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Figure 1. TriA-GAN can synthesize realistic human figures given a masked image and a sparse set of keypoints.

Abstract

We address the task of in-the-wild human figure synthe-
sis, where the primary goal is to synthesize a full body given
any region in any image. In-the-wild human figure synthe-
sis has long been a challenging and under-explored task,
where current methods struggle to handle extreme poses,
occluding objects, and complex backgrounds.

Our main contribution is TriA-GAN, a keypoint-guided
GAN that can synthesize Anyone, Anywhere, in Any given
pose. Key to our method is projected GANs combined with
a well-crafted training strategy, where our simple genera-
tor architecture can successfully handle the challenges of
in-the-wild full-body synthesis. We show that TriA-GAN
significantly improves over previous in-the-wild full-body
synthesis methods, all while requiring less conditional in-
formation for synthesis (keypoints vs. DensePose). Finally,
we show that the latent space of TriA-GAN is compatible
with standard unconditional editing techniques, enabling
text-guided editing of generated human figures.

1. Introduction

Given any image with a missing region, can you imag-
ine a human appearance fitting into it? If there is a foot-
ball next to the missing region, does your imaginary person
change? This is a fascinating and difficult problem because
countless possible solutions could fit the context. We re-
fer to this task as in-the-wild human figure synthesis. Ad-
dressing this problem requires a complex understanding of
human appearances and how they vary based on different
environmental conditions, viewpoints, poses, and sizes of
the missing region. Such a system would have widespread
applications in content creation, fashion [37], or even for
anonymization purposes [18].

Human figure synthesis is a well-established research
field with many high-level goals. However, in-the-wild hu-
man figure synthesis is a difficult and under-explored task.
Previous methods focus on simpler tasks, such as transfer-
ring a known appearance into a given pose [2, 4], transfer-
ring garments [14, 52], or full-body synthesis into a plain
background [9]. Often they disregard the key difficulties
of in-the-wild-synthesis, such as overlapping objects, par-
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tial bodies, complex backgrounds, and extreme poses. In
fact, recent studies filter out these difficult cases from their
dataset to improve synthesis quality [9, 10]. To the best
of our knowledge, only a handful of research studies have
tackled these challenges, with a focus on full-body syn-
thesis for anonymization [18, 20] 1. While previous meth-
ods [18] generate visually pleasing results, they heavily rely
on DensePose estimation and struggle in complex scenar-
ios. In addition, the generated images are hard to edit [18].

A key issue of current methods for in-the-wild human
figure synthesis is their reliance on DensePose annotations
[18,20]. The available datasets with such annotations are ei-
ther limited in size [12,20] or automatically annotated [18].
We argue that this reliance constrain these methods, either
by overfitting on small datasets [20] or by the numerous an-
notation errors arising from DensePose [18].

This paper explores full-body synthesis conditioned on
sparse 2d-keypoints, eliminating the need for expensive
DensePose annotations. However, this increases the model-
ing complexity considerably, as the generative model must
now infer both the body’s texture and its structure. We find
that current GANs [18] struggle to synthesize realistic hu-
man figures without DensePose correspondences.

Our contributions address the challenge of scaling up
GANs to handle in-the-wild full-body synthesis without
DensePose correspondences. Key to our method is re-
placing the conventional GAN discriminator with Projected
GANs [53]. By combining Projected GANs with a thought-
fully designed training strategy, our method can generate
coherent bodies with visually pleasing textures.

Our contributions can be summarized as follows. First,
we adapt Projected GANs [53] for image inpainting
(Sec. 3.1), and propose a novel mask-aware patch discrim-
inator (Sec. 3.2). Secondly, we investigate the representa-
tional power of pre-trained feature networks used by the
discriminator (Sec. 3.3). Our experiments reflect that the
previously used classification networks [53, 54] are poorly
suited for discriminating human figures. Instead, we use
a combination of self-supervised feature networks for the
discriminator, which significantly improves sample quality.
Finally, we propose a progressive training technique for U-
Net [50] architectures (Sec. 3.4), enabling us to easily scale
up to high resolutions and larger model sizes.

Our contributions culminate into a new state-of-the-art
for in-the-wild human figure synthesis. As far as we know,
our approach is the first to generate nearly photorealistic
humans without DensePose annotations while effectively
dealing with extreme poses, complex backgrounds, partial
bodies, and occlusions. Source code: http://github.
com/hukkelas/deep_privacy2/.

1Note that other studies address similar tasks [40,60], but they focus on
simpler datasets (i.e. Market1501 [75], DeepFasion [37]) with few overlap-
ping/occluding objects.

2. Related Work
2.1. Full-body Human Synthesis

Synthesizing human bodies has a range of applications,
and previous studies have a large variety of high-level
goals. We categorize human synthesis into transfer-based
and synthesis-based models. Transfer-based methods trans-
fers a source appearance (or garment [14, 52]) into a new
pose [2, 33, 39, 47, 52, 56], motion [4] or scene [57]. While
some of these methods are applicable for in-the-wild hu-
man figure synthesis [57, 67], they require a source appear-
ance that limits the synthesized identities to a texture bank
or an image dataset of appearances. In contrast, our method
can directly synthesize novel identities. For the latter goal,
synthesis-based methods can synthesize the appearance ei-
ther conditioned on a pose [40, 60, 68], scene [8, 18, 20],
or unconditionally [5, 9, 10]. Several of these methods are
applicable for in-the-wild human synthesis [18, 40, 60], but
they are limited to low-resolution [8, 40], struggle to han-
dle complex backgrounds [9, 60], and only a few handles
overlapping objects [18, 20].

Independent of the goal, most methods use a form
of pose information to enhance synthesis quality through
DensePose annotations [18, 20, 43, 52], semantic segmenta-
tions [5, 60, 67], sparse keypoints [2, 4, 8, 14, 33, 39, 40, 47,
56, 57, 67], or a 3d pose of the body [32, 68].

Previous studies primarily focus on GAN-based meth-
ods, but recent studies have employed diffusion models [59]
for human figure synthesis [22]. Our work focuses on
GANs as they offer fast sampling of high-quality images.

2.2. Generative Adversarial Networks

Generative Adversarial Networks [11] (GANs) have
long been a leading generative model for a range of full-
body synthesis tasks. GANs are notoriously difficult to
train, and a notable research focus has been on achieving
stable training of the generator, where different techniques
such as novel objectives [1], architectures [24,26–28], train-
ing strategies [25], and regularization [13,41] has been pro-
posed to improve stability and synthesis quality. Recently
introduced Projected GANs [53] use pre-trained feature net-
works for the discriminator to reduce training time and im-
prove image quality, which was later extended for high-
resolution image synthesis on the ImageNet [6] dataset [54].
We continue this line of research, where we adapt projected
GANs for conditional synthesis.

2.3. Image Inpainting

Image inpainting [3] aims to complete missing regions
in natural images. Unlike general image inpainting, we
complete missing regions that contain human figures ap-
pearing at random regions in natural images. GANs have
long been the leading methodology for free-form image in-
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painting [46, 70], where most prior work focuses on archi-
tectural changes to the generator. For example, to handle
missing values [19, 35, 70], generate higher resolution [69],
utilize auxiliary information [23, 31, 42], or improve the re-
ceptive field via attention mechanisms [71] or fourier con-
volutions [62]. Previous methods adapt a traditional GAN
discriminator, often patch discriminators [21,36,49,65,70],
combined with perceptual image similarity losses [36, 49]
and pixel-wise l1 loss [49, 65]. As far as we know, we are
the first to adapt Projected GANs [53] for image inpainting,
where we exclusively train on the adversarial objective.

3. TriA-GAN - A Keypoint-Guided GAN

In this section, we gradually introduce changes to im-
prove synthesis quality (Tab. 1). Config A (Sec. 3.1) starts
with a StyleGAN-based [27] U-Net [50] architecture, sim-
ilar to the architecture used in [18], trained with Projected
GANs [54] using EfficientNet-Lite0 [63]. Config B intro-
duces our Mask-Aware Discriminator objective (Sec. 3.2),
and Config C replaces EfficientNet-lite0 with ViT-L16MAE
and RN50CLIP (Sec. 3.3). Config D introduces our progres-
sive training technique (Sec. 3.4) and finally, Config E in-
creases the generator model size. To reduce training time,
we ablate our method on low-resolution images (72 × 40).
Finally, Sec. 3.5 increases the resolution to 288× 160. Ap-
pendix A includes experimental and architecture details.

Problem Formulation We formulate in-the-wild full-
body synthesis as an image inpainting task. Our goal is
to complete the missing regions of a corrupted image Ī =
I ⊙ M , where I is the ground truth image, M is the mask
indicating missing regions (Mi = 1 for known pixels and
0 for missing), and ⊙ is element-wise multiplication. To
improve synthesis quality, we condition the generator on 17
keypoints following the COCO [34] keypoint format

Dataset We conduct our experiments on the FDH dataset
[18]. The FDH dataset is a large unfiltered dataset, where
models trained on FDH adapt well to in-the-wild settings
[18]. The dataset consists of 1.87M training images and
30K validation images. Each image includes a single hu-
man figure as the subject, but the same image can include
several individuals. Each image is annotated with a 2d key-
point annotation, a segmentation mask indicating the human
to be inpainted, and pixel-to-surface correspondences (i.e.
surface of a T-shaped 3D body). Note that TriA-GAN does
not use pixel-to-surface correspondences.

We find that a large amount of the keypoint annotations
in the FDH dataset are incorrect. Thus, we automatically re-
annotate all images with ViTPose [66] (see Appendix B).

Table 1. Iterative development of our method. Each addition is
added on top of the previous. Config A-C are trained until the
discriminator has observed 50M images.

Configuration FID ↓ FIDCLIP ↓ PPL ↓ OKS ↑
A: Baseline 1.73 1.74 55.8 0.916
B: + Mask-Aware Discriminator 1.65 1.63 52.8 0.912
C: + Improved Feature Nets 1.79 0.47 49.2 0.951
D: + Progressive Growing 1.66 0.40 52.0 0.954
E: + Larger G (62M → 110M) 1.62 0.30 52.0 0.948

Pose Representation We represent keypoints as a one-
hot encoded spatial map, specifically P ∈ {0, 1}K×H×W

where K = 17 and Pk,y,x = 1 for keypoint k with location
(x, y) and P is 0 otherwise. In addition, we include a spa-
tial map (S) drawing the human skeleton. Specifically, the
spatial map S ∈ {0, 1}6×H×W is one-hot encoded into 6
categories, where lines connect closeby joints in the body,
separated into 6 classes (left/right arm/leg, torso, head). The
one-hot encoded pose and the skeleton map are concate-
nated with the input image of the generator.

Evaluating Sample Quality We evaluate sample quality
with Fréchet Inception Distance (FID) [16] and FIDCLIP

2.
Additionally, we report latent disentanglement via Percep-
tual Path Length (PPL) [27], which correlates with consis-
tency and stability of shapes [28].

Furthermore, we introduce a new metric for assessing
the sample quality of generated human figures, namely Ob-
ject Keypoint similarity (OKS), that compares the generated
pose to the ground truth keypoints. The motivation behind
this metric is to obtain a metric that is not influenced by
the feature network used by the discriminator. Projected
GANs [53] are known to achieve artificially good scores on
feature-based metrics [30], which makes it challenging to
make quantitative comparisons across different types of fea-
ture networks. This is evident from our experiments, where
Config B (which uses ImageNet features for the discrimina-
tor) generates severely more corrupted images than Config
E but still achieves a similar ImageNet FID.

Object Keypoint Similarity (OKS) is calculated by pre-
dicting keypoints with ViTPose [66], then computing the
OKS to the ground truth keypoints following COCO [34].
Compared to direct Euclidean distance, OKS considers that
predicted keypoints can deviate slightly from the ground
truth keypoints, where the acceptable deviation varies for
different keypoints (e.g. the shoulder keypoint can deviate
more than the eye keypoint).

2ImageNet-FID scores images containing ImageNet objects higher and
is insensive to faces [30]. These issues are diminished with FIDCLIP, where
we use features from a CLIP [48] pre-trained ViT-B/32.
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Figure 2. (a) Our generator fills in the missing region given 17 keypoints. The generator layers employ adaptive instance normalization to
condition the generator on ω, where ω is the output of the style mapping network. Config D&E is trained progressively starting at 18× 10
resolution, then increased by adding layers to the start/end of the encoder/decoder. Note that all layers remain trainable throughout training.
(b) For each feature network F , we use four shallow patch discriminators operating its features (with different spatial resolutions), where
each feature is projected through random differentiable operations (P1-P4). Given the projected features, each discriminator predicts if a
given patch corresponds to a real or fake image region.

3.1. Projected GANs for Image Inpainting

Projected GANs [53] employ pre-trained feature net-
works to discriminate between real and fake images. Given
an image I , the adversarial objective is formulated as

min
G

max
Dℓ

∑
ℓ∈L

EI∼pdata
[log (Dℓ (Pℓ (I)))] +

Ez∼pz

[
log

(
1−Dℓ

(
Pℓ

(
G
(
z, Ī

))))]
,

(1)

where {Dℓ} is a set of independent discriminators operat-
ing on its feature projector Pℓ. Each projector is frozen dur-
ing training and consists of a pre-trained feature network F ,
where features from F are randomly projected with differ-
entiable operations. For the baseline (Config A), we use
EfficientNet-Lite0 [63] as F following [53], which we later
revisit in Section 3.3. For each discriminator Dℓ, we adopt
a patch discriminator architecture, described in Section 3.2.

Equation (1) does not enforce consistency between the
condition (Ī) and the generated image, yielding a generator
that learns to completely ignore Ī in practice. Thus, we
enforce condition consistency by masking the output of the
generator. Specifically, we set G(z, Ī) = Ĩ ⊙ (1 − M) +
Ī ⊙M , where Ĩ is the output of the last layer in G.

3.1.1 Stabilizing the Generator

Naively adopting projected GANs for image inpainting is
unstable to train and prone to mode collapse early in train-
ing. This originates from the generator struggling to keep
up with the pre-trained discriminator, where the discrimina-
tor overpowers the generator early in training. To improve

stability, we introduce several modifications to the adversar-
ial setup. First, we blur images inputted to the discrimina-
tor at the start of training, where the blur is linearly faded
over 4M images. The long blur prevents the discriminator
from focusing on the high-frequency edges caused by the
masking of the generator output. Previous methods apply
discriminator blurring over the first 200k images [26, 54],
whereas we find it beneficial to significantly increase this
period. Furthermore, the U-net architecture injects the la-
tent code (z) via a mapping network and style modulation
following StyleGAN2 [28]. We set the mapping network
to 2 layers and reduce the dimensionality of z to 64, fol-
lowing [54]. Furthermore, we scale residual skip connec-
tions by 1/

√
2 (similar to [28]), and 1/

√
3 for skip connec-

tions where residual U-net connections are present. Finally,
we use instance normalization instead of weight demodula-
tion [28], as we find it more stable to train.

3.2. Mask-Aware Patch Discriminator

Projected GANs [53, 54] adapt four shallow discrimina-
tors operating on different feature projections (Pℓ) with dif-
ferent spatial resolutions. Each discriminator output logits
at the same resolution (4 × 4). In contrast, we find patch
discriminators to work better for the image inpainting task,
where each discriminator tries to classify local patches in-
stead of the global image. Specifically, each Dℓ (inputting
features from the projection Pℓ) consists of three convolu-
tions, where the output of Dℓ is half the spatial resolution of
Pℓ. We find that replacing the discriminator from [53] with
a patch discriminator substantially improves performance.

Patch discriminators are widely adapted for image in-
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Figure 3. Comparison of different feature networks with the standard projected GAN objective (Eq. (1)) and mask-aware discriminator
objective (Eq. (2)). All models are trained until the discriminator has observed 50M images.

painting [62, 70, 73, 74]. Typically, each patch is classified
as belonging to the class of the original image, such that
all patches corresponding to a real image are classified as
real. However, this introduces ambiguity for the image in-
painting task, as certain features (e.g. shallow features from
CNNs) might exclusively depend on real pixels even though
the image is fake due to a limited receptive field. Thus, we
propose a mask-aware discriminator objective, where the
discriminator’s patches are categorized as belonging to the
real or fake class based on whether they correspond to a real
or fake region in the image. The new objective is given by

min
G

max
Dℓ

∑
ℓ∈L

EI∼pdata
[log (Dℓ (Pℓ (I)))] +

Ez∼pz

[
Hℓ∑
y

Wℓ∑
x

My,x
ℓ · log

(
Dy,x

ℓ

(
Pℓ

(
G
(
z, Ī

))))
+

(1−My,x
ℓ ) · log(1−Dy,x

ℓ (Pℓ(G(z, Ī))))

]
,

(2)

where Dℓ ∈ RHℓ×Wℓ , and Mℓ is downsampled from M to
Hℓ ×Wℓ via min-pooling.

Equation (2) removes the ambiguous classification of
patches due to global class allocation, which provides more
detailed and spatial coherent responses to the generator.
Furthermore, it introduces an auxiliary task to the discrimi-
nator, which is known to improve synthesis quality [45]. In
our case, the auxiliary task is to spatially segment the region
that corresponds to the generated area.

Figure 3 confirms that Equation (2) improves image
quality (FID/FIDCLIP) and OKS across a range of feature
networks. This includes feature networks with different pre-
training tasks and architectures (CNNs and ViTs). Simi-
lar segmentation discriminators have been explored before
for other tasks [55, 61, 68]. Our work further validate that
this concept generalizes to extremely shallow discriminator
architectures leveraging pre-trained feature networks, inde-
pendent on the feature network used as F .

3.3. Discriminative Feature Networks for Human
Synthesis

GANs have historically generated impressive results for
aligned human synthesis, especially on the FFHQ [27] and
CelebA-HQ [25, 38] datasets. However, projected GANs
are known to generate artifacts for face synthesis on FFHQ
[53] and struggle to generate realistic images of unaligned
humans [54] 3. We find that the poor human synthesis qual-
ity originates from an invariance in the pre-trained feature
space used by the discriminator. Earlier work [53, 54] has
utilized pre-trained ImageNet [6] classification networks.
These feature networks learn feature representations for the
sole goal of classification; mapping an image to the top-1
class. Hence, they learn to ignore features that are irrele-
vant to the goal of classification. While this invariance ben-
efits image classification, we find it to hurt discriminative
representation for human synthesis.

We explore different feature networks (including vari-
ants of CNNS/ViTs) with widely different pre-training tasks
for the discriminator. Specifically, Figure 3 ablate the fol-
lowing feature nets with the following pre-training tasks:

• IN: ImageNet Classification: ResNet50 (RN50), ViT-
B16 (DeIT variant), EfficientNet-Lite0 (EN-L0).

• CLIP: Contrastive Language Image Pre-training [48]:
RN50, ViT-B16.

• MAE: Masked Autoencoders [15]: ViT-B16, ViT-
L16.

• CSE: DensePose estimation [44]: ResNet50 (RN50).

We refer to each model as architecturetask, e.g. RN50CLIP
refers to ResNet-50 with CLIP pre-trained weights. Di-
rectly selecting the best feature network from standard
generative metrics (FID/FIDCLIP) is ambiguous, as pro-
jected GANs are known to achieve unnatural high scores
on feature-based metrics [30]. We find that ImageNet mod-
els achieve unnatural high FID due to matching pre-training

3See the appendix in [54].
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(a) ImageNet (ViT-B/16) (b) CLIP (ViT-B/16) (c) MAE (ViT-B/16) (d) ViT-L/16MAE + RN50CLIP

Figure 4. Qualitative comparison of various feature networks used for the discriminator. It is worth noting that these examples are not
curated but selected from the first 12 images from the validation set.

tasks, and ViT scores better on FIDCLIP due to matching ar-
chitecture 4.

Independent of the architecture, we observe that all Im-
ageNet [6] models generate highly corrupted faces, illus-
trated in Figure 4. This is most likely due to the invari-
ance of facial descriptors in these feature networks, a phe-
nomenon that has also been observed in [30]. Note that Ap-
pendix C includes comparison for all networks in Figure 3.

From the results in Figure 3, Config C replaces
EfficientNet-Lite0 with ViT-L16MAE and RN50CLIP. The
motivation for pairing these networks is to exploit features
with completely different architectures and pre-training
tasks. In addition, these networks scores among the best
w.r.t. OKS, FIDCLIP, and PPL. Finally, RN50CLIP supple-
ments ViT well, as RN50 operates on the original aspect
ratio (288× 160), whereas ViT is fixed to 224× 224 5.

3.4. Progressive Growing

Progressive training [25] is known to improve training
stability of GANs and was recently re-introduced for uncon-
ditional synthesis with projected GANs [54]. StyleGAN-
XL [54] first trains at 16× 16 resolution, then increases the
resolution by adding new layers to the end of the decoder.
Note that StyleGAN-XL freezes already trained layers and
the style network when training the next stage.

We adopt a straightforward extension to the image-to-
image translation case, where we progressively train the U-
net architecture by adding layers to the start/end of the en-
coder and decoder, respectively (see Fig. 2). We observe
that adding new blocks to the start of the encoder leads to
training instability as it results in significant changes to the

4FIDCLIP is calculated from features of ViT-B/32 following [30].
5ViT input resolution is set to 224×224 for all models, as ViT features

are less robust to changes in resolution from the training resolution.

input of already-trained layers. To mitigate this, we intro-
duce LayerScale [64] for each residual block with an ini-
tial value of 10−5 to lessen the contribution of new blocks.
Furthermore, we include output skip connections follow-
ing [27]. Unlike StyleGAN-XL, we avoid freezing any
blocks during training as the computational benefit is min-
imal, given that we need to calculate gradients for layers
at the beginning of the encoder. Introducing these changes
substantially improves the final image quality (Config D)

We note that we experimented with more advanced tech-
niques for progressive training, such as cascaded U-nets
[17], or assymetric training of the encoder/decoder (i.e.
start with a full-resolution encoder and a low-resolution de-
coder). However, we found that the straightforward pro-
gressive training technique was superior in terms of training
time and final image quality.

3.5. Scaling Up the Generator

Config E double the number of residual blocks for each
resolution in the encoder/decoder, resulting in 110.4M pa-
rameters in the generator compared to the previous 62.2M.
This model trains stable up to 288 × 160 resolution, which
is the maximum resolution of the FDH dataset.

4. Comparison to Surface-Guided GANs

Table 2 compares TriA-GAN to Surface Guided GANs
(SG-GAN) [20] trained following DeepPrivacy2 [18], the
current state-of-the-art for in-the-wild full-body synthesis.
Figure 1 shows synthesis results with TriA-GAN, and Fig-
ure 5 compares TriA-GAN to SG-GAN. Appendix D in-
clude randomly selected samples.

The main difference between TriA-GAN and SG-GAN
[18] is the improved training strategy of TriA-GAN, and the
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Table 2. Quantitative comparison of SG-GAN [18] vs. ours.

Method FID ↓ FIDCLIP ↓ PPL ↓ OKS ↑
SG-GAN [18] 1.97 1.25 70.2 0.950
TriA-GAN (ours) 1.68 0.43 47.8 0.972

sparser conditional information (keypoints vs. dense surface
correspondences). TriA-GAN improves at handling over-
lapping objects, partial bodies (e.g. intersection with image
edges), and synthesis of texture (e.g. hair, clothing). Fur-
thermore, TriA-GAN improves at context handling, e.g. in-
ferring that an elderly lady is likely to sit at the table (top
row, Fig. 5), or that there is a motorcyclist on the bike (3rd
row, Fig. 5).

Finally, TriA-GAN is easier to use for downstream tasks,
as our method does not rely on DensePose detections. For
example, keypoints are easier to edit for interactive edit-
ing applications. Furthermore, detecting DensePose is chal-
lenging and unreliable for long-range detection, restricting
its use in many scenarios (e.g. anonymizing pedestrians on
the street). See Appendix E for examples of failure cases.

5. Editability of TriA-GAN

StyleGAN [27] is known for its disentangled latent
space, and it is widely used for user-guided image editing,
such as modifying images through text prompts [29]. How-
ever, most methods for editing images focus on uncondi-
tional GANs (or class-conditional GANs), and their appli-
cation to image inpainting is less explored. StyleMC [29]
is effective for editing faces with inpainting methods [18],
but the same study finds editing human figures in-the-wild
much harder [18]. We believe this limitation originates from
the DensePose condition, where descriptive conditions can
be correlated with specific attributes. This narrows the sam-
pling probability, which makes it harder to find meaningful
directions for randomly sampled images.

Figure 6 demonstrate that StyleMC [29] is effective with
TriA-GAN to find semantically meaningful directions in
the GAN latent space. StyleMC finds global directions by
manipulating random images towards a text prompt using
a CLIP encoder [48], where the directions are found over
1280 images. We find that StyleMC combined with TriA-
GAN can edit a wide range of attributes, even quite spe-
cific attributes such as the size of the ears. However, we do
note that editing some attributes results in changes to other
correlated attributes. For example, the edit ”blond hair” in-
duces slight changes to the skin color. Furthermore, some
attributes are more challenging to edit. For instance, intro-
ducing ”red lips” to a body inferred as a male can result in
significant semantic changes (top row, Fig. 6). It is unclear
whether this limitation is a result from the editing technique

Original Condition Surface Guided GAN Ours

Figure 5. Curated examples comparing Surface Guided GAN [18]
to TriA-GAN. Note that surface information is not used for TriA-
GAN (shown in blue-yellow tint).
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sunglasses
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red lips Anime
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mustache
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Figure 6. StyleMC [29] edits with TriA-GAN, where a global di-
rection (from text prompt above each column) is added to the style
code of the original (leftmost) image.

or TriA-GAN itself. We believe these correlations are in-
herent in the training datasets of CLIP or TriA-GAN.

6. Conclusion
TriA-GAN has enabled the generation of human figures

in any desirable pose and location given a sparse set of key-
points, resulting in a new state-of-the-art for person syn-
thesis on the FDH dataset. Key to our method is leverag-
ing pre-trained feature networks for the discriminator. We
demonstrate that a carefully designed training strategy com-
bined with feature networks suited to discriminate human
figures substantially improves synthesis quality. TriA-GAN
is the first to demonstrate reliable attribute editing of human
figures via text prompts, which we believe will be highly
practical for many applications.

Societal Impact Synthesizing human figures has a range
of useful applications everywhere, from content creation to
anonymization purposes. However, similar to all learning-
based generative models, the synthesized human figures ad-
here to the sampling probability of the dataset. In our case,
the dataset originates from Flickr, which means that our
generator follows its biases and is less likely to synthesize
people from underrepresented groups on the website. Fur-
thermore, our work focuses on generating lifelike humans,
which carries the potential for abuse (e.g. DeepFakes). We
note that the community has made a concerted effort to ad-
dress this issue, through initiatives like the DeepFake Detec-

Original Condition Surface Guided GAN Ours

Figure 7. Failure cases of TriA-GAN.

tion Challenge [7], or embedding watermarks into images
from generative models [72].

6.1. Limitations

TriA-GAN sets a new state-of-the-art for human figure
synthesis in-the-wild. Exploring methods for disentangling
the latent space from the pose, body shape, and environ-
ment are exciting future avenues. Currently, the sampling
space of TriA-GAN is highly dependent on the conditional
information, where it can collapse into a single synthesized
identity given certain conditions. Disentangled person im-
age generation can mitigate this, by disentangle pose, ap-
pearance, and context. However, current methods require
datasets with paired images [40, 51], which are less diverse
and small.

The key limitation of TriA-GAN is handling more com-
plex interactions with objects (Fig. 7). This is particularly
true for generating realistic hands/fingers, e.g. when playing
the piano. SG-GAN [18] often improve on TriA-GAN in
such scenarios if the DensePose information explicitly de-
scribes the interaction. But, it still struggles in cases where
it is not clear (e.g. playing the masked-out trumpet).

TriA-GAN is hard to edit for attributes that are less fre-
quent in the FDH dataset. For example, many images do
not contain the lower body and attempting to find editing
directions for ”a person wearing red pants” results in edit-
ing other attributes as well. Whether this is a limitation to
the editing method, or TriA-GAN is an open question.
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[19] Håkon Hukkelås, Frank Lindseth, and Rudolf Mester. Im-
age Inpainting with Learnable Feature Imputation. In DAGM
German Conference on Pattern Recognition, pages 388–403.
Springer-Verlag, 2021. 3
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Dense Pose Transfer. In European conference on computer
vision, volume 11207 LNCS, pages 128–143, 2018. 2

[44] Natalia Neverova, David Novotny, Vasil Khalidov, Marc
Szafraniec, Patrick Labatut, and Andrea Vedaldi. Continu-
ous Surface Embeddings. In Advances in Neural Information
Processing Systems, volume 33, pages 17258–17270. Curran
Associates, Inc., nov 2020. 5

[45] Augustus Odena, Christopher Olah, and Jonathon Shlens.
Conditional image synthesis with auxiliary classifier gans.
In 34th International Conference on Machine Learning
(ICML), volume 6, pages 4043–4055, 2017. 5

[46] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context Encoders: Feature
Learning by Inpainting. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2536–
2544. IEEE, jun 2016. 3

[47] Albert Pumarola, Antonio Agudo, Alberto Sanfeliu, and
Francesc Moreno-Noguer. Unsupervised Person Image Syn-
thesis in Arbitrary Poses. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8620–
8628. IEEE, jun 2018. 2

[48] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning Transferable Visual
Models From Natural Language Supervision. In Interna-
tional Conference on Machine Learning, pages 8748–8763,
2021. 3, 5, 7

[49] Yurui Ren, Xiaoming Yu, Ruonan Zhang, Thomas H Li,
Shan Liu, and Ge Li. StructureFlow: Image Inpainting via
Structure-Aware Appearance Flow. In 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
181–190. IEEE, oct 2019. 3

[50] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional Networks for Biomedical Image Seg-
mentation. In International Conference on Medical image

4044



computing and computer-assisted intervention, pages 234–
241. Springer, 2015. 2, 3

[51] Kripasindhu Sarkar, Vladislav Golyanik, Lingjie Liu, and
Christian Theobalt. Style and Pose Control for Image Syn-
thesis of Humans from a Single Monocular View. arXiv
preprint arXiv:2102.11263, 2021. 8

[52] Kripasindhu Sarkar, Dushyant Mehta, Weipeng Xu,
Vladislav Golyanik, and Christian Theobalt. Neural Re-
rendering of Humans from a Single Image. In European
conference on computer vision, volume 12356 LNCS, pages
596–613. Springer Science and Business Media Deutschland
GmbH, 2020. 1, 2

[53] Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas
Geiger. Projected GANs Converge Faster. In Advances
in Neural Information Processing Systems, pages 17480–
17492, 2021. 2, 3, 4, 5

[54] Axel Sauer, Katja Schwarz, and Andreas Geiger. StyleGAN-
XL: Scaling StyleGAN to Large Diverse Datasets. In
ACM SIGGRAPH 2022 Conference Proceedings, pages 1–
10, Vancouver, BC, Canada, aug 2022. Association for Com-
puting Machinery. 2, 3, 4, 5, 6

[55] Edgar Schonfeld, Bernt Schiele, and Anna Khoreva. A U-
Net Based Discriminator for Generative Adversarial Net-
works. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 8204–8213. IEEE,
jun 2020. 5

[56] Chenyang Si, Wei Wang, Liang Wang, and Tieniu Tan. Mul-
tistage Adversarial Losses for Pose-Based Human Image
Synthesis. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 118–126. IEEE, jun
2018. 2

[57] Aliaksandr Siarohin, Enver Sangineto, Stephane Lathuiliere,
and Nicu Sebe. Deformable GANs for Pose-Based Human
Image Generation. In 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 3408–3416.
IEEE, jun 2018. 2
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