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Abstract

Synthetic data is emerging as a substitute for authen-
tic data to solve ethical and legal challenges in handling
authentic face data. The current models can create real-
looking face images of people who do not exist. However, it
is a known and sensitive problem that face recognition sys-
tems are susceptible to bias, i.e. performance differences
between different demographic and non-demographics at-
tributes, which can lead to unfair decisions. In this work,
we investigate how the diversity of synthetic face recogni-
tion datasets compares to authentic datasets, and how the
distribution of the training data of the generative models
affects the distribution of the synthetic data. To do this,
we looked at the distribution of gender, ethnicity, age, and
head position. Furthermore, we investigated the concrete
bias of three recent synthetic-based face recognition mod-
els on the studied attributes in comparison to a baseline
model trained on authentic data. Our results show that the
generator generate a similar distribution as the used train-
ing data in terms of the different attributes. With regard to
bias, it can be seen that the synthetic-based models share
a similar bias behavior with the authentic-based models.
However, with the uncovered lower intra-identity attribute
consistency seems to be beneficial in reducing bias.

1. Introduction
Recently, training face recognition (FR) models on syn-

thetic data and using FR models trained on synthetic data
has gained attention and importance [15]. Motivated by le-
gal and ethical issues in some jurisdictions (e.g. the Eu-
ropean Union [68]) regarding using and sharing authentic
face images without consent, synthetic data might be a sub-
stitute due to its remarkable quality and similarity to au-
thentic data. Additionally, several large face datasets such
as the widely-used MS-Celeb-1M [31], VGGFace2 [16] or
DukeMTMC-reID [49] are not available anymore from an
official source. However, the existing accuracy gap between
authentic and synthetic-based FR requires novel solutions to
train suitable well-performing FR models [12, 14].

In authentic FR systems and datasets, the presence of
bias, unfair behavior by the systems based on demographic
(e.g. gender, age, ethnicity) or non-demographic (e.g. head-
pose, accessories) attributes, has been studied extensively
in the past [3, 17, 67] and mitigation strategies to increase
data diversity and reduce unfair behavior have been ex-
plored [3, 30, 66]. Having fairer models is of high impor-
tance for biometric applications as the decisions of FR sys-
tems are often of high impact on the individuals’ lives, e.g.
in access control or law enforcement identification.

For synthetic FR data and models trained on synthetic
data, unfair behavior is still an unexplored area [15]. The
diversity and bias in synthetic data and models trained on
synthetic data are of special interest as it provides novel op-
portunities but also new problems. A major advantage of
synthetic data is that new data can be generated depending
on certain attributes. For example, a lack of variety with re-
spect to a certain ethnicity can be compensated by synthetic
images of these underrepresented ethnicities [41]. While
there are works [2, 7] that have shown that the distribution
of training data plays an exclusive role for gender bias, there
are works [73,74] that showed that the distribution of train-
ing data plays a major role in ethnicity bias. However, a
drawback of synthetic data is, that there is no factual or self-
reported ground truth regarding specific attributes as the
person depicted does not exist in reality and definite state-
ments cannot be made. This is especially important as stud-
ies have shown that there are gaps between self-reported and
genomic ancestry ethnicity [44], self-reported and observed
ethnicity [57] and biases and errors in human age estima-
tion [18, 32, 69].

In this work, we investigate the demographic and non-
demographic diversity of existing synthetic face datasets
and also the bias in existing synthetic-based FR models. To
do this, we investigate the distribution of head pose, gender,
ethnicity, and age in three recent synthetic datasets as well
as on the authentic datasets used to train the synthetic data
generators using attribute predictors. We also investigate
the bias of the synthetic-based FR models regarding gender,
age, ethnicity, and pose in comparison to an authentic data-
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based baseline model. Our results show, that the synthetic
face generators generate data similarly, in terms of diversity,
to their training data and that the models trained on syn-
thetic models suffer higher bias than the model trained on
authentic data, motivating new solutions for more diverse
and better synthetic data generators or bias mitigation tech-
niques in synthetic FR models.

2. Related Work
2.1. Synthetic Data in Face Biometrics

In recent years, utilizing synthetic data for face biomet-
ric tasks has become quite popular [12, 14, 42, 47] as eth-
ical and legal requirements have to be met for biometric
data using, sharing, and collection in several jurisdictions
(such as the European Union [68]). Although the legal re-
quirements may vary culturally and geographically, the re-
cent ethics guidelines of established international venues,
such as the International Conference on Computer Vision
(ICCV)1 or the Conference on Computer Vision and Pattern
Recognition (CVPR)2, also require special considerations
when publishing or using databases containing personal
data. Moreover, the collection and annotation of large-scale
authentic data are expensive and time-consuming and might
lead to datasets with low diversity. On the issue of identity
relation between synthetic data and the authentic data used
to train the generators, Boutros et al. [12] have shown close
to no relation.

Recently, a number of works [12, 14, 42, 47] proposed
the use of privacy-friendly synthetic data to train FR mod-
els as an alternative to privacy-sensitive authentic data. Qiu
et al. [47] proposed a synthetic-based FR model, namely
SynFace, that utilized synthetic face images generated by
attribute-conditional GAN, DiscoFaceGAN [22], to train
FR models. Each of the synthetic identities in the pro-
posed approach is generated by fixing the identity condi-
tion and randomizing the attribute conditions i.e. pose, il-
lumination, and expression. SynFace [47] also analyzed the
performance gap between synthetic and authentic images
as training data and identified poor intra-class variations
and the domain gap as possible reasons for verification per-
formance differences. To mitigate this, SynFace proposed
to use identity and domain mixup, where identity mixup
refers to interpolating between two identities and domain
mixup refers to interpolating between authentic and syn-
thetic data in the training data. USynthFace [14] also uti-
lized attribute-conditional GAN to train an FR model in an
unsupervised manner. UsynthFace proposed a contrastive
learning framework that is trained to maximize the distance
between two augmented synthetic images of the same syn-
thetic instance. To achieve that, USynthFace proposed a
large set of geometric and color transformations as well as

1https://iccv2023.thecvf.com/ethics.guidelines-362600-2-25-26.php
2https://cvpr.thecvf.com/Conferences/2024/EthicsGuidelines

a GAN-based augmentation for their contrastive learning
framework. SFace [12] and IDNet [42] proposed synthetic-
based FR models based on class conditional GANs. Each
of the synthetic identities in SFace and IDNet is generated
by fixing the class label and randomizing the latent code.
SFace proposed to train StyleGAN-ADA under class condi-
tional settings on CASIA-WebFace. SFace also proposed to
improve the synthetic-based FR performances by transfer-
ring the knowledge from a model trained on authentic data
to the model trained on synthetic data without compromis-
ing the authentic identities. Unlike SynFace and Usynth-
Face, the intra-class variations in SFace are not limited to
a predefined set of attributes. However, the generated data
by SFace suffers from low identity distinctiveness. IDNet
very recently extended SFace by incorporating identity in-
formation in the GAN training, aiming at enhancing iden-
tity discrimination in the generated data. DigiFace-1M [5]
proposed synthetic-based FR, where the synthetic images
are generated by rendering digital faces using a computer
graphics pipeline. Each synthetic identity in DigiFace is
created by randomizing the facial geometry, texture, and
hairstyle. Although DigiFace-1M achieved relatively com-
petitive FR verification performances, the generation pro-
cess is computationally expensive, and the generated im-
ages do not match the quality and realistic appearance of
authentic images. Most recently, IDiff-Face [11] and Ex-
FaceGAN [13] were proposed, leading to more realistic face
variations and huge advancement in the performance of the
synthetic-based FR.

Besides FR, synthetic face data has also been used for
other biometric-related tasks, such as 3D face reconstruc-
tion [48], presentation attack detection [27], morphing at-
tack detection [19], FR model quantization [9] or face im-
age manipulation [46]. In contrast to Fu et al. [29], who
investigated the diversity in terms of face image quality of
synthetic face images and how they relate to the training im-
ages, we investigate the diversity and bias regarding specific
demographic and non-demographic attributes.

2.2. Bias in Face Recognition
Exact definitions of bias, implications, and its causes

vary between sources. A common understanding is that
it relates to differences in performance ratings that are in-
fluenced by a particular sub-population [50]. Several stud-
ies showed that the recognition performance of females is
weaker than the performance of male faces when using FR
trained on authentic data [1, 2]. Regarding age, studies an-
alyzing the impact of age demonstrated a lower biometric
performance for children, than for adults [20,62]. Research
investigating the impact of ethnicity showed that faces of
under-presented ethnicities perform worse [34]. In a com-
prehensive study, Terhörst et al. [67] expanded bias also to
non-demographics attributes, such as expression, pose, or
illumination.
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To the best of our knowledge, no work so far investigated
the bias in synthetic FR models and the diversity of the gen-
erated data regarding demographic and non-demographic
attributes.

Besides FR, bias can also be observed in other biomet-
ric tasks, such as presentation attack detection [26,28], face
image quality assessment [65], biometric systems explana-
tions [37], or face detection [45].

3. Investigation Methodology & Setup
In this section, we describe our investigation methodol-

ogy and the investigation setup. We start with the approach
we use to analyze the diversity of authentic FR datasets and
synthetic FR datasets. We describe the utilized datasets,
synthetic face generators, and attribute predictors. After
that, we describe our approach to investigate the bias of FR
models trained on synthetic faces, including the FR models
and evaluation methods used.

3.1. Diversity Investigation

To investigate the diversity of the datasets, we use differ-
ent high-performing attribute predictors to predict the three
demographics attributes gender, age, and ethnicity, and the
non-demographic attributes head pose. We then report the
different distributions of the attributes of the different au-
thentic and synthetic datasets.

The investigation of the diversity of the authentic
datasets is also of special interest, as the investigated
datasets are used to train the generative models that then
create the synthetic datasets. Investigating this allows pos-
sible insights into how the distribution changes based on the
utilized training data, as some might assume that the gener-
ative model in general follows the distribution that has been
used to train it.

3.1.1 Attribute Predictors

Since the investigated datasets do not provide human-
labeled attributes, labeling large datasets is expensive, and
there is also no factual self-reported ground truth in syn-
thetic images regarding specific attributes, we utilize at-
tribute predictors to get automatic attribute labels. In our
experiments, we limit ourselves to the most investigated at-
tributes gender, age, ethnicity, and head-pose [24]. The re-
sults based on four additional well-established [4, 6, 25, 52]
attribute estimator (including another non-demographic at-
tribute face emotion) based on an open source project
[59, 60] are provided in the supplementary material due to
space. For each of the attributes, we utilize different well-
performing attribute predictors.

The gender predictor [53] is based on VGG-16 archi-
tecture [61] and was pre-trained on ImageNet [55] and fine-
tuned on the IMDb-Wiki dataset [53]. It achieved a classi-
fication accuracy of 88.50% on the Balanced-Faces-in-the-

Wild (BFW) [51] dataset. We decided to limit our predic-
tion classes to two genders (male, female), being aware
that there are more than two genders people identify them-
selves with.

The age predictor we utilized a support vector ma-
chine (SVM) trained on feature embeddings extracted us-
ing ElasticFace-Arc [8] from the Adience [56] dataset. It
achieved a mean accuracy of 60.51%± 2.28 in a five cross-
fold evaluation setup on Adience [56], which is comparable
to other works on the hard Adience dataset [10, 53, 63, 64].
The Adience dataset provides 8 classes, which are de-
fined as: (0, 2), (4, 6), (8, 12), (15, 20), (25, 32), (38, 43),
(48, 53), and (60, 100).

As the ethnicity predictor, we also utilize an SVM
trained on feature embeddings extracted using ElasticFace-
Arc [8]. The images to create the feature embeddings
are taken from BUPT-Balancedface [74] dataset, which
provides a large set of nearly equally distributed eth-
nicities. The datasets distinguished between the ethnic-
ities African/Black, Asian, Caucasian/White, and
Indian. The SVM is trained on randomly selected 10%
of the data while keeping the distribution of the ethnicities
equal. To evaluate the performance, we test on 1,300 im-
ages also randomly selected from BUPT-Balanceface while
ensuring that the identities from the training set are not part
of the test set. On this test set, we achieved an accuracy of
90.91%.

As the head-pose predictor we use Hopenet [54], which
is one of the publicly available top-performing head pose
estimators. It uses a multi-loss convolutional neural net-
work and predicts intrinsic Euler angles (yaw, pitch, and
roll) of the head pose. For simplification, we only consider
yaw and evaluate on the Annotated Facial Landmark in the
Wild (AFLW) [43] dataset, which results in a mean abso-
lute error of the predictor of 8.26. This implies that the pre-
dicted yaw angle differs from the real angle by about 8.26.
Since we mainly care about the general head pose, we di-
vide the obtained yaw into five classes: 0◦ (frontal), 22.5◦,
45◦, 67.5◦, and 90◦ (profile) based on the yaw angle.

3.1.2 Diversity Evaluation Metric

To measure and evaluate the diversity of the authentic and
synthetic training data, we report the overall data distribu-
tion in terms of gender, age, ethnicity, and head pose as
predicted by our attribute predictors. Since in some cases,
different samples of the same identity might have conflict-
ing attribute predictions, we also want to gain insights into
the intra-identity distribution of the attributes. Differences
in these attributes might be natural (e.g. aging process) or
due to less distinct features. We propose the novel Intra-
Identity Attribute Consistency Ratio (IIACR). The IIACR is
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calculated as:

IIACR =
1

N

N∑
n=1

maxα∈S(mn,a)

mn
, (1)

where N is the number of identities, S is the set of dif-
ferent classes for an attribute, α is a class of S, mn is the
total amount of images of an identity n, and mn,a is the
amount of images of an identity n that belongs to class α.
The IIACR, therefore, provides insights into the consistency
of an attribute within the images of an identity. For some at-
tributes such as gender or ethnicity, this value is expected to
be 1, as individuals rarely change their gender or ethnicity.
In synthetically generated face images, where the creators
rather aim at preserving or creating the synthetic identity
than maintaining the similar attribute for the different sam-
ples of a synthetic identity, this might vary more often. For
other attributes, such as head pose and age, a lower value
might be favorable, as this indicates more variety in the
face data. In our experiments, we randomly select 1% of the
identities and calculate the IIACR based on all available im-
ages of the randomly selected individuals. On USynthFace-
400k, we only applied it to the GAN-augmented samples,
as the geometric and color transformation had been done
online.

3.2. Bias Investigation
To investigate the bias in FR models trained on synthetic

or authentic data, we analyze performance differences de-
pending on the investigated demographic attributes (gender,
cross-age, ethnicity) and non-demographic attributes (head
pose). To obtain these performance differences, we eval-
uate different datasets that make a distinction regarding the
specific attributes, e.g. we compare between the verification
accuracy of a female subset to that of a male subset. On all
benchmarks, we follow the provided evaluation protocol to
produce reproducible results.

Finally, we combine the results from the diversity and
consistency analysis with the results from the bias analy-
sis to investigate the influence of the synthetic or authentic
training data on the different verification performances.

3.2.1 Bias Evaluation Datasets & Metric
For the evaluation in terms of bias, we utilize six differ-
ent datasets. The different datasets provide different labels
to create attribute-based subsets and are often used in bias
studies [50, 73]. For the evaluation in terms of gender bias,
we report the performance on Balanced-Faces-in-the-Wild
(BFW) [51]. To investigate the ethnicity bias, we evalu-
ate the different models on BFW [51] as well as Racial-
Faces-in-the-Wild (RFW) [73]. To investigate the perfor-
mance difference on images with different ages, we com-
pare LFW [35] (smaller age gap) with Cross-Age LFW [76]
(larger age gap) as they are based on the same data but in-
stead of random comparisons (LFW), the Cross-Age LFW

dataset consist of genuine and imposter pairs with higher
age gaps. For the head-pose performance difference, we
compare the performance on CFP-FF (frontal-frontal) [58]
to CFP-FP (frontal-profile) [58] which are also based on the
same data but provide a different pose evaluation scenario,
were the pairs of CFP-FF both show frontal images, while
in the CFP-FP datasets, one face image is a profile image.

To investigate the bias in synthetic FR models, we report
the verification accuracy on the different subsets following
the defined protocol of each dataset, as well as the mean
accuracy (mAcc) and the standard deviation (STD), similar
to other bias analyses works [36, 71, 72]. Furthermore, we
also report the Skewed Error Ratio (SER) [71]. Error skew-
ness is computed by the ratio of the highest error rate to the
lowest error rate among different attributes and is therefore
calculated as:

SER =
maxaErr(a)

minbErr(b)
(2)

where a, b are classes of the investigated attribute.

3.3. Face Recognition Models & Datasets
To investigate the bias in FR models trained on synthetic

data, we utilized three different recently proposed models
trained on their associated synthetic training data. The uti-
lized models are SFacesynth [12], SynFace [47], and USyn-
thFace [14]. We chose these models because they provide
state-of-the-art synthetic FR and are of different natures in
their approach. All models used are publicly available and
have been released by the authors of the respective works.

As a Baseline, we investigate the bias in FR mod-
els trained on authentic data, ResNet50 [33] trained on
CASIA-WebFace [75] with CosFace loss [70]. This model
is considered in our evaluation as it was used by the uti-
lized synthetic-based FR models [12, 47] as a baseline for
comparing their verification performances with the model
trained on authentic data.

SFacesynth [12] is a model trained on the SFace-60
dataset. The model architecture is ResNet-50 [33] trained
with CosFace loss [70]. During the training phase, SFace
proposed to transfer the knowledge from a model trained on
authentic data, CASIA-WebFace [75]. This aims at guiding
the synthetic FR model to learn to produce feature repre-
sentations that are similar to the ones learned by the model
trained on authentic data. It should be noted that the training
process of SFace does not include any authentic data. The
SFace training dataset consists of 634,320 images of 10,572
identities (60 images per identity). The images have been
generated by a StyleGAN2-ADA [38] conditionally trained
on CASIA-WebFace [75].

The authentic CASIA-WebFace [75] dataset used to
train the FR baseline and the SFace generative model
consists of 494,414 images of 10,575 different identities.
The images in CASIA-WebFace have been collected semi-
automatically from the web. The authors of the datasets did
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not make any statement on the diversity of their dataset, but
it is regularly used to train FR systems [8,21,40], especially
when compared to synthetic-based FR [12, 47].

SynFace [47] was trained by the authors on the
Syn 10k 50 dataset using identity-mixup. The backbone ar-
chitecture is ResNet-50 [33] trained with ArcFace loss [21].
Syn 10k 50 [47] consists of 500,000 synthetic images of
10,000 different identities. Syn 10k 50 utilized DiscoFace-
GAN [22] to generate the synthetic face images. Disco-
FaceGAN is an attribute conditional GAN model trained on
the FFHQ dataset [39]. Synthetic identities in Syn 10k 50
are generated by fixing the identity condition and randomly
sampling latent variables from the standard normal distri-
bution for expression, pose, and illumination. The FFHQ
dataset contains 70k images collected from Flickr and en-
compasses variation in ethnicity, age, image background,
and accessories [39].

USynthFace [14] is an unsupervised FR model trained
with unlabeled synthetic data. USynthFace FR model ar-
chitecture is ResNet-50 [33] trained with contrastive learn-
ing. Similar to the SynFace model, USynthFace utilized a
DiscoFaceGAN trained on FFHQ to generate the synthetic
dataset, USynthFace-400k. The USynthFace-400k dataset
consists of 400,000 images of 400,000 synthetic identities.

In the diversity analysis we analyze two authentic
datasets CASIA-Webface [75], FFHQ [39] that had been
used during the generator training, and the three differ-
ent synthetic datasets, SFace-60 [12], Syn 10k 50 [47] and
USynthFace-400k [14] that has been created by the gener-
ators. In the bias analysis, we investigate the bias of the
authentic baseline model and the three synthetic models,
SFacesynth, SynFace, and USynthFace.

4. Results
In this section, we present the results of our investigation.

First, we provide the results of our data diversity investiga-
tion starting with the distributions of gender, ethnicity, age,
and head pose on the five different datasets. Later on, we
present and discuss the results of the intra-identity attribute
consistency analysis, to evaluate how consistent or diverse
the different attributes are in an authentic dataset and syn-
thetic dataset. The diversity distributions for the predictions
of four additional attribute estimators are provided in the
supplementary material.

4.1. Data Diversity
4.1.1 Attribute Distribution
The distribution of the gender attribute is visualized in Fig-
ure 1 and the percentages are also shown in Table 1. The
distribution of male and female individuals in the dataset is
close to even, while the authentic FFHQ dataset shows more
female individuals, the other authentic dataset, CASIA-
WebFace shows more male individuals. SFace-60, the syn-
thetic dataset which has been created utilizing a generative

Figure 1. Gender Distribution: The dotted line indicates an equal
distribution. While the FFHQ dataset, USynthFace-400k dataset,
and Syn 10K 50 dataset are nearly balanced, the imbalance of the
gender distribution in the SFace-60 dataset increased in contrast to
its generator training data, CASIA-WebFace. This might indicate
a bias regarding generating individuals from the majority class.

Figure 2. Ethnicity Distribution: All datasets show a high ethnic-
ity imbalance. The synthetic datasets seem to inherit the general
distribution regarding ethnicities from the authentic training set to
train the generators. (FFHQ was training data for the Syn 10K 50
generator and the USynthFace-400k generator, CASIA-WebFace
was used to train and generate the SFace-60 dataset.

model trained on CASIA-Webface revealed a higher imbal-
ance regarding gender, which might indicate that the gener-
ative model tends to create samples from its majority class
regarding gender distribution. This is especially interest-
ing, as the synthetic identities of the SFace-60 dataset have
been created based on the original CASIA-WebFace identi-
ties. The generative model, therefore, at least in some cases,
flipped the gender of some images or identities in their syn-
thetic counterparts from female to male.

The ethnicity distribution is shown in Figure 2 and the
numerical values in Table 1. The figure shows that there is
a highly imbalanced distribution in the authentic, but also in
the synthetic face datasets. White/Caucasian individuals are
highly over-represented while other ethnicities are under-
represented. One can also note that the synthetic datasets
follow, to some degree, the overall distribution of the re-
spective generator training data of the generator. The gen-
erative model trained on the slightly less imbalanced FFHQ
dataset led to less imbalanced synthetic datasets USynFace-
400k and Syn 10K 50 in contrast to the more imbalanced
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Dataset Gender Ethnicity
Male Female African/Black Asian White/Caucasian Indian

CASIA-WebFace (auth.) 55.23 44.77 11.49 4.45 80.45 3.61
SFace-60 (syn.) 66.52 39.48 12.20 4.44 80.20 3.16
USynthFace (syn.) 48.56 51.44 10.44 12.26 69.64 7.66
Syn 10K 50 (syn.) 49.80 50.20 9.93 6.21 71.40 12.46
FFHQ (auth.) 45.62 54.38 10.70 14.85 66.87 14.85

Table 1. Distribution of Gender and Ethnicity in %: Similar to Figure 1, the values show that the synthetic SFace-60 is more imbalanced
than its authentic origin dataset CASIA-WebFace. Regarding the ethnicity distribution, the synthetic datasets inherit the general balance
from their authentic origin dataset (see also Figure 2).

Dataset Age Head Pose
(0,2) (4,6) (8,12) (15,20) (25,32) (38,43) (48,53) (60,100) 0◦ 22.5◦ 45◦ 67.5◦ 90◦

CASIA-WF. (auth.) 0.01 0.31 1.79 5.21 67.74 19.02 2.97 2.96 51.01 36.12 8.14 3.65 1.06
SFace-60 (syn.) 0.00 0.18 1.10 5.16 63.30 23.92 2.99 3.36 48.37 37.07 10.21 3.88 0.47
USynthFace (syn.) 1.87 6.70 3.79 14.55 53.34 18.32 1.17 0.57 59.85 35.78 4.18 0.21 0.00
Syn 10K 50 (syn.) 0.74 6.27 4.43 15.73 54.62 17.34 0.69 0.19 63.97 33.71 2.26 0.06 0.00
FFHQ (auth.) 2.88 7.40 5.45 8.70 49.80 17.10 4.65 4.03 59.89 36.03 3.79 0.28 0.02

Table 2. Distribution of Head Pose and Age in %: Similar to Figure 3, the percentages in the Table show that there is a high imbalance
towards the age ranges (25,32) and the adjacent age ranges in all datasets. The infant and elderly classes are under-represented in all
datasets, but the imbalance increased when using the generators trained on FFHQ to create the USynthFace and the Syn 10K 50 datasets.
Regarding head pose, the CASIA-WebFace and also SFace-60 provide higher diversity, but the diversity is reduced in the synthetic training
dataset as fewer profile or next-to-profile images are present in the dataset (see also Figure 4).

CASIA-WebFace and SFace-60 dataset.
The age distribution is presented in Figure 3 and the dis-

tribution percentages in Table 2. Again, a high imbalance
can be seen across the datasets. The majority of the im-
ages are classified as showing individuals in the age range
of (25-32). Since the age predictor is not perfect, but also
generally provides a high one-off accuracy [10,64], the high
amount of samples in the adjacent age ranges of (15,20) and
(38,42) might be explained. The small number of children
and adolescents in the data sets is noticeable, although it is
also noticeable that, similar to ethnicity, the general distri-
bution of the attributes remains the same in the respective
generator training dataset.

The distribution of the non-demographic head pose at-
tribute is shown in Figure 4 and Table 2. To simplify the
evaluation, we neglect the direction of the yaw angle, i.e.
we do not differentiate between the right or left profile of the
face. From Figure 4 it can be observed, that there is a high
imbalance regarding frontal or nearly frontal images (yaw
angle of around 22.5◦) on all datasets. Interestingly, SFace-
60 seems to contain more images with a semi-profile view
(45◦) than the original CASIA-WebFace increasing the di-
versity of the training data. The datasets based on FFHQ
show a very similar head pose distribution to the authentic
dataset used to train their generator.

4.1.2 Intra-Identity Attribute Consistency
We also investigate the consistency of our investigated at-
tributes to gain insights into how variable the specific at-
tributes are and how good the synthetic models can maintain
these, as they normally aim at preserving synthetic identity

Figure 3. Age Distribution: A relatively higher representation
of the age range of (25,32) and the adjacent age ranges can be
observed. The age distribution seems also to be inherited from the
authentic datasets, as SFace-60 mimics the distribution of CASIA-
WebFace. USynthFace-400k and Syn 10K 50 are also roughly
similar to FFHQ with some differences in the elderly and infant
class, which are more under-represented in the synthetic datasets.

information and not the specific attributes. With the IIACR
we measure the mean intra-identity attribute consistency
over the analyzed subsets of the datasets. For attributes such
as gender and ethnicity, we expect it to be beneficial for the
FR training, if the IIACR is high, as this means that less
noise or domain difference is introduced into the model. For
attributes such as age and pose, we assume a lower consis-
tency to be beneficial as this means a higher natural intra-
class variability is present in the training dataset.

Table 3 shows the IIACR values for the authentic
CASIA-WebFace dataset as a reference dataset for an au-
thentic dataset and the three synthetic datasets. The high
values of 0.95 for gender and 0.92 for ethnicity indicate
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Figure 4. Headpose Distribution: The large majority of the
face images in the authentic and synthetic datasets are frontal or
near frontal. Profile and near profile images are under-represented
and the percentage decreases at least when using the CASIA-
WebFace-based generator to create SFace-60 (see also Table 2).

Dataset Gender Age Ethnicity Pose
CASIA-WF 0.95±0.07 0.78±0.16 0.92±0.11 0.57±0.14

SFace-60 0.93±0.10 0.67±0.15 0.91±0.07 0.49±0.10
Syn 10K 50 0.71±0.11 0.57±0.13 0.73±0.16 0.64±0.07
USynthFace 0.92±0.13 0.76±0.18 0.82±0.18 0.60±0.07

Table 3. Intra-Identity Attribute Consistency Ratio: SFace-60
and USynthFace-400k show a similar IIACR as CASIA-WebFace
regarding gender and ethnicity, indicating that most images of one
synthetic individual share the same attribute features. Syn 10K 50
shows a different behavior with less consistency, which might be
due to the identity-mixup without checking for matching gender or
ethnicity. The age and pose IIACR is lower for SFace-60 than for
CASIA-WebFace which might indicate a higher intra-class varia-
tion of the synthetic data in contrast to the authentic data.

Model Male Female mAcc+STD SER
Baseline 93.45 91.52 92.49±0.97 1.29

SFacesyth 92.38 89.67 91.03±1.35 1.36
SynFace 80.52 77.96 79.24±1.28 1.13

USynthFace 81.27 78.27 79.77±1.50 1.16

Table 4. Gender Bias on BFW: All the models, including the
authentic model performed better on male faces than female faces.
While the STD indicates less bias in the authentic model, the SER
indicates higher bias in the authentic data.

the high consistency of the gender and ethnicity attributes
on authentic data. SFace-60, which utilizes the identities
of CASIA-WebFace to create its synthetic identities also
achieves a high consistency in these attributes, which in-
dicates a lower domain gap. The IIACR for Syn 10K 50
dataset shows a lower IIACR regarding gender and ethnic-
ity which might be due to the identity-mixup during the face
synthesis which might mix up individuals of different gen-
ders or ethnicities, leading to contradicting face features in
different images.

To summarize our investigation of the diversity of the
training dataset showed, that the overall distribution of the
authentic training dataset is to some degree inherited by the
synthetic training data, depending on which data the gen-

erator has been trained. In some cases, the imbalance is
even increased after the face synthesis. The investigation
on the intra-identity consistency showed that most synthetic
datasets show a high consistency regarding fixed attributes
such as gender and ethnicity, while having a similar vari-
ability regarding changing attributes such as age and pose.

4.2. Bias in Synthetic-based FR Models
In this subsection, we investigate the bias in the deci-

sions of synthetic-based FR models in comparison to a base-
line model trained on authentic data. We investigate this
on gender, ethnicity, age, and head pose. To evaluate this,
we report the subset-specific accuracy, the mean accuracy
(mAcc) including standard deviation (STD), and the SER,
following [36, 71, 72]. Following the ”Rule of 30” and its
extensions [23], in most cases, a confidence level of 90%
with a percent relative error of 10% is achieved regarding
the reported accuracies and errors. Only the Baseline and
the SFace model are below the required number of errors
on the LFW and FF dataset to achieve this confidence and
percent relative error. Given the error rates in the Tables 4,
5, 6 and 7 and the level of confidence for the percent relative
bias, the bias in most cases is statistically significant.

Table 4 presents the verification accuracy on the gender
subsets of the BFW dataset. In all cases, the performance
is worse on female than male faces, which is consistent
with previous findings [1, 2]. While the performance of the
SFacesynth is competing with the Baseline model, the other
models perform worse.

To analyze ethnicity bias, we provide the verification ac-
curacy, the mean accuracy, standard deviation, and SER on
the ethnicity split on RFW and BFW in Table 5. In the re-
ported values we can observe an ethnicity bias as the Cau-
casian/White ethnicity class is the best-performing attribute
class regarding verification accuracy across all investigated
models. Similar to the observation on the gender bias, we
observe that the STD of the synthetic model on the RFW
dataset is higher in contrast to the STD of the authentic
models, while the SER is lower, indicating a lower bias.
Interestingly, on the BFW dataset, the SER and the STD are
lower for SynFace and USynthFace, meaning lower bias.
A possible explanation might be, that due to the less con-
strained identity attributes and a higher inconsistency re-
garding ethnicity within an identity in the synthetic data (see
3), the synthetic models are less biased.

The results of the age bias evaluation are presented in
Table 6. In contrast to the other datasets, the setup on age is
slightly different, as the distinction is not made between dif-
ferent age groups, but between comparisons of more similar
age groups and cross-age comparisons. The results show,
that similar to authentic models, the performance on higher
age gaps between compared samples reduced the perfor-
mance also for synthetic models. The higher variation in
the intra-identity age attribute might also be beneficial, as
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RFW
Model African Asian Caucasian Indian mAcc + STD SER

Baseline 85.52 84.27 92.52 88.03 87.59±3.15 2.10
SFacesyth 80.17 80.93 90.15 84.32 83.89±3.94 2.01
SynFace 59.75 67.20 70.05 66.00 65.75±3.76 1.34

USynthFace 60.25 67.67 72.40 69.13 67.36±4.45 1.44
BFW

Model Black Asian White Indian mAcc + STD SER
Baseline 92.20 87.43 95.56 90.71 91.48±2.92 2.83

SFacesyth 90.05 85.66 94.04 88.99 89.69±2.99 2.41
SynFace 74.92 72.79 79.47 75.90 75.77±2.41 1.32

USynthFace 75.66 74.01 80.35 77.06 76.77±2.33 1.32

Table 5. FR performance and ethnicity Bias on BFW and RFW: The authentic-based baseline model as well as the synthetic-based
models show a high positive bias regarding Caucasians/Whites. While the STD and SER on RFW indicate higher bias of the synthetic
models toward the ethnicities, the results on BFW might indicate that a lower intra-class ethnicity consistency might be beneficial to reduce
bias.

Model LFW Cross-Age LFW mAcc + STD SER
Baseline 99.38 93.22 96.30±3.80 10.94

SFacesyth 99.02 92.08 95.55±3.47 8.08
SynFace 91.77 75.18 83.48±8.29 3.02

USynthFace 91.83 76.88 84.35±7.48 2.83

Table 6. Age Bias on LFW and Cross-Age LFW: All the models perform worse when confronted with comparison pairs of higher age
gaps. The absolute performance drop was even higher on the synthetic-based models than the authentic-based baseline. SER is consistently
lower (better) for synthetic-based models.

Model F-F F-P mAcc + STD SER
Baseline 99.33 95.84 97.59±1.74 6.21

SFacesyth 98.80 91.90 95.35±3.45 6.75
SynFace 90.33 74.53 82.43±7.90 2.63

USynthFace 90.34 78.20 84.27±6.07 2.26

Table 7. Headpose Bias on CFP-FF (frontal-frontal) and CFP-
FP (frontal-profile): The results show that cross-pose verification
accuracy is worse on every model, authentic and synthetic-based.
The absolute performance decrease is higher on the synthetic-
based models than on the authentic baseline.

a lower SER can be reported for the synthetic models than
the authentic baseline.

Finally, the results on variation in head pose are pre-
sented in Table 7. We compare two scenarios: Frontal-
Frontal and Frontal-Profile comparison pairs. All the mod-
els perform worse on the frontal-profile scenario indicat-
ing a higher challenge and biased behavior. Analyzing
the results of the synthetic models shows that the perfor-
mance difference between frontal-frontal and frontal-profile
increased in contrast to the authentic model.

To summarize, in total we observed similar biases in
the synthetic FR models as in the authentic FR model,
which motivates the use and development of bias mitiga-
tion techniques also on synthetic-based FR models. The
intra-identity attribute consistency which might be lower in
synthetic data due to fewer constraints might be beneficial
to reduce bias.

5. Conclusion
In this work, we investigated the diversity and bias of

synthetic data and synthetic-based FR models. As synthetic
data and synthetic models are becoming established as a
real alternative to authentic data, it is highly necessity to
investigate this in more detail to study discriminatory be-
havior and to reduce it in future work. In our investiga-
tion, we analyzed the distribution and intra-identity attribute
consistency on three demographic (gender, ethnicity, age)
and one non-demographic (head pose) attribute. The results
show that the generator models tend to recreate the distri-
bution from the training datasets and might slightly amplify
the imbalance in the synthetic datasets. To investigate the
bias, and performance differences depending on different
subsets, we performed several experiments on gender, eth-
nicity, age, and pose splits. The results show, that similar
biases can be observed in synthetic FR models as in authen-
tic FR models, motivating existing and new works regarding
bias mitigation also be applied to the novel synthetic-based
models, especially given the possibility of inducing vari-
ability in the synthesized images. Furthermore, our inves-
tigation showed that the synthetic face recognition models
yet do not achieve the same performance as models trained
on authentic data.
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