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Abstract

Improving multi-view aggregation is integral for multi-
view pedestrian detection, which aims to obtain a bird’s-
eye-view pedestrian occupancy map from images captured
through a set of calibrated cameras. Inspired by the suc-
cess of attention modules for deep neural networks, we first
propose a Homography Attention Module (HAM) which is
shown to boost the performance of existing end-to-end mul-
tiview detection approaches by utilizing a novel channel
gate and spatial gate. Additionally, we propose Booster-
SHOT, an end-to-end convolutional approach to multiview
pedestrian detection incorporating our proposed HAM as
well as elements from previous approaches such as view-
coherent augmentation or stacked homography transforma-
tions. Booster-SHOT achieves 92.9% and 94.2% for MODA
on Wildtrack and MultiviewX respectively, outperforming
the state-of-the-art by 1.4% on Wildtrack and 0.5% on Mul-
tiviewX, achieving state-of-the-art performance overall for
standard evaluation metrics used in multi-view pedestrian
detection. 1

1. Introduction
Multi-view detection [2, 26, 41] leverages multiple cam-

era views for object detection using synchronized input im-
ages captured from varying view angles. Compared to a
single-camera setup, the multi-view setup alleviates the oc-
clusion issue, one of the fundamental problems in many
computer vision applications. In this work, we consider the
problem of multi-view pedestrian detection. As shown in
Figure 1, a bird’s-eye-view representation is obtained with
the synchronized images from multiple calibrated cameras,
which is then further used to detect pedestrians in the scene.

A central problem in multi-view detection is to obtain
a correct multi-view aggregation. The change in viewpoint
and occlusions make it challenging to match object features

*This work was performed while Jinwoo was at Deeping Source Inc.
1Code can be found at https://github.com/luorix1/Booster-SHOT.

across different view angles. Various works attempted to
address this problem, ranging from early approaches lever-
aging “classical” computer vision [3], hybrid approaches
further incorporating deep learning, to end-to-end trainable
deep learning architectures [25, 26, 42].

One core challenge in multiview detection is designing
how the multiple views should be aggregated. MVDet [26]
proposes a fully convolutional end-to-end trainable solution
for the multi-view detection task. MVDet aggregates differ-
ent views by projecting the convolution feature map via per-
spective transformation to a single ground plane and con-
catenating the multiple projected feature maps. Given the
aggregated representation, MVDet applies convolutional
layers to detect pedestrians in the scene. Song et al. [42]
identified that the projection of the different camera views
to a single ground plane is not accurate due to misalign-
ments. Consequently, they proposed to project the feature
maps onto different height levels according to different se-
mantic parts of pedestrians. Additionally, they use a neural-
network-based soft-selection module to assign a likelihood
to each pixel of the features extracted from the different
views. They termed their approach SHOT, due to the use of
the Stacked HOmography Transformations. MVDeTr [25]
extends MVDet by introducing a shadow transformer to at-
tend differently at different positions to deal with various
shadow-like distortions as well as a view-coherent data aug-
mentation method, which applies random augmentations
while maintaining multiview-consistency. MVDeTr cur-
rently constitutes the SotA approach for multiview detec-
tion.

In recent years the attention mechanism for deep neural
networks has played a crucial role in deep learning [21, 27,
46] due to the non-trivial performance gains that it enabled.
Attention mechanisms have provided benefits for various
vision tasks, e.g. image classification [27,46], object detec-
tion [7, 13], semantic segmentation [17, 51], or Point Cloud
Processing [20, 47]. However, to this date, no dedicated
attention mechanism has been proposed for the task of mul-
tiview pedestrian detection.

In this work, we fill this gap and propose an attention
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Figure 1. Overview of multiview detection with homography attention module (HAM)

mechanism specifically designed to boost existing multi-
view detection frameworks. Our proposed Homography At-
tention Module (HAM) is specifically tailored for the core
task of multiview aggregation in modern multiview detec-
tion frameworks. As shown in the lower part of Figure 1
our proposed solution consists of a channel gate module
and a spatial gate module. The channel gate is directly ap-
plied to the accumulated image features from the different
views. The intuition behind our channel gate is that dif-
ferent channels hold meaningful information for different
homographies. The channel gate is followed by our spatial
gate. We conjecture, that for each view and homography
combination different spatial features are of higher impor-
tance. Our proposed attention mechanism can be readily
plugged into existing methods.

We also combine insight from previous approaches and
HAM to propose Booster-SHOT, a new end-to-end mul-
tiview pedestrian detection framework. Our experimen-
tal results show that both incorporating HAM into previ-
ous frameworks and Booster-SHOT improves over previous
multiview detection frameworks and achieves state-of-the-
art performance. Additionally, we provide quantitative and
qualitative results to verify and justify our design choices.

2. Related work

2.1. Multiview Detection

Detecting pedestrians in crowded and occluded scenes is
challenging with a single camera view. Hence, researchers
focus on multi-camera setups, which provide a richer rep-
resentation of the environment. Calibrated and synchro-
nized cameras establish correspondences between ground

plane locations and bounding boxes in multiple camera
views. Early methods for multiview pedestrian detection
used background subtraction, geometric constraints, and
occlusion reasoning [6, 16, 41]. Fleuret et al. [16] esti-
mated a probabilistic occupancy map and performed track-
ing, while Sankaranarayanan et al. [41] leveraged geomet-
ric constraints. Coates and Ng [12] fused object detector
outputs probabilistically. Berclaz et al. [6] proposed a mul-
tiple object tracking framework using the k-shortest paths
algorithm, and Roig et al. [39] modeled the problem using
Conditional Random Fields.

Deep neural networks have been successfully applied to
multi-view pedestrian detection [5, 9, 25, 26, 42]. Chav-
darova and Fleuret [9] proposed an end-to-end architecture
combining monocular pedestrian detectors with a multi-
view network. Baqu’eet al. [5] addressed performance
degradation in crowded scenes using a hybrid CRF-CNN
approach.

MVDet [26] is an end-to-end trainable multiview detec-
tor that aggregates cues by transforming feature maps to a
single ground plane and using large kernel convolutions.
Extensions to MVDet include stacked homographies and
shadow transformers [25, 42]. Song et al. [42] improved
alignment using 3D world coordinate projections and in-
troduced a soft selection module. MVDeTr [25] adopted
shadow transformers, which attend differently based on
position and camera differences, and introduced view-
coherent data augmentation.

The recent works of Lee et al. [31], Engliberge et
al. [15], and Gao et al. [18] have further advanced mul-
tiview pedestrian detection. Lee et al. proposed Multiview
Target Transformation (MVTT) to address distortion caused
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by perspective transformation. Engliberge et al. [15] intro-
duced a novel multiview data augmentation pipeline to pre-
serve alignment among views. Gao et al. [18] incorporated
key point supervision and grouped feature fusion to enhance
multiview pedestrian detection.

2.2. Attention Mechanism in Computer Vision

Attention mechanisms for computer vision emphasize
more important regions of an image or a feature map and
suppress less relevant parts [21]. They can be broadly di-
vided into channel attention, spatial attention, and a combi-
nation of the two variants.
Channel Attention selects important channels through an
attention mask across the channel domain. Pioneered
by Hu et al. [27] various works have extended upon the
Squeeze-and-Excitation (SE) mechanism module [19, 30,
38, 49] .
Spatial Attention selects important spatial regions of an
image or a feature map. Early spatial attention variants are
based on recurrent neural networks (RNN) [4, 35]. In the
literature various variants of visual attention-based model
can be found [36, 48] To achieve transformation invari-
ance while letting CNNs focus on important regions, Spatial
Transformer Networks [28] had been introduced. Similar
mechanisms have been introduced in deformable convolu-
tions [13,52]. Originating from the field of natural language
processing, self-attention mechanisms have been examined
for computer vision applications [7, 11, 14, 45, 53].

Channel Attention & Spatial Attention can also be
used in combination. Residual Attention Networks [44]
extend ResNet [22] through a channel & spatial attention
mechanism on the feature representations. A spatial and
channel-wise attention mechanism for image captioning has
been introduced in [10]. The Bottleneck Attention Mod-
ule (BAM) [37] and Convolutional Block Attention Mod-
ule (CBAM) [46] both infer attention maps along the chan-
nel and spatial pathway. While in the previous two meth-
ods the channel and spatial pathways are computed sepa-
rately, triplet attention [34] was introduced to account for
cross-dimension interaction between the spatial dimensions
and channel dimension of the input. Channel & spatial at-
tention has also been applied in the context of segmenta-
tion [17, 40] Further combinations of channel and spatial
attention include self-calibrated convolutions [32], coordi-
nate attention [24] and strip pooling [23].

3. Preliminaries
Let the input images for N camera views be (I1, ... , IN ).

The respective feature maps obtained from the feature ex-
tractor in the initial step of the general framework are de-
noted as (F 1, ... , FN ). The intrinsic, extrinsic parameters
of the i’th camera are Gi ∈ R3×3 and Ei = [Ri|ti] ∈
R3×4, respectively, where Ri is the 3 × 3 matrix for rota-

tion in the 3D space and ti is the 3 × 1 vector representing
translation. Following MVDet [26], we quantize the ground
plane into grids and define an additional matrix Fi ∈ R3×3

that maps world coordinates to the aforementioned grid.
While the mathematical concept of homography is an iso-
morphism of projective spaces, we use the term homogra-
phy to describe correspondence relations between points on
a given plane parallel to the ground as they are seen from
the bird’s-eye-view and from a separate camera-view. This
is in line with SHOT [42] where the authors explain their
projections as being homographies describing the transla-
tion of a plane for the pin-hole camera model. We will go
into further depth regarding the homography transforms in
our supplementary materials.

4. Methodology

4.1. Previous Multiview Detection Methods

Before presenting our proposed attention module, we
outline the previous multiview detection frameworks on
which this work builds upon. MVDet [26] presented a
multiview detection framework that functions as follows:
First, the input images from different viewpoints are passed
through a generic feature extractor such as ResNet18 with
minor modifications. The feature maps are passed through
an additional convolutional neural network that detects the
head and feet of pedestrians to aid the network during train-
ing. Next, the feature maps are projected to the ground
plane via homography transformation and concatenated.
Additionally, x, y coordinate maps are concatenated to the
stack of transformed feature maps as in CoordConv [33].
Finally, this is passed through a CNN to output a bird’s-
eye-view (BEV) heatmap which is then post-processed via
thresholding and non-maximum suppression. Extending
upon MVDet, MVDeTr [25] proposed the use of affine
transformations, which are view-coherent augmentations.
Additionally, the final CNN to generate the BEV heatmap
is replaced with a shadow transformer, with the purpose to
handle various distortion patterns during multiview aggre-
gation. MVDeTr further replaces the MSE loss used in
MVDet with Focal Loss [29] coupled with an offset re-
gression loss. While MVDet and MVDeTr both project
the feature maps to the ground plane, SHOT [42] proposes
to approximate projections in 3D world coordinates via a
stack of homographies. In line with MVDet, SHOT uses
a ResNet18 as a feature extractor. Contrary to MVDet,
SHOT introduces additional planes parallel to the ground
plane with different distances to the ground. The features
are selectively projected from the camera-view to these dif-
ferent bird’s-eye-views. As the projection to some planes
may be of more importance than others, SHOT introduces
a soft selection module where a network learns which ho-
mography should be used for which pixel.
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Figure 2. Diagram showing our proposed channel gate.

4.2. Homography Attention Module (HAM)

We identify two shortcomings of the soft selection mod-
ule of SHOT [42]. First, it uses softmax activation, there-
fore each pixel gets projected to some extent to each ho-
mography. Since even the homography given the lowest
score by the soft selection module affects the projected out-
come, this introduces some noise into the final projected
feature map. In addition, all feature channels correspond-
ing to a single pixel are multiplied by the same value when
projected to a homography. However, different channels at-
tend to different features and some will be useful for the
selected homography while others won’t. For this reason
we designed HAM such that it selects channels in a dis-
crete manner for each homography to avoid the two prob-
lems mentioned above.

Here we outline our design choices for our proposed
homography attention module (HAM) and their respective
motivations. HAM consists of a channel gate and several
spatial gates equal to the number of homographies used.
Note, that our attention module is specifically designed for
view-aggregation in the context of multiview detection and
is hence only applied in the multiview aggregation part.
The image feature maps are first passed through the chan-
nel gate, then the spatial gate, and then finally through the
homography, followed by the BEV heatmap generator.

Channel Gate Our proposed channel gate follows the in-
tuition that depending on the homography, different chan-
nels are of importance. Taking into consideration the mul-
tiple homography layers deployed at different heights, dif-
ferent feature information become more valuable. For in-
stance, when we consider the homography at Z = 0, dis-
criminative feature information near the ground plane, such
as a person’s feet, ankles, and lower legs, may offer more
significant representation. This is because the homography
at Z = 0 focuses on objects that are closer to the ground

Figure 3. Diagram showing our proposed spatial gate.

plane, which makes features near the ground plane more
informative. This is in contrast to the approach proposed
by SHOT, which feeds all feature maps through each of the
homographies. Figure 2 outlines the architecture of our pro-
posed channel gate, which broadly consists of the channel
selection module and the top-K selection module. Given the
stack of feature maps acquired from the different views, first
the channel selection module is applied. The channel se-
lection module first applies max pooling and average pool-
ing along the spatial dimension. Both pooled feature maps
are passed through a shared 2-layer MLP. As the number of
channels in the output from the last layer of the MLP is de-
cided by the number of homographies (denoted as D) with
the number of channels in the input (denoted as C), we ob-
tain C channel for each homography, or in other words a
C × D channel output size. Afterward, we apply the soft-
max function along the channel dimension for each of the
outputs. The outputs are then fed into the top-K selection
module. The top-K selection module takes these D different
C-dimensional outputs and selects the top K largest values.
The corresponding top-K selected channels from the origi-
nal input are then concatenated, resulting in a subset of the
original input with K channels. In the case of D = 1 (us-
ing only one homography, usually the ground plane), the
top-K selection module defaults to an identity function. To
retain the channel-wise aspect of our module, in this sce-
nario we multiply the output of the channel selection mod-
ule element-wise with the input. This completes the chan-
nel gate, which outputs D times K-channel feature maps,
which are then fed into spatial gate.

Spatial Gate Our spatial gate is motivated by our conjec-
ture that for each view and homography combination dif-
ferent spatial features are of different importance. This in-
tuition is based on the understanding that the view deter-
mines the camera’s position and orientation, the homogra-
phy corresponds to different heights in the scene, and the
spatial features capture the patterns, textures, and shapes of
the objects in the scene. Depending on the specific view
and homography combination, certain spatial features may
be more informative and relevant for feature extraction than
others. For example, features closer to the lower image bor-
der might be more important for a view-homography com-
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Table 1. Settings for each approach

Method Aug. Loss BEV gen. Multi Homogr.

MVDet [26] ✗ MSE CNN ✗
SHOT [42] ✗ MSE CNN ✓

MVDeTr [25] ✓ Focal Transformer ✗
Booster-Shot ✓ Focal CNN, Transformer ✓

bination with a nearly parallel to the ground plane and the
homography at Z = 0. By using a spatial gate to selec-
tively weight and filter the spatial features for each com-
bination, our proposed method can effectively capture the
relevant information from the image and improve perfor-
mance. Figure 3 shows the architecture of our spatial gate.
The input is max and average pooled along the channel di-
mension, then concatenated channel-wise. This 2-channel
input is then passed through a 2-layer convolutional neural
network to generate the spatial attention map. Finally, this
spatial attention map is multiplied with the original input
element-wise to create an output with dimensions identical
to the input. For each homography-path a separate spatial
gate is applied.

Architecture-wise, while SHOT uses a “soft selection
module” to estimate the importance of each homography
plane for each pixel, HAM estimates the importance of
channels and spatial information for each homography.
Also, while MVDeTr introduced a “shadow transformer”
after the homography transforms to remove shadow-like
background noise, HAM uses attention to optimize image
features fed to each homography and is applied prior to the
homography transforms.

4.3. Booster-SHOT

Given the insights collected from previous approaches
in addition to our proposed HAM, we design a mul-
tiview pedestrian detection architecture, which we term
Booster-SHOT. Booster-SHOT bases itself on SHOT [42],
using their stacked homography approach and leverages
MVDeTr’s Focal loss and offset regression loss along with
the view-coherent augmentation. We retain SHOT’s convo-
lutional architecture used to generate the BEV heatmap but
remove the soft selection module as the implementation of
our module renders it obsolete. Figure 1 outlines how our
proposed module is implemented in Booster-Shot. Table 1
outlines the design choices of Booster-SHOT alongside pre-
vious methods.

5. Experiments
5.1. Datasets

Our method is tested on two datasets for multiview
pedestrian detection.

Wildtrack [8] consists of 400 synchronized image pairs
from 7 cameras, constituting a total of 2,800 images. The
images cover a region with dimensions 12 meters by 36 me-
ters. The ground plane is denoted using a grid of dimensions
480 × 1440, such that each grid cell is a 2.5-centimeter by
2.5-centimeter square. Annotations are provided at 2fps and
there are, on average, 20 people per frame. Each location
within the scene is covered by an average of 3.74 cameras.
MultiviewX [26] is a synthetic dataset created using human
models from PersonX [43] and the Unity engine. It consists
of 1080 × 1920 images taken from 6 cameras that cover
a 16-meter by 25-meter area. Per the method adopted in
Wildtrack, the ground plane is represented as a 640× 1000
grid of 2.5-centimeter squares. Annotations are provided
for 400 frames at 2fps. An average of 4.41 cameras cover
each location, while an average of 40 people are present in
a single frame.

5.2. Settings and metrics

In accordance with the previous methods, we report
the four metrics: Multiple Object Detection Accuracy
(MODA), Multiple Object Detection Precision (MODP),
precision, and recall. Let us define N as the number of
ground truth pedestrians. If the true positives (TP), false
positives (FP) and false negatives (FN) are known, precision
and recall can be calculated as TP

FP+TP and TP
N , respec-

tively. MODA is an accuracy metric for object detection
tasks and is therefore obtained by calculating 1− FP+FN

N .
MODP is computed with the formula

∑
1−d[d<t]/t

TP where d
is the distance from a detection to its ground truth (GT) and
t is the threshold for a correct detection. We keep the orig-
inal threshold of 20 that was proposed in SHOT. Our im-
plementation is based on the released code for MVDet [26],
SHOT [42], MVDeTr [25] and follows the training settings
(optimizer, learning rate, etc.) for each. For all instances,
the input images are resized to 720×1280 images. The out-
put features are 270×480 images for MVDet and SHOT and
90× 160 for MVDeTr. ∆z (the distance between homogra-
phies) is set to 10 on Wildtrack and 0.1 on MultiviewX. All
experiments are run on two A30 GPUs (depending on the
framework) with a batch size of 1.

For experiments implementing our module in SHOT, our
base approach involves selecting the top-32 channels each
for 4 homographies. We note that SHOT’s base approach
uses 5 homographies.

5.3. Comparison with previous methods

First, to show the efficiency of our homography atten-
tion module (HAM), we use the previous approaches as is
without modification to their loss or training configuration,
and simply plug in our proposed HAM. As the soft selec-
tion module in SHOT is rendered obsolete by our proposed
HAM, we remove it when comparing the performance of
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Table 2. Performance comparison (in %) on Wildtrack and MultiviewX datasets

Wildtrack MultiviewX
Method MODA MODP precision recall MODA MODP precision recall

MVDet 88.2 75.7 94.7 93.6 83.9 79.6 96.8 86.7
MVDet + HAM 89.6 ± 0.35 80.4 ± 0.21 95.7 ± 1.06 93.8 ± 0.42 91.3 ± 0.35 81.7 ± 0.14 98.3 ± 0.49 91.9 ± 2.26

SHOT 90.2 76.5 96.1 94.0 88.3 82.0 96.6 91.5
SHOT + HAM 90.2 ± 0.49 77.4 ± 0.57 96.2 ± 0.07 93.9 ± 0.42 91.2 ± 0.53 86.9 ± 4.14 98.2 ± 1.25 92.9 ± 0.78

MVDeTr 91.5 82.1 97.4 94.0 93.7 91.3 99.5 94.2
MVDeTr + HAM 92.8 ± 0.49 82.4 ± 0.71 96.6 ± 0.85 96.6 ± 1.25 94.2 ± 0.07 91.4 ± 0.57 99.4 ± 0.21 94.8 ± 0.21

Booster-Shot + Tr 92.5 ± 0.64 82.0± 0.71 96.3± 0.78 96.3 ± 1.50 93.8± 0.49 91.8± 0.07 98.8± 0.64 95.0 ± 1.06
Booster-Shot 92.8 ± 0.17 84.9 ± 4.42 97.5 ± 1.25 95.3 ± 1.17 94.4 ± 0.18 92.0 ± 0.04 99.4 ± 0.07 94.9 ± 0.21

SHOT with our module with the reported values for SHOT.
As shown in Table 2, applying our module to MVDet,

SHOT and MVDeTr improved (or matched) all four metrics
reported in their respective papers for MultiviewX. Specif-
ically, the average performance of MVDet with our mod-
ule improves over the reported values for MVDet on Multi-
viewX by 7.4%, 2.1%, 1.5%, and 5.2% for MODA, MODP,
precision, and recall respectively. For Wildtrack, the use of
our module again improved all four metrics with the excep-
tion of MVDeTr. For MVDeTr, our precision was still com-
parable with the reported value as there was only a 0.8%
decrease in precision while the MODA, MODP, and recall
each improved 1.3%, 0.3%, and 2.6% respectively.

The proposed Booster-SHOT outperforms previous
methods across all metrics except for precision against
MVDeTr. As MVDeTr proposed the shadow transformer
as a way to improve performance, we applied it to Booster-
SHOT and the results are denoted in Table 2 as Booster-
SHOT + Tr. However, we were unable to obtain any mean-
ingful improvement over the purely convolutional approach.

5.4. Analysis

Efficacy of HAM in comparison to existing methods
We emphasize that the novelty of HAM lies in the architec-
tural integration of the attention mechanism for the specific
purpose of multi-view aggregation, for which, to the best
of our knowledge, our work is the first. Previous attention
mechanisms (e.g. CBAM [46], CCG [1]) are applied at the
convolutional blocks in the backbone network, while HAM
is applied after the backbone network since it is tailored to-
ward multi-view aggregation. Consequently, HAM can be
seen as complementary to existing attention mechanisms.

To illustrate the importance of the design choices of
HAM we compare it with the naive integration of SENet,
CBAM, and CCG into Booster-SHOT on MultiviewX.
SENet, CBAM, and CCG come after the feature extractor
in place of HAM. To provide a common baseline for HAM,
SENet, CBAM, and CCG, we provide additional results for
“BoosterSHOT without attention”. This implementation is

equivalent to SHOT [42] with Focal Loss and training-time
augmentations.

As shown in Table 3, BoosterSHOT outperforms all of
the compared methods across the board. Only Booster-
SHOT without attention shows similar results in precision,
a very saturated metric for which BoosterSHOT shows only
a slightly lower performance. In addition, when compared
with BoosterSHOT without attention, adding CBAM, CCG,
and SE showed only an increase of a maximum 0.5% in
MODA, while adding HAM boosted MODA by 1.2%.

Attention for different homographies We previously
conjectured that the significance of each channel is different
for each homography. In the following we validate this hy-
pothesis through empirical evidence. Note that the follow-
ing results are shown for the synthetic MultiviewX dataset.
Figure 4 shows images created from camera view 1 of the
MultiviewX dataset and containing output from the channel
selection module corresponding to each homography. The
channel selection module output is average pooled channel-
wise (in this instance, the output for each homography con-
tains 32 channels) and superimposed onto a grayscale ver-
sion of the original image from the MultiviewX dataset.
Yellow areas indicate high values in the output, indicating
that the network is attending strongly to those regions. We
denote the ground plane as H0 (homography 0) and number
the remaining homographies accordingly.

We can observe that the output from the channel selec-
tion module is homography-dependent as the yellow areas
in all four images differ. We also note that the body parts
with the brightest colors align with the height of the ho-
mographies. H0 highlights the feet while H1 highlights the
lower body, especially around the knee area. H2 and H3
both highlight the upper body but H3 extends a bit farther
upwards compared to H2. A similar phenomenon has been
reported by the SHOT authors for their soft selection mod-
ule. However, our channel selection module output shows
more distinct highlighting of the body parts. Overall, these
results support the importance of selecting different chan-
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Table 3. BoosterSHOT performance with HAM vs pre-existing attention mechanisms

MODA MODP precision recall

Booster-SHOT w/o attention 93.2 ± 0.18 91.2 ± 0.07 99.4 ± 0.04 93.7 ± 0.20

Booster-SHOT (SE) 93.7± 0.23 88.2± 5.66 98.1± 1.11 95.5± 0.90
Booster-SHOT (CBAM) 93.2 ± 0.14 90.5 ± 0.14 98.5 ± 0.53 94.7 ± 0.35
Booster-SHOT (CCG) 93.4 ± 0.18 91.4 ± 0.04 99.1 ± 0.11 94.2 ± 0.07

Booster-SHOT 94.4 ± 0.18 92.0 ± 0.04 99.4 ± 0.07 94.9 ± 0.21

Figure 4. Homography-wise output from channel selection (top)
and spatial attention maps (bottom)

nels for different homographies.
Figure 4 (bottom) shows the attention values from the

spatial attention block at the end of our proposed module.
All four attention maps show starkly different distributions,
confirming our conjecture that different pixels in the feature
map can differ in importance for each homography.

The results demonstrated above were obtained through
an experiment where the distance between homography
planes was increased from 10cm to 60cm for MultiviewX.
Due to the low height of even the top homography plane
in the 10cm case (30cm off the ground), the difference
between the attention module outputs was not easily no-
ticeable. By increasing the distance between homography
planes, we were able to obtain images that clearly show ho-
mographies that are higher off the ground attend to higher
regions of the human body. In addition, we noticed that the
foot regression auxiliary loss caused bias toward the foot

Figure 5. Heatmap representation of channel selection
homography-wise. Deeper yellow colors indicates that the channel
is selected most of the time while deeper blue colors are assigned
to channels that are seldom selected.

region in the extracted image features, thus distorting our
heatmap visualization of the attention module outputs. As
such, the experiments from which Figure 4, Figure 5 and
Figure 6 were obtained did not include auxiliary losses dur-
ing training. For a more detailed analysis regarding aux-
iliary losses and their effect on performance, we refer the
reader to our supplementary.

We further provide results averaged over the entire Mul-
tiviewX test dataset. Specifically, we visualize how often
certain channels are selected for each homography for a
given view for Booster-SHOT. For each channel, we count
the number of times it is selected for each homography and
divide by the total number of image pairs in the test set and
display the resulting heatmap in Figure 5.

First, it can be observed that the channels that are se-
lected often (yellow hues) show almost no overlap across
homographies, again providing evidence to our previous
claim that different channels attend to different homogra-
phies. Although there are minor differences in the specific
number of times some channels are chosen, the channels
that are selected for the majority of the test set for each ho-
mography are unchanged. (Due to length constraints, we
refer the reader to our supplementary.) Interestingly, we
also observe that some channels are not selected at all by
any homography while other channels appear to be selected
by multiple homographies.

Attention across different views Figure 6 further
presents evidence that our channel selection module out-
put is only homography-dependent. We denote the camera
views as C1 (camera 1) through C6 for the homography to
the ground plane (H0). For all 6 images, the feet and sur-
rounding area of the pedestrians are highlighted. Therefore,
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Figure 6. Camera view-wise output from channel selection module

we conclude that the output from the channel selection mod-
ule attends consistently to certain features across all camera
views.

Generalization across camera views. Due to the spe-
cific nature of camera pose and environmental factors, mul-
tiview pedestrian detection methods are susceptible to over-
fitting to a single scene. To test generalization capabili-
ties, we adapt Table 4 in SHOT [42] and train models on
a split of cameras of MultiviewX and evaluate the remain-
ing cameras. Specifically, the top-view grid of the ground
plane is divided into two separate grids of equal area. As
MultiviewX has 6 cameras, 3 cameras cover each of the
newly formed grids. We compare our approach to SHOT
and MVDet.

The results presented in Table 4 show that introducing
HAM results in significant improvement in MODA and
precision for MVDet and SHOT, with MVDet’s MODA
increasing 27.4% and SHOT’s MODA increasing 14.7%.
Although a similar increase in MODP and recall was not
observed, both metrics remain comparable to MVDet and
SHOT. Through these results, HAM is shown to boost
the generalization ability of both a single-homography
(MVDet) approach and a multi-homography (SHOT) ap-
proach.

Table 4. Results from train-test camera split scenario on Multi-
viewX

MODA MODP precision recall

MVDet 33.0 76.5 64.5 73.4
MVDet + HAM 60.4 75.2 85.6 72.7

SHOT 49.1 77.0 73.3 77.1
SHOT + HAM. 63.8 76.6 86.0 76.2

Backbone network As per the methodology proposed in
MVDet [26], we deploy ResNet-18 [22] as the backbone
architecture. To keep the feature map resolution at a suf-
ficiently high resolution, we substitute the final 2 strided
convolutions with dilated convolutions [50]. To minimize
memory usage, a bottleneck is added to the backbone ar-
chitecture with 128 channels. To ablate the influence of the
backbone architecture, we compare this setting with an SE-

Net backbone, which we initialize with the ImageNet pre-
trained versions from the TIMM library. 2 For a fair compar-
ison, we used BoosterSHOT with the shadow transformer
proposed in MVDeTr so the only difference is the use of
HAM with multiple homographies. In this case, we used
4 homographies for BoosterSHOT (Tr) noted in Table 5.
Even with the SE-ResNet18 backbone which has multiple
squeeze-and-excitation attention layers, BoosterSHOT (Tr)
improves over MVDeTr in MODA and recall, while the
other two metrics are slightly higher. This supports our
claim that the attention methods in HAM are able to boost
performance by attending to each homography plane, which
the backbone is unable to do since it is shared across all ho-
mographies.

Table 5. Performance with SE-ResNet18 backbone architecture on
Wildtrack

Method MODA MODP precision recall

MVDeTr 92.2± 0.06 81.4± 0.21 96.4± 0.35 95.7± 0.40
BoosterSHOT (Tr) 93.4 ± 0.32 81.5 ± 0.21 96.7 ± 0.10 96.6 ± 0.46

Computational cost, memory consumption and run-
time. We analyze the computational cost and memory con-
sumption, along with the runtime of our method and com-
pare with several others to show the benefits of our ap-
proach. Through our variable number of selected chan-
nels and homographies, we were able to reduce the num-
ber of FLOPs and overall runtime without sacrificing per-
formance. More detailed results are outlined in our supple-
mentary.

6. Conclusion
We propose a homography attention module (HAM) as a

way to improve across all existing multiview pedestrian de-
tection approaches. HAM consists of a channel gate module
that selects the most important channels for each homogra-
phy and a spatial gate module that applies spatial attention
for each homography. We outline an end-to-end multiview
pedestrian detection framework (Booster-SHOT) taking in-
sight from previous approaches while also incorporating
our proposed module. We report new state-of-the-art per-
formance on standard benchmarks for both Booster-SHOT
and previous approaches with HAM and provide extensive
empirical evidence that our conjectures and design choices
are logically sound. As noted in our supplementary, gen-
eralization to novel camera views, bridging the domain gap
between synthetic and real-world data, experimentation on
large-scale camera models, and extending to tracking and
additional analytics for more viability are all areas where
further research is needed.

2https://github.com/huggingface/pytorch-image-models
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