strategies and differ-
ent acceptance rate schedulers. For the experimental details,
please refer to Appendix C. Using a fixed threshold to find
false negative candidates regardless of differences between
semantic clusters leads to inferior performance. Similarly,
using the same linearly increasing acceptance rate [3] for
all samples regardless of their learning progress also leads
to inferior performance. The best results are achieved by
using an adaptive strategy on both the threshold and the ac-
ceptance rate.
Feature-Level Augmentation We compared the effects of
data augmentation using mixup and cutmix techniques on

both original videos and VGG features. For the results and
experimental details, please refer to Appendix C.

4.5. Visualizations

Figure 5 visualizes the predictions of MMN [22] and our
SFABD . MMN is trained only with single-target samples,
therefore all of their predictions tend to focus on the most
related target moment to the query. In contrast, our SFABD
successfully predicts the other target moment due to the
multi-target training enabled by Semantic Fusion Augmen-
tation. The visualization for the false negative moments
found by Semantic Boundary Detection is in Appendix A.

5. Conclusion
In this paper, we propose an efficient and concise

method SFABD to tackle multi-target video moment re-
trieval. Specifically, we use Semantic Fusion Augmentation
to generate multi-target samples for multi-target training,
and utilize an intra-video contrastive loss to ensure feature
consistency among different positive moments. Further-
more, we employ Semantic Boundary Detection to adap-
tively eliminate false negative moments from the negative
set of contrastive loss. Our SFABD does not rely on the
existence of false negative moments in videos, and further
ensures the quantity and quality of the generated multi-
target samples. The extensive experiments show that our
SFABD achieves state-of-the-art performance on QVHigh-
lights, Charades-STA and ActivityNet Captions datasets.

6. Future Works
The current SBD pipeline consists of two steps: finding

false negative candidates using an adaptive threshold and
accepting a portion of them based on an adaptive accep-
tance rate. In the future, we aim to integrate these two steps
into a unified process that can achieve the same objective
concurrently.
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Uncovering hidden challenges in query-based video mo-
ment retrieval. In The British Machine Vision Conference
(BMVC), 2020. 1, 6

[15] WonJun Moon, Sangeek Hyun, SangUk Park, Dongchan
Park, and Jae-Pil Heo. Query-dependent video representa-
tion for moment retrieval and highlight detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 23023–23033, 2023. 6

[16] Jonghwan Mun, Minsu Cho, and Bohyung Han. Local-
global video-text interactions for temporal grounding. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10810–10819, 2020. 1,
2

[17] Cristian Rodriguez, Edison Marrese-Taylor, Fatemeh Sadat
Saleh, Hongdong Li, and Stephen Gould. Proposal-free
temporal moment localization of a natural-language query
in video using guided attention. In Proceedings of the
IEEE/CVF Winter conference on Applications of Computer
Vision, pages 2464–2473, 2020. 1, 2

[18] Muah Seol, Jonghee Kim, and Jinyoung Moon. Bmrn:
Boundary matching and refinement network for temporal
moment localization with natural language. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 5570–5578, 2023. 7

[19] Haoyu Tang, Jihua Zhu, Meng Liu, Zan Gao, and Zhiyong
Cheng. Frame-wise cross-modal matching for video moment
retrieval. IEEE Transactions on Multimedia, 24:1338–1349,
2021. 1, 2

[20] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Na-
jafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Ben-
gio. Manifold mixup: Better representations by interpolat-
ing hidden states. In International Conference on Machine
Learning, pages 6438–6447. PMLR, 2019. 3

[21] Limin Wang, Yu Qiao, Xiaoou Tang, et al. Action recog-
nition and detection by combining motion and appearance
features. THUMOS14 Action Recognition Challenge, 1(2):2,
2014. 1

[22] Zhenzhi Wang, Limin Wang, Tao Wu, Tianhao Li, and Gang-
shan Wu. Negative sample matters: A renaissance of met-
ric learning for temporal grounding. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages 2613–
2623, 2022. 3, 4, 5, 6, 7, 8

[23] Han Wu, Chunfeng Song, Shaolong Yue, Zhenyu Wang, Jun
Xiao, and Yanyang Liu. Dynamic video mix-up for cross-
domain action recognition. Neurocomputing, 471:358–368,
2022. 3

[24] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-
Fei. End-to-end learning of action detection from frame
glimpses in videos. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2678–2687, 2016. 1

6791



[25] Jun Yuan, Bingbing Ni, Xiaokang Yang, and Ashraf A Kas-
sim. Temporal action localization with pyramid of score dis-
tribution features. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3093–3102, 2016. 1

[26] Sangdoo Yun, Seong Joon Oh, Byeongho Heo, Dongy-
oon Han, and Jinhyung Kim. Videomix: Rethinking
data augmentation for video classification. arXiv preprint
arXiv:2012.03457, 2020. 3

[27] Runhao Zeng, Haoming Xu, Wenbing Huang, Peihao Chen,
Mingkui Tan, and Chuang Gan. Dense regression network
for video grounding. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10287–10296, 2020. 2, 6, 7

[28] Hao Zhang, Aixin Sun, Wei Jing, Liangli Zhen, Joey Tianyi
Zhou, and Rick Siow Mong Goh. Natural language video
localization: A revisit in span-based question answering
framework. IEEE transactions on pattern analysis and ma-
chine intelligence, 44(8):4252–4266, 2021. 1, 2, 7

[29] Mingxing Zhang, Yang Yang, Xinghan Chen, Yanli Ji, Xing
Xu, Jingjing Li, and Heng Tao Shen. Multi-stage aggre-
gated transformer network for temporal language localiza-
tion in videos. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12669–
12678, 2021. 2

[30] Songyang Zhang, Houwen Peng, Jianlong Fu, Yijuan Lu,
and Jiebo Luo. Multi-scale 2d temporal adjacency net-
works for moment localization with natural language. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
44(12):9073–9087, 2021. 7

[31] Songyang Zhang, Houwen Peng, Jianlong Fu, and Jiebo Luo.
Learning 2d temporal adjacent networks for moment local-
ization with natural language. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 12870–12877,
2020. 2, 3, 4, 5, 6

[32] Hao Zhou, Chongyang Zhang, Yanjun Chen, and Chuanping
Hu. Towards diverse temporal grounding under single posi-
tive labels. arXiv preprint arXiv:2303.06545, 2023. 2, 3, 4,
6, 7

[33] Hao Zhou, Chongyang Zhang, Yan Luo, Yanjun Chen, and
Chuanping Hu. Embracing uncertainty: Decoupling and
de-bias for robust temporal grounding. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8445–8454, 2021. 2, 6

[34] Hao Zhou, Chongyang Zhang, Yan Luo, Chuanping Hu,
and Wenjun Zhang. Thinking inside uncertainty: Interest
moment perception for diverse temporal grounding. IEEE
Transactions on Circuits and Systems for Video Technology,
32(10):7190–7203, 2022. 2, 3, 4, 6, 7

6792


