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Abstract

Training diffusion models on limited datasets poses chal-
lenges in terms of limited generation capacity and expres-
siveness, leading to unsatisfactory results in various down-
stream tasks utilizing pretrained diffusion models, such as
domain translation and text-guided image manipulation. In
this paper, we propose Self-Distillation for Fine-Tuning dif-
fusion models (SDFT), a methodology to address these chal-
lenges by leveraging diverse features from diffusion models
pretrained on large source datasets. SDFT distills more
general features (shape, colors, etc.) and less domain-
specific features (texture, fine details, etc) from the source
model, allowing successful knowledge transfer without dis-
turbing the training process on target datasets. The pro-
posed method is not constrained by the specific architecture
of the model and thus can be generally adopted to existing
frameworks. Experimental results demonstrate that SDFT
enhances the expressiveness of the diffusion model with lim-
ited datasets, resulting in improved generation capabilities
across various downstream tasks.

1. Introduction

Recently, Diffusion Models [13, 31] (DMs) have

emerged as a powerful family of generative models due

to their diverse and high-quality image generation capa-

bility. While generative adversarial networks (GANs) [10]

show powerful generating capabilities in synthesizing high-

quality images, they are known to have poor mode cover-

age [29,43]. On the other hand, diffusion models are formu-

lated to approximate the data distribution through likelihood

estimation with a denoising score matching [35], and diffu-

sion models trained on large datasets such as ImageNet [7]

outperform state-of-the-art GAN-based methods [2], in im-

age generation in terms of image fidelity and diversity [9].

However, despite intensive research on diffusion mod-

els using large-scale datasets, there has been relatively little

focus on training diffusion models on limited datasets. Lim-

Figure 1. Compared to the large datasets on Domain A (e.g.

FFHQ [15]), limited datasets on domain B (e.g. MetFaces [14])

constrain the ability for diverse image generation and manipula-

tion in Domain B. The goal of this paper is to utilize a model pre-

trained on Domain A (source), and effectively transfer the diverse

knowledge while training on Domain B (target).

ited datasets, compared to large datasets, are more suscep-

tible to bias and often lack diversity in terms of the range

of images and attributes they contain. For instance, Met-

Faces [14], containing approximately 1K faces from me-

dieval artworks, lacks diversity in facial attributes when

compared to FFHQ [15], which contains 70K real human

faces as shown in Fig. 1. In each domain, both datasets ex-

hibit some shared facial attributes (region 1 ). However,

different from the FFHQ, MetFaces does not contain more

various facial attributes (region 2 ) such as skin and hair

colors, facial expressions, accessories, etc. Consequently,

diffusion models trained on limited datasets may have lim-

ited expressiveness, generating less diverse outputs and ex-

hibiting biases in their representation.

The limited expressiveness of diffusion models not only

hampers the generation capability of the model but also re-

sults in unsatisfactory outputs in various downstream tasks

such as domain translation [3,42,42] and text-guided image

manipulation [17, 19] since these methods heavily depend
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Figure 2. Results of downstream tasks which utilize diffusion

models trained on MetFaces, such as (a) domain translation [23]

and (b) text-guided image manipulation [19] (script: smiling).

Since their performance is highly affected by the expressiveness of

the model, naı̈vely fine-tuning the model pretrained on FFHQ [15]

results in the loss of crucial attributes (sunglasses) in (a) and re-

stricted facial expression in (b) (smiling). With our proposed

fine-tuning method, SDFT, the model can inherit diverse attributes

from the source model, effectively resolving these problems.

on diffusion models to generate plausible outputs.

To mitigate the aforementioned problems, in this paper,

we aim to utilize diverse knowledge from the source dif-

fusion model which is trained on large diverse datasets.

However, naı̈vely fine-tuning the model on limited datasets

can lead to a well-known catastrophic forgetting problem,

where the model loses diverse knowledge during the fine-

tuning process. To this end, we propose Self-Distillation

for Fine-Tuning diffusion models (SDFT), which leverages

the diverse features from the diffusion models pretrained

on large source datasets. Specifically, to successfully trans-

fer diverse knowledge from the source model without dis-

turbing the training process on target datasets, SDFT pri-

oritizes distilling general features (shape, color, etc.) from

the source model, while less emphasizing domain-specific

features (texture, fine details, etc.) from the source model.

Furthermore, we propose an auxiliary input to effectively

transfer more diverse information from the source model

with limited datasets. It is worth noting that SDFT is not

constrained by the specific architecture of the model, thus it

can be generally adopted by existing frameworks.

Throughout various experiments, we show that the en-

hanced expressiveness of diffusion models by the SDFT

helps to generate more diverse attributes in various down-

stream tasks even though they are not contained in the tar-

get limited datasets, such as sunglasses and wide smile in

Fig. 2. Furthermore, we present that enhanced expressive-

ness also can be beneficial to unconditional image genera-

tion, as it helps to generate diverse and high-fidelity images.

2. Background
2.1. Diffusion Models

Diffusion Models (DMs) [13, 31] perturb the complex

data with the tractable noise, and aim to recover the data

from the noise. Specifically, forward process is a Markov

chain that gradually perturbs the input data x0 with Gaus-

sian noise ε ∼ N (0, I) and DMs εθ learn the inversion of

the forward process, called reverse process, where the joint

distribution pθ(x0:T ) denotes the reverse process running

from timestep T to 0. Then, DMs are trained to predict

noise given time t with an objective function

L(εθ) :=
T∑

t=1

wt

[
βt

(1− βt)(1− ᾱt)
‖εθ(xt, t)− ε‖22

]
,

(1)

where βt is a predefined noise schedule, which is a strictly

decreasing function of time t ∈ [0, T ] and ᾱt :=
∏t

i=1 αi =∏t
i=1 1− βt. Ho et al. [13] empirically found that loss

function with wt = (1−βt)(1−ᾱt)/βt shows better results.

Recently, Choi et al. [4] propose a weighting scheme, per-

ception prioritized weighting (P2 weighting), which consid-

ers a signal-to-noise ratio (SNR) [18], such that

w′
t =

wt

(k + SNR(t))γ
, (2)

where SNR is strictly decreasing function of time t and

can be defined as SNR(t) = ᾱt/(1 − ᾱt). P2 weight-

ing weights more in time steps with large SNR. This al-

lows the model to focus more on high-level context. From

the trained diffusion model, the realistic image x0 can be

sampled from the initial noise xT via stochastic Marko-

vian sampling process [13, 31]. However, it takes several

hundred to thousand sampling steps to generate an image.

Song et al. [34] propose denoising diffusion implicit mod-

els (DDIMs), which break the Markov chain and allow the

generation of reasonable samples with few generative steps.

Additionally, DDIM provides deterministic sampling from

the initial noise under the specific hyperparameter setting.

2.2. Image Translation in DMs

Earlier works on image translation have been studied us-

ing GANs and shown promising results [5,20,26,38]. How-

ever, they often fail to deal with various real-world images

due to their limited mode coverage [17,33]. Since this draw-

back prevents a range of real-world applications, DMs have

received great attention for various image translation tasks.

5029



Domain Translation. The key concept behind domain

translation in DMs [3, 23, 42] lies in leveraging the power-

ful generalization ability and expressiveness of the model

εtrg which is trained solely on the target datasets. Stochas-

tic Differential Editing (SDEdit) [23] demonstrates that

by leveraging noise-perturbed data from the other domain,

xt, DMs can effectively translate xt to the target domain

xtrg
0 through iterative denoising using εtrg . Energy-Guided

Stochastic Differential Equation (EGSDE) [42] further uti-

lizes domain-specific and domain-independent energy func-

tions during the sampling process for the more realistic and

faithful translation, namely, domain classifier and low-pass

filter, respectively. While these approaches have shown re-

markable results, their abilities to capture and translate di-

verse attributes totally depend on the pretrained DMs.

Text-Guided Image Translation. Text-guided image

translation in DMs [17, 19] mostly aims to fine-tune the

pretrained DMs with a CLIP [27]. DiffusionCLIP [17] pro-

posed to fine-tune the whole diffusion model with CLIP loss

for robust image editing. Recently, the work by Kwon et

al. [19], namely, Asyrp, demonstrates that fine-tuning only

the deepest layer of the U-Net, instead of the entire diffusion

model, leads to a more scalable, robust, and efficient fine-

tuning process. However, since these methods fine-tune the

diffusion model without further training datasets, their ex-

pressiveness also relies on the pretrained DMs.

2.3. Fine-Tuning Unconditional Diffusion Models

To our knowledge, fine-tuning unconditional DMs has

not been widely researched yet. Recently, Moon et al. [24]

introduced a fine-tuning method to prevent overfitting dur-

ing training on limited datasets. They fix the pretrained

model and introduce a learnable time-aware adapter that

fine-tunes the attention block of the diffusion model. How-

ever, as their primary objective is to prevent overfitting, they

do not consider transferring diverse knowledge from the

source domain to the target domain.

3. Methods
3.1. Problem Definition

In this paper, we consider the training of diffusion mod-

els on limited datasets. As previously noted in the introduc-

tion and illustrated in Fig. 1, limited datasets tend to exhibit

a reduced degree of diversity and inherent biases compared

to large datasets. As a remedy to this issue, we fine-tune

diffusion model εtrgφ which is initialized with source model

εsrcθ pretrained on a large source dataset. To successfully

inherit the diverse information, while avoiding catastrophic

forgetting, we distill the knowledge from fixed source dif-

fusion model εsrcθ during the training of the target diffusion

model εtrgφ . In the following sections, we provide a com-

prehensive explanation of the proposed distillation scheme.

Figure 3. We employ weighted distillation approach which pri-

oritizes the general features (color, shape, pose, etc.), while allo-

cating lesser emphasis on domain-specific features (texture, fine-

details, etc.). This allows the target model εtrg to inherit various

features from the source model εsrc, ensuring that the training pro-

cess within the target domain remains undisturbed.

To simplify the presentation of our formulas, we omit the

parameters of source and target diffusion models, θ and φ.

3.2. Fine-Tuning Diffusion Models with Distillation

In this section, we describe our approach to effectively

distilling diverse information from the source model εsrc to

the target model εtrg , while ensuring the training on target

datasets remains undisturbed. More specifically, we desire

to distill more general features (color, shape, etc.) and less

the domain-specific features (texture, fine details, etc.) from

the source model εsrc.

For a similar objective, prior research on GANs has se-

lected specific feature spaces of the generator and distilled

the information in feature spaces [20]. However, their appli-

cability may be constrained by the specific model architec-

ture, such as StyleGAN2 [16] and careful design and anal-

ysis on the feature space need to be preceded [15, 16, 37].

To avoid these limitations and establish a more general

methodology for DMs, we choose to distill the prediction

of each time step. From the perturbed input data in target

domain xtrg
t , we distill the knowledge by matching each

prediction of source and target diffusion models:

Ldistill(εtrg) =

T∑
t=1

[
wdistill

t · ‖εsrc(xtrg
t , t)− εtrg(xtrg

t , t)‖22
]
, (3)

where wdistill
t denotes the distillation weight on time t.

Before deciding the wdistill
t , we emphasize that distinct

from other generative models, DMs are known to gener-

ate images by the iterative reverse process where coarse

features are generated initially, and fine details are inte-

grated later [4]. In other words, during the reverse pro-

cess pθ(x0:T ), DMs synthesize general features in low SNR

(large t) and gradually synthesize more domain-specific

outputs in large SNR (small t). Thus we can set wdistill
t
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to inversely proportional to the SNR(t)

wdistill
t =

wt

(k + SNR(t))γdistill , (4)

which has a same formulation with P2 weighting in Eq. (2).

However, we note that while P2 weighting aims to help

diffusion models focus more on perceptually rich con-

tents of the datasets, our proposed distillation weighting

scheme is designed to distill more general features from the

source model to the target model. With wdistill
t , the tar-

get model εtrg can preserve general diverse features from

source model εsrc. Moreover, it can be universally applied

to any diffusion model, as it does not rely on the specific ar-

chitecture of the model. Fig. 3 shows the overall illustration

of the proposed distillation method.

However, while the distillation loss is beneficial in pre-

serving the diversity from the source model, there still re-

main several considerations to be addressed. In the follow-

ing sections, we tackle several expected problems and pro-

vide solutions if necessary.

3.3. Does εsrc(xtrg
t , t) Generate Meaningful Output?

In Eq. (3), the source model εsrc generates output from

the input xtrg
t , which is a target domain sample perturbed

by the Gaussian noise. Since εsrc is only trained with

source datasets, xtrg
t can be considered as out-of-domain

data, which may result in the failure to generate meaningful

outputs from εsrc, leading to unsuccessful distillation.

Insights into this issue can be gained from previous re-

search. Deja et al. [6] found that DMs have generalizabil-

ity on other data distributions. Furthermore, studies on do-

main translation methods such as SDEdit [23] described in

Sec. 2.2 demonstrated that adding noise to images from a

similar but distinct domain and then running the reverse

diffusion process can yield reasonable in-domain outputs.

Thus, even with out-of-domain inputs, diffusion models

can effectively convert into meaningful in-domain outputs,

which enables successful distillation using Eq. (3). More-

over, SDEdit [23] demonstrates that running the reverse

process in small t only changes domain-specific features

(e.g. texture) from the input image while maintaining gen-

eral features (e.g. silhouette). This means that the reverse

process of DMs in small t generates domain-specific fea-

tures while that in large t generates general features, which

gives more justification for using wdistill
t to prioritize gen-

eral features over domain-specific features in Eq. (4).

3.4. Distilling More Diverse Features

Expanding on the issues outlined in Sec. 3.3, using xtrg
t

as input introduces an additional unresolved problem. Re-

member that we consider the target datasets which include

limited samples with reduced diversity compared to the

Figure 4. Images in each row are sampled from the same initial

noises p(xT ′) = N (0, I), but they take different partial reverse
process pθ(x0:T ′). It shows that when the T ′ is large, diffusion

models can generate reasonable outputs from pure noise.

source datasets. As a result, we can not fully extract the di-

verse features inherent within εsrc using limited input xtrg
t .

To address this issue, we propose to use auxiliary in-

puts to distill more diverse features from εsrc, without ac-

cessing the source or additional datasets. Using proxy in-

puts to transfer diverse knowledge from the teacher net-

work has been widely explored in data-free knowledge dis-

tillation [39, 41]. They demonstrated that the utilization of

synthesized input data effectively facilitates the transfer of

diverse knowledge from the teacher network, even though

these data significantly differ from the original source data.

Inspired by this, we propose an auxiliary input specifically

designed for the diffusion models to distill more diverse

features from εsrc. Notably, we discovered that diffusion

models possess the capability to generate plausible outputs

from the pure noise xT , without requiring a perturbed im-

age xt, in the initial reverse process. That means, diffusion

models can generate meaningful outputs from pure noise in

the initial reverse process. Fig. 4 shows sampled outputs

obtained from the same initial noise in each row, but ap-

plying various partial reverse process pθ(x0:T ′), defined in

Sec. 2.1((T ′ < T )). In the second row, even though the ini-

tial reverse process ranging from T to 0.75T is skipped, dif-

fusion models can generate reasonable outputs, albeit with

some color degradation. To this end, we propose additional

loss Laux that utilizes pure noise as an auxiliary input for a

diverse feature distillation:

Laux(εtrg) =

T∑
t=1

[
waux

t · ‖εsrc(xT , t)− εtrg(xT , t)‖22
]
,

(5)

where waux
t is a same weighted distillation scheme in

Eq. (4), but using different hyperparameter γaux. As de-

picted in the third column of Fig. 4, since the output dras-

tically collapses as T ′ decreases, we set high γaux to make

waux
t nearly 0 for a small t.
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3.5. Total Loss Function with SDFT

To summarize, the proposed fine-tuning method with

distillation uses the loss function:

Ltotal = Ldiffusion + λdistillLdistill + λauxLaux, (6)

where Ldiffusion is a objective function of base diffusion

model and λdistill and λaux is a hyperparameter.

4. Experiments
4.1. Experimental Setup

In this section, we verify the effectiveness of SDFT for

fine-tuning DMs to inherit expressiveness from the source

models when the target datasets have limited samples and

attributes. We present that the enhanced expressiveness of

DMs results in improvements in various downstream im-

age translation tasks including domain translation and text-

guided image manipulation. To our knowledge, as the open

source implementation of the fine-tuning method for un-

conditional diffusion model [24] is not publicly available,

we compare SDFT with a model trained from scratch and

naı̈vely fine-tuned model, referred to as the Scratch model

and Naı̈ve Fine-Tune model, respectively. For simplicity,

we also name the model trained with SDFT as SDFT.

Datasets. We use FFHQ [15] for the source dataset,

which has 70K real faces with various attributes. For the

target limited datasets, we utilize MetFaces [14], which has

1,336 high-quality portraits. Due to the limited samples and

inherent biases, MetFaces do not or scarcely contain diverse

facial attributes (e.g. smiling with teeth, sunglasses, vari-

ous hairstyles etc.). We further utilize the AAHQ [22] for

the target dataset, which has 25K high-quality artistic faces.

For the limited dataset, we select images from AAHQ us-

ing CLIP following the nie et al. [25]. As a result, we uti-

lize 1,437 images that contain expressionless males without

glasses. All images are resized to 256×256 resolution. A

detailed explanation for preparing the dataset is provided in

the supplementary material.

Implementation detail. For all experiments, we uti-

lize officially implemented ADM architecture [9] and pub-

lic checkpoint pretrained on FFHQ for the source model [4].

For efficiency, we use 40-step deterministic DDIM sam-

pling [34] for all experiments. We train all models until

the 80k training iterations and report the best results. The

hyperparameters can be found in supplementary material.

4.2. Results in Domain Translation

We present that the enhanced expressiveness of diffu-

sion models can greatly improve the performance of do-

main translation tasks. For successful domain translation,

the translated image should be realistic to fit the style of

the target domain and faithful to ensure that the various at-

tributes from the input image are accurately preserved.

Qualitative Comparison. Fig. 5 shows the qualita-

tive comparison between scratch, naı̈ve fine-tune, and ours

(SDFT) with domain translation methods, SDEdit [42] and

EGSDE [42]. Since these methods utilize diffusion mod-

els trained on the target domain, the expressiveness of the

model determines the success of the translation. Domain

translation outputs with the scratch and Naı̈ve fine-Tune

model show less faithful outputs due to the limited train-

ing datasets, failing to translate unseen attributes from the

training data such as glasses, and facial expressions. Fur-

thermore, the translated outputs show biased representa-

tions such as translating baby and female to male in 3rd

row. With a proposed fine-tuning approach, SDFT resolves

the above problems and shows more realistic translated out-

puts, while showing reasonable faithful.
Quantitative Comparison. To measure the faithfulness,

we evaluate the similarity between input-output pairs using

the peak signal-to-noise ratio (PSNR), structural similarity

index (SSIM), and learned perceptual image patch similar-

ity (LPIPS) [40]. We randomly select 10K images from

FFHQ and generate 10K translated outputs. For the real-
ism, we report the widely used Fréchet inception distance

(FID) [12] and kernel inception distance (KID) [1] where

the latter is known to be unbiased, thus more proper to the

limited datasets. The metrics for faithful are calculated us-

ing translated outputs and paired FFHQ inputs and metrics

for realism are calculated using translated outputs and entire

target datasets. For experiments on AAHQ, we use entire

datasets to calculate FID and KID.

Tab. 1 shows the quantitative results. In each domain

translation method, SDFT shows the most faithful results,

achieving the highest PSNR and SSIM, and the lowest

LPIPS, except for PSNR in AAHQ. However, SDFT is

reported as less realistic than Naı̈ve Fine-Tune model in

SDEdit of MetFaces since SDFT translates attributes that

are not contained in the MetFaces, as depicted in Fig. 5.

However, using EGSDE [42], SDFT achieves the lowest

KID, showing the most realistic outputs since the domain-

specific energy function, a classifier between source and tar-

get domain, naturally drives the translated outputs to the

target domain, without harming the realism. In limited

AAHQ in which we calculate FID and KID using the entire

AAHQ dataset, SDFT shows the most realistic, indicating

that SDFT can generate high fidelity and diversity samples

in the target domain with limited target datasets.

4.3. Results in Text-Guided Image Translation

We further show that the improved expressiveness of

the diffusion model by the SDFT can be helpful in the

more complex downstream tasks, such as text-guided image

translation. For the text-guided image translation method,

we choose Asyrp [19] since it fully utilizes the expressive-

ness embedded in the pretrained diffusion model. It only
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Figure 5. The generated images sampled utilizing the domain translation method denoted above.

Dataset Translation Method Training Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID (×103) ↓

MetFaces
[14]

SDEdit [23]

Scratch 13.8 0.31 0.579 74.63 52.45

Naı̈ve Fine-Tune 14.95 0.309 0.533 56.42 37.00
Ours (SDFT) 16.44 0.353 0.481 65.18 40.95

EGSDE [42]

Scratch 15.15 0.31 0.539 89.67 71.14

Naı̈ve Fine-Tune 16.03 0.333 0.509 70.02 50.52

Ours (SDFT) 17.42 0.392 0.440 70.78 43.84

AAHQ

SDEdit [23]

Scratch 14.26 0.362 0.521 65.54 63.42

Naı̈ve Fine-Tune 14.60 0.374 0.489 54.75 48.69

Ours (SDFT) 14.59 0.369 0.486 51.12 44.46

EGSDE [42]

Scratch 15.91 0.407 0.464 82.00 78.26

Naı̈ve Fine-Tune 16.18 0.422 0.430 65.14 57.30

Ours (SDFT) 16.13 0.421 0.423 60.49 52.24

Table 1. Quantitative results of domain translation methods using diffusion models trained with various methods.

trains a small module that translates the deepest layer of

U-net, while keeping all parameters unchanged during the

fine-tuning with CLIP [27]. Please note that we introduce

a fine-tuning method, SDFT, for the unconditional diffusion

model on limited datasets and Asyrp is a fine-tuning method

for the text-guided image translation using a trained uncon-

ditional diffusion model.

Qualitative Comparison. Fig. 6 shows the input images

and translated images with various text guidance. Since

naı̈ve fine-tuning on the MetFaces have a limited expres-

siveness due to the limited and biased samples, it can not

generate diverse facial attributes and often fails to maintain

identities. Contrarily, SDFT can express more diverse fa-

cial attributes, while successfully preserving the identity of

the face. Even though the training datasets do not have di-

verse facial attributes, SDFT can express through enhanced

expressiveness which is inherited from the source model.

Notably, even though we transfer the knowledge from the

FFHQ, the enhanced expressiveness affects not only the

outputs close to the source dataset but also the more distant

outputs, such as monochrome paintings.

Quantitative Comparison. We evaluate the successful

text-guided manipulation in two metrics: Directional CLIP

similarity (Sdir) [17] and face identity similarity (ID). Sdir

measure the successful manipulation of input image given

text guidance using pretrained CLIP [27] embedding and ID
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Figure 6. Results of Asyrp [19] from Naı̈ve Fine-Tune model and Ours (SDFT). SDFT can express more diverse facial attributes.

MetFaces AAHQ

Sdir ↑ ID↑ Sdir ↑ ID↑
Naı̈ve Fine-Tune 0.060 0.760 0.133 0.318

Ours (SDFT) 0.081 0.765 0.143 0.452

Table 2. Quantitative results on text-guided image manipulation.

measures the preservation of identity using pretrained face

recognition models [8]. Tab. 2 shows the results using 5

text prompts (smiling, sad, angry, young and old). SDFT

outperforms the naı̈ve fine-tune model, demonstrating su-

perior semantic manipulation capabilities given text while

preserving various identities.

4.4. Effect on Unconditional Image Generation

Finally, we present that the benefits of SDFT are also

helpful for generating diverse and high-fidelity images. By

expanding the dual diffusion implicit bridges (DDIBs) [36]

theorem, the DDIM sampling between the source model

and target model generates semantically aligned outputs

from the same initial noise. A more comprehensive analysis

of DDIBs and their connection to unconditional generation

is provided in the supplementary material. Fig. 7 shows the

results of unconditional generation from the source model

trained on FFHQ and from the various models fine-tuned on

Input Scratch Naive Fine-Tune Ours(SDFT)

Figure 7. Generated samples from unconditional image genera-

tion. Images in each row are generated from the same initial noise.

MetFaces. Scratch and Naı̈ve Fine-Tune model shows se-

mantically aligned images, but they fall short in generating

a range of diverse attributes. However, SDFT can gener-

ate more semantically aligned images, preserving more di-

verse attributes that are not included in the target datasets

such as the smiling face (1st row) and people with dark

skin (2nd row). Tab. 3 shows the measured FID and KID

using 10K generated samples with MetFaces and the en-

tire AAHQ dataset. The perceptual distance (LPIPS) is

measured between the 2K generated samples between the

5034



FID↓ KID (×103) ↓ LPIPS↓
MetFaces

Scratch 65.91 44.79 0.488

Naı̈ve Fine-Tune 43.45 22.81 0.474

Ours (SDFT) 35.11 17.14 0.46
AAHQ

Scratch 62.48 48.67 0.575

Naı̈ve Fine-Tune 64.08 56.70 0.562

Ours (SDFT) 42.54 33.75 0.469

Table 3. Quantitative results on unconditional image generation.

Figure 8. Laux helps DMs deal with more diverse inputs.

source and target model from the same initial noises. From

the results, the proposed SDFT shows the capability to gen-

erate diverse and high-fidelity images from limited datasets

while preserving the diversities from the source model.

4.5. Ablation Study

In this section, we present the effectiveness of the pro-

posed methods using domain translation from face to por-

trait using MetFaces [14] and EGSDE [42].

Auxiliary Input We present the effectiveness of the auxil-

iary inputs for distilling more diverse features described in

Sec. 3.4. Fig. 8 illustrates the results of domain translation

on out-of-domain inputs. By utilizing the auxiliary inputs

during the training, the more diverse features that are not

included in the target datasets can be transferred and help

the model deal with out-of-domain samples successfully.

Different Weighting Scheme We also compare the pro-

posed weighting scheme for distillation with other weight-

ings which have been used for the training of DMs such as

constant weighting (wdistill
t = 1 · wt) [13] and a Min-SNR

weighting (wdistill
t =min{SNR(t),γ} ·wt) where wt is de-

fined in Sec. 2.1 and γ is set to 5 following Hang et al. [11].

Fig. 9 shows that other methods fail to transfer attributes

from source images such as teeth. However, the proposed

weighting scheme prioritizes the general features while dis-

carding domain-specific features from the source model,

leading to successful domain translation. For unconditional

FID↓ KID (×103) ↓ LPIPS↓
Constant 45.21 28.42 0.494

Min-SNR-5 44.75 27.96 0.476

Ours (SDFT) 35.11 17.14 0.46

Table 4. Ablation studies on different weighting strategies.

Figure 9. Effect of various distillation weights for fine-tuning.

generation in MetFaces, Tab. 4 shows that SDFT can gen-

erate more realistic (low FID and KID) images while pre-

serving more semantics from the source model (low LPIPS)

compared to other weighting strategies.

5. Conclusion and Future Works

In this paper, we propose a self-distillation-based fine-

tuning method for training diffusion models in limited

datasets by leveraging the diverse knowledge from the

source model trained on large datasets. Experimental re-

sults demonstrate that SDFT can effectively enhance the ex-

pressiveness of the diffusion models, leading to improved

performance in various downstream tasks. Future works.
Recently, rather than training full parameters, parameter-

efficient fine-tuning (PEFT) can bring efficient and promis-

ing results [28, 32]. Since the SDFT can be orthogonally

combined with these methods, we leave it for future work

to investigate the advantage of combining SDFT with PEFT.

Lastly, we only consider the diffusion models as noise pre-

dictors, but recent studies on distilling diffusion models

found that utilizing velocity can bring effective knowledge

transfer [21, 30]. Combining SDFT with various diffusion

parametrizations is also an interesting future work.
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