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Abstract

Anomaly detection is crucial to the advanced identi-
fication of product defects such as incorrect parts, mis-
aligned components, and damages in industrial manufac-
turing. Due to the rare observations and unknown types
of defects, anomaly detection is considered to be challeng-
ing in machine learning. To overcome this difficulty, re-
cent approaches utilize the common visual representations
pre-trained from natural image datasets and distill the rel-
evant features. However, existing approaches still have the
discrepancy between the pre-trained feature and the target
data, or require the input augmentation which should be
carefully designed, particularly for the industrial dataset.
In this paper, we introduce ReConPatch, which constructs
discriminative features for anomaly detection by training a
linear modulation of patch features extracted from the pre-
trained model. ReConPatch employs contrastive represen-
tation learning to collect and distribute features in a way
that produces a target-oriented and easily separable repre-
sentation. To address the absence of labeled pairs for the
contrastive learning, we utilize two similarity measures be-
tween data representations, pairwise and contextual simi-
larities, as pseudo-labels. Our method achieves the state-
of-the-art anomaly detection performance (99.72%) for the
widely used and challenging MVTec AD dataset. Addition-
ally, we achieved a state-of-the-art anomaly detection per-
formance (95.8%) for the BTAD dataset.

1. Introduction

Anomaly detection in industrial manufacturing is key to
identify the defects in products and maintain their quality.
Anomalies can include incorrect parts, misaligned compo-
nents, or damage to the product. Machine learning ap-
proaches for anomaly detection have been widely studied
with an increasing demand for the automation in indus-
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trial applications. The main concern of these approaches is
to learn how to discriminate anomalies from normal cases
based on previously collected data. However, anomaly de-
tection is particularly challenging because defects are rarely
observed and unknown types of defects can occur. Such sit-
uation, in which the majority of cases are marked as normal
and abnormal cases are scarce in the collected data, has lead
to the improvements in one-class classification.

The key concept of one-class classification for anomaly
detection is to train a model to learn a distance met-
ric between data and detect anomalies at a large distance
from the nominal data. In an effort to learn the metric,
reconstruction-based approaches have been proposed to de-
tect anomalies by measuring the reconstruction errors us-
ing auto-encoding models [8, 26, 33] or generative adver-
sarial networks (GANs) [28, 32]. As the variety of data is
not sufficiently rich to estimate a reliable nominal distribu-
tion from scratch, recent works have shown that leveraging
the common visual representation, obtained from a natu-
ral image dataset [11], can result in high anomaly detec-
tion performance [3, 7]. Although pre-trained models can
provide rich representations without adaptation, such rep-
resentations are not sufficiently distinguishable to identify
subtle defects in industrial images. The distribution shift
between natural and industrial images also makes it diffi-
cult to extract anomaly-specific features. For improvements
in anomaly detection performance, it is essential to train a
model to learn a representation space that effectively dis-
criminates borderline anomalies.

To alleviate the distribution shift between the pre-trained
and the industrial datasets, prominent features for anomaly
detection can be distilled by training a student model to re-
produce the representation of the pre-trained model using a
teacher supervision [5]. Attaching a normalizing flow [12]
at the end of the pre-trained model is another approach to
exploit the pre-trained representation and estimate the dis-
tribution of normality [30]. Unfortunately, existing methods
still require extensive handcrafted input augmentation, such
as random crop, random rotation, or color jitter. Particu-
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larly in case of industrial images, data augmentation should
be carefully designed by the user expertise.

In this paper, we introduce unsupervised metric learning
framework for anomaly detection by enhancing the arrange-
ment of the features, ReConPatch. Contrastive learning-
based training schemes present weaknesses in terms of
modeling variations within nominal instances, which may
increase the false-positive rate of the anomaly detection. To
this end, ReConPatch utilizes the contextual similarity [18]
among features obtained from the model as a pseudo-label
for the training. Specifically, our method efficiently adapts
feature representation by training only a simple linear trans-
formation, as opposed to training the entire network. By
doing so, we are able to learn a target-oriented feature rep-
resentation which achieves higher anomaly detection ac-
curacy without input augmentation, making our method a
practical and effective solution for anomaly detection in var-
ious industrial settings.

2. Related Work

Unsupervised machine learning approaches in anomaly
detection using neural networks have been widely analyzed.
Deep Support Vector Data Description (SVDD) trains a
neural network to map each datum to the hyperspherical
embedding and detect anomalies by measuring the distance
from the center of the hypersphere [31]. Patch SVDD has
been developed as a patch-wise extension of Deep SVDD,
utilizing the features of each spatial patch from the convo-
lutional neural network (CNN) feature map to enhance lo-
calization and enable fine-grained examination [40]. The
reconstruction-based approach assumes that normal data
can be accurately reconstructed or generated by training a
model using a nominal dataset, whereas abnormal data can-
not. Based on this assumption, an anomaly score is cal-
culated as the error between the original input and the re-
constructed input. Auto-encoding models are used for the
reconstruction model [8, 26, 33]. With the improvements in
GANs, several approaches have also shown the effective-
ness of GANs in anomaly detection [28, 32]. When train-
ing a model from scratch, variety and abundance should be
guaranteed, which is mostly not available for anomaly de-
tection.

To alleviate the shortage of data in anomaly detection,
several attempts have been made to utilize a common vi-
sual representation pre-trained with a rich natural image
dataset [11]. Previous studies that use such pre-trained
model measures the distance between the representations of
input data and their nearest neighbors to detect the anoma-
lies [3] and compares hierarchical sub-image features to lo-
calize anomalies [7]. To efficiently compare the input with
training set, a memory bank is introduced to store the rep-
resentatives [7].

DifferNet [30] provides a normalizing flow [12] that is

helpful in training a bijective mapping between the pre-
trained feature distribution and the well-defined density of
the nominal data, which is used to identify the anomalies.
A condition normalizing flow using positional encoding is
proposed by CFLOW-AD [13]. As the normalizing flow
is trained to map features to the nominal distribution, this
method is vulnerable to the outliers in the training dataset.

PatchCore proposes a locally aware patch feature and
efficient greedy subsampling method to define the core-
set [29]. The coupled-hypersphere-based feature adaptation
(CFA) trains a patch descriptor that maps features onto the
hypersphere, which is centered on the nearest neighbor in
the memory bank [19]. PaDiM estimates a Gaussian dis-
tribution of patch features at each spatial location to detect
and localize out-of-distributions (OODs) as anomalies [9].
PNI is developed to train a neural network to predict the
feature distribution of each spatial location and its neigh-
borhoods [2].

3. Method

Our proposed method, ReConPatch, focuses on learn-
ing a representation space that maps features extracted from
nominal image patches to be grouped closely if they share
similar nominal characteristics in an unsupervised learning
manner. Although previous work [29] has shown the effec-
tiveness of selecting representative nominal patch features
using a pre-trained model, this model still presents a rep-
resentation biased to the natural image data, which has a
gap with the target data. The main concept of our proposed
approach is to train the target-oriented features that spread
out the distributions of patch features according to the vari-
ations in normal samples, and gathers the similar features.

3.1. Overall structure

As shown in Fig. 1, our framework consists of the train-
ing and the inference phases. In the training phase, we first
collect the feature map at layer l, �l (x) 2 RC⇥H⇥W for
each input x in the training data using the pre-trained CNN
model. The feature maps have different spatial resolutions
at the feature hierarchy of the CNN, so they are interpo-
lated to have the same resolution before being concatenated.
Patch-level features P(x, h, w) 2 RC

01 then generated by
aggregating the feature vectors of the neighborhood within
a specific patch size s in the same approach employed in
PatchCore [29]. Adaptive average pooling is used for the
local aggregation.

ReConPatch utilizes two networks to train representa-
tions of the patch-level features. One of these is a net-
work for patch-level feature representation learning, which
is trained using the relaxed contrastive loss LRC in Eq. 7.
The representation network is composed of a feature rep-

1C and C0 can be different according to the aggregation.
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Figure 1. Overall structure of the anomaly detection using ReConPatch. ReConPatch consists of two networks to train representations of
the patch-level features, which includes the feature representation layer f , f̄ and projection layer g, ḡ respectively. Upper networks (f̄ , ḡ)
are used to calculate pairwise and contextual similarities between patch-level feature pairs, while the bottom networks (f, g) used for the
representation learning of patch-level features is trained through relaxed contrastive loss LRC .

resentation layer f and the projection layer g respectively.
When computing the LRC , pseudo-labels should be pro-
vided for every pair of features. The other network is used
to calculate pairwise and contextual similarities between
patch-level feature pairs. In addition, the similarity calcula-
tion network is gradually updated by an exponential moving
average (EMA) of the representation network. To distin-
guish the two networks, the layers in the latter network is
denoted as f̄ and ḡ respectively.

After training the representation, the patch-level fea-
tures extracted from the pre-trained CNN are transformed
into target-oriented features using the feature representation
layer f [6]. The representative features are selected using
the coreset subsampling approach based on the greedy ap-
proximation algorithm [35] and stored in a memory bank.
In the inference phase, the features of a test sample are ex-
tracted using the same process as training, and the anomaly
score is calculated by comparing the features with the nom-
inal representative in the memory bank.

3.2. Patch-level feature representation learning

The objective of ReConPatch is to learn target-oriented
features from patch-level features, thereby enabling more
effective discrimination between normal and abnormal fea-
tures. To accomplish this goal, a patch-level features repre-
sentation learning approach is applied to aggregate highly
similar features while repelling those with low similarity.
However, such training requires labeled pairs to indicate
the degree of proximity between patch-level features. To
address this issue, we utilize the similarity between patch-
level features using the pairwise similarity and the contex-
tual similarities as pseudo-labels. The similarity is high,

(a) (b)

Figure 2. Illustrative examples of similarity measures in the rep-
resentation space. The pairwise similarity !Pairwise

ij between
z̄i and z̄j is identical in both (a) and (b). In (a), the k-nearest
neighbors Nk(i) and Nk(j) do not enclose each other. Therefore,
!Contextual
ij has a lower value, and the z̄i and z̄j pair should be-

come apart. By contrast, as Nk(i) and Nk(j) enclose each other
in (b) case, !Contextual

ij takes a higher value, so that z̄i and z̄j pair
should attract each other.

then the pair is pseudo-labeled as positive and vice versa.
For two arbitrary patch-level features pi and pj ob-

tained by P(x, h, w), let the projected representation be
z̄i = ḡ(f̄(pi)) and z̄j = ḡ(f̄(pj)). The pairwise similar-
ity between two features, !Pairwise

ij
, is then provided by

!
Pairwise

ij
= e

�kz̄i�z̄jk2
2/� (1)

where � is the bandwidth of the Gaussian kernel, which can
be adjusted to tune the degree of smoothing in the similar-
ity measure [17, 18]. We note that Eq. 1 is used to measure
the Gaussian kernel similarity between pi and pj , which is
widely used to measure anomaly scores. However, the pair-
wise similarity is insufficient to consider the relationships
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among groups of features. As depicted in Fig. 2, for ex-
ample, cases (a) and (b) have the same pairwise similarity.
In (a) case, z̄i and z̄j belong to different groups of features;
therefore, they should be separated. By contrast, in (b), they
belong to the same group and should be gathered.

This leads to the simultaneous measure of contextual
similarity, which consider the neighborhood of an embed-
ding vector. Let k-nearest neighborhood of the feature in-
dex i is given as a set of indices, Nk (i) = {j|dij  dil}
where l is k-th nearest neighbor and dij denotes the
Euclidean distance between the two embedding vectors
(dij=kzi�zjk22). Two patch-level features can be regarded
as contextually similar if they share more nearest neighbors
in common [21]. The contextual similarity e!Context

ij
be-

tween two patch-level features pi and pj is then defined as

e!Contextual

ij
=

(
|Nk(i)\Nk(j)|

|Nk(i)| , if j 2 Nk(i)

0, otherwise.
(2)

In addition, the approach developed in this study adopts
the idea of query expansion, which is widely used to im-
prove the information retrieval, by expanding the query to
the neighbors of neighbors [18, 21]. e!Context

ij
is redefined

by averaging the similarities over the set of k-nearest recip-
rocal neighbors.

Rk (i) = {j|j 2 Nk (i) and i 2 Nk (j)} (3)

!̂
Contextual

ij
=

1���R k
2
(i)
���

X

l2R k
2
(i)

e!Contextual

lj
. (4)

Because ŵ
Context

ij
is asymmetric, the contextual similarity

is finally defined as the average bi-directional similarity of
a pair, which is given by

!
Contextual

ij
=

1

2

�
!̂
Contextual

ij
+ !̂

Contextual

ji

�
. (5)

The final similarity between two patch-level features pi and
pj is then defined as a linear combination of two similarities
with a quantity ↵ 2 [0, 1],

!ij = ↵ · !Pairwise

ij
+ (1� ↵) · !Contextual

ij
. (6)

Patch-level features do not have explicit labels because
each patch image is correlated with neighboring patches.
Moreover, the goal is to obtain unique target-oriented fea-
tures rather than clearly distinguishing them. Thus, relaxed
contrastive loss [17] was adopted, in which inter-feature
similarity is considered as pseudo-labels. Let �ij=kzi �
zjk2/( 1

N
⌃N

n=1kzi � znk2) denote the relative distance be-
tween embedding vectors in a mini-batch. The relaxed con-
trastive loss is given by

LRC(z)=
1

N

NX

i=1

NX

j=1

!ij�
2
ij
+(1�!ij)max(m��ij ,0)2 (7)

where z is the embedding vectors inferred by g (f(p)), N
is the number of instances in a mini-batch, and m is the
repelling margin. !ij in Eq. 7 determines the weights of
the attracting and repelling loss terms.

While representation learning networks f and g are
trained with relaxed contrastive loss, the similarity calcu-
lation network f̄ and ḡ are slowly updated with an the EMA
of the parameters in f and g respectively. Fast training of
the similarity calculation network reduces the consistency
of the relationships between the patch-level features, lead-
ing to unstable training. Let ✓

f̄ ,ḡ
be the parameters of the

similarity calculation network and ✓f,g be the parameters of
the representation learning network. ✓

f̄ ,ḡ
is then updated by

✓
f̄ ,ḡ
 � · ✓

f̄ ,ḡ
+ (1� �) · ✓f,g (8)

where � is the hyper-parameter that adjusts the rate of mo-
mentum update.

3.3. Anomaly detection with ReConPatch

Anomaly scores are calculated in the same manner as
in the case of PatchCore [29]. After training, the coreset
is subsampled from the newly trained feature representa-
tion f(·) using the greedy approximation algorithm [35]
and stored in memory bank M. The coreset takes a role
of the representative feature, which is used to compute the
anomaly score. The pixel-wise anomaly score is then ob-
tained by calculating the distance between the representa-
tion layer output, f(pt), and its nearest coreset r⇤ within
the memory bank,

r
⇤ = argmin

r2M
D(f(pt), r), (9)

st =

 
1� e

s
0
t

P
r02Nb(r⇤)

eD(f(pt),r0)

!
D(f(pt), r

⇤), (10)

where Nb(r⇤) is the set of b-nearest neighbors of r⇤ in the
memory bank. In addition, the image-wise anomaly score
is computed as the maximum score over the anomaly scores
calculated for every patch feature in the image.

The accuracy of anomaly detection can be further im-
proved by score-level ensemble from multiple models. To
compensate different score distribution of each model, we
normalize each score using the modified z-score [1], nor-
malization is necessary to evenly fuse the score levels of
each model. The anomaly score is normalized to the modi-
fied z-score [1], defined as

s̄t =
st � es

� ·MAD
, (11)

where es and MAD are the median value of the anomaly
scores and the Mean Absolute Deviation over the entire
dataset for training. � is a constant scale factor, which is
set to 1.4826 in our method, assuming the anomaly score is
normally distributed.
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Method Ours-25% Ours-10% Ours-1%
Detection 99.24 99.27 99.49

Segmentation 98.01 98.07 98.07

Table 1. Ablation study results on the coreset subsampling per-
centage for our proposed ReConPatch model with a WideResNet-
50 backbone on the MVTec AD dataset.

Dimension 1024 512 256 128 64
PatchCore 99.1 98.66 98.45 98.54 97.75
ReConPatch 99.49 99.56 99.53 99.52 99.14

Table 2. Ablation study results for the f layer dimension on the
MVTec AD dataset using PatchCore [29] and proposed ReCon-
Patch model with a WideResNet-50 backbone.

4. Experiments and analysis

4.1. Experimental setup

Dataset In this study, we used the MVTec AD [4] dataset
and BTAD [25] dataset for our experiments. MVTec AD
dataset is widely used as an industrial anomaly detection
benchmark. It consists of 15 categories, with 3,629 train-
ing images and 1,725 test images. BTAD dataset is com-
posed of RGB images representing three distinct industrial
products. The dataset consists of 1,799 images for training
and 741 images for testing. The training dataset includes
only normal images, whereas the test dataset includes both
normal and anomalous images. Each category in the test
dataset has labels for normal and abnormal images, and
anomaly ground truth mask labels for segmentation eval-
uation.

Metrics To evaluate the performance of our proposed
model, anomaly detection and segmentation performance is
compared using the area under the receiver operation char-
acteristic (AUROC) curve metric, following [7, 9, 19, 29].
For detection performance evaluation, we measure the
image-level AUROC by using the model output anomaly
score and the normal/abnormal labels of the test dataset.
For segmentation, we measures the pixel-level AUROC us-
ing the anomaly scores obtained from the model output for
all pixels and the anomaly ground truth mask labels.

Implementation details. For the single model, Ima-
geNet pre-trained WideResNet-50 [42] is employed as the
feature extractor. The f layer output size is set to 512, and
the coreset subsampling percentage is set to 1%. Our pro-
posed ReConPatch is trained for 120 epochs per each cate-
gory. Without specific instructions, hierarchy levels2 2 and
3 are used with a patch size of s = 3 to generate the patch-
level features. Particularly for the segmentation evaluation
in Table 5, hierarchy levels 1, 2, and 3 were used with a

2Hierarchy levels denote residual blocks in WideResNet architecture,
which is same in [29].

Metric Detection Segmentation
WRN-50, s = 3, 512 dim, layer (2+3), Imagesize 224
AUROC 99.56 98.07
WRN-50, s = 5, 512 dim, layer (2+3), Imagesize 224
AUROC 98.84 97.82
WRN-50, s = 5, 512 dim, layer (1+2+3), Imagesize 224
AUROC 98.7 98.18

Table 3. Ablation study results with adding more hierarchy levels
and larger patch size for our proposed ReConPatch model on the
MVTec AD dataset.

Method Class!
# Aug. Method Object Texture Average

w/o Aug. 99.17 98.96 99.10
PatchCore w/ Aug. 94.86 96.09 95.48

Diff. 9.94 2.87 3.62
w/o Aug. 99.44 99.81 99.56

ReConPatch w/ Aug. 97.65 99.47 98.56
Diff. 1.79 0.34 1.00

Table 4. Ablation study results for data augmentation on MVTec
AD dataset using PatchCore [29] and proposed ReConPatch.

patch size of s = 5, which is identified as the best perfor-
mance through the ablation study in section 4.2. In addition,
for the comparison with PNI [2] using WideResNet-101, hi-
erarchy levels 2 and 3 were used with a patch size of s = 5.

For the ensemble model, ImageNet pre-trained
WideResNet-101 [42], ResNext-101 [39], and DenseNet-
201 [15] are used as feature extractors for comparison with
the PatchCore [29]. The f layer output size was set to 384,
and we applied a coreset subsampling with percentage of
1% to all models in the ensemble. We trained ReConPatch
for 60 epochs for each category. Hierarchy levels 2 and
3 were used for feature extraction in each model, and a
patch size of s = 3 was applied to generate the patch-level
features. Furthermore, to compare with PNI [2] using
480⇥480 image size, different parameters were applied.
The f layer output size was set to 512, and a patch size of
s = 5 was used. In this case, we trained each category for
120 epochs. ReConPatch was trained using AdamP [14]
optimizer with a cosine annealing [22] scheduler. The
learning rate was set to 1e-5 for a single model and 1e-6 for
the ensemble model, with a weight decay of 1e-2. In the
models using a 480⇥480 image size, the learning rate was
specifically set to 1e-6. We provide the hyperparameter
setup in Appendix B.

4.2. Ablation study

In this study, we aim to investigate the optimal con-
figuration of ReConPatch through ablation studies. The
first ablation was performed to determine the optimal core-
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Backbone WRN-101 WRN-50
Image size 480⇥480 480⇥480 256⇥256 224⇥224 224⇥224 224⇥224 224⇥224 224⇥224

# Class\Method! PNI [2]
(w/ refine) Ours CFLOW-AD [13] SPADE [7] PaDiM [9] PatchCore [29] CFA [19] Ours

Bottle (100, 98.87) (100, 98.78) (100, 98.76) (-, 98.4) (-, 98.3) (100, 98.6) (100, -) (100, 98.2)
Cable (99.76, 99.1) (99.66, 98.86) (97.59, 97.64) (-, 97.2) (-, 96.7) (99.5, 98.4) (99.8, -) (99.83, 99.3)
Capsule (99.72, 99.34) (99.76, 99.24) (97.68, 98.98) (-, 99) (-, 98.5) (98.1, 98.8) (97.3, -) (98.8, 97.61)
Hazelnut (100, 99.37) (100, 99.07) (99.98, 98.82) (-, 99.1) (-, 98.2) (100, 98.7) (100, -) (100, 98.94)
Metal nut (100, 99.29) (100, 99.29) (99.26, 98.56) (-, 98.1) (-, 97.2) (100, 98.4) (100, -) (100, 95.76)
Pill (96.89, 99.03) (96.21, 98.66) (96.82, 98.95) (-, 96.5) (-, 95.7) (96.6, 97.4) (97.9, -) (97.49, 95.35)
Screw (99.51, 99.6) (99.84, 99.59) (91.89, 98.1) (-, 98.9) (-, 98.5) (98.1, 99.4) (97.3, -) (98.52, 98.79)
Toothbrush (99.72, 99.09) (100, 99.16) (99.65, 98.56) (-, 97.9) (-, 98.8) (100, 98.7) (100, -) (100, 98.88)
Transistor (100, 98.04) (100, 96.18) (95.21, 93.28) (-, 94.1) (-, 97.5) (100, 96.3) (100, -) (100, 99.65)
Zipper (99.87, 99.43) (99.89, 99.25) (98.48, 98.41) (-, 96.5) (-, 98.5) (99.4, 98.8) (99.6, -) (99.76, 98.56)

Object classes (99.55, 99.12) (99.54, 98.81) (97.66, 98.01) (-, 97.57) (-, 97.79) (99.17, 98.35) (99.19, -) (99.44, 98.1)
Carpet (100, 99.4) (100, 99.29) (98.73, 99.23) (-, 97.5) (-, 99.1) (98.7, 99) (97.3, -) (99.6, 98.75)
Grid (98.41, 99.2) (99.5, 98.73) (99.6, 96.89) (-, 93.7) (-, 97.3) (98.2, 98.7) (99.2, -) (100, 99.04)
Leather (100, 99.56) (100, 99.48) (100, 99.61) (-, 97.6) (-, 99.2) (100, 99.3) (100, -) (100, 96.02)
Tile (100, 98.4) (100, 97.15) (99.88, 97.71) (-, 87.4) (-, 94.1) (98.7, 95.6) (99.4, -) (99.78, 98.92)
Wood (99.56, 97.04) (99.47, 95.16) (99.12, 94.49) (-, 88.5) (-, 94.9) (99.2, 95) (99.7, -) (99.65, 98.9)

Texture classes (99.59, 98.72) (99.79, 97.96) (99.47, 97.59) (-, 92.94) (-, 96.92) (98.96, 97.52) (99.12, -) (99.81, 98.33)
Average (99.56, 98.98) (99.62, 98.53) (98.26, 97.87) (85.5, 96) (95.3, 97.5) (99.1, 98.1) (99.2, 98.2) (99.56, 98.18)

Table 5. Anomaly detection and segmentation performance on the MVTec AD dataset. (image-level AUROC, pixel-level AUROC)

set subsampling percentage. To this end, we compared
anomaly detection and segmentation AUROC metrics us-
ing three subsampling percentages: 25%, 10%, and 1%,
which were the same percentages used in PatchCore [29].
The pre-trained WideResNet-50 [42] backbone was used as
the baseline for this experiment and the ourput dimension
of the f layer is set to 1024. The results are presented in
Table 1. We observe that the subsampling percentage of 1%
provides the best performance. In addition, experiments to
analyze the performance according to the feature dimension
were performed by changing various output dimension of
the f layer (1024, 512, 256, 128, and 64). The experiments
were conducted with coreset subsampling set to 1%. The
results are presented in Table 2, indicating that the highest
performance was achieved with the dimension of 512. We
note that even with 64 dimension, ReConPatch outperforms
PatchCore with 1024, which supports the dimension reduc-
tion capability of our method.

Table 3 shows the results of an ablation study using
more hierarchy levels and larger patch size on the MVTec
AD [4] dataset with our proposed ReConPatch model. This
study aims to improve segmentation performance by uti-
lizing more diverse and coarse information on the patch
features. The results indicates that when the patch size is
increased to 5 and hierarchy levels 1, 2, and 3 are used,
the segmentation performance increased up to 98.18% with
small decrease in detection performance.

Real-world scenarios can present a variety of environ-
mental conditions that can affect the quality of images.
These conditions may include geometric changes, lighting
changes, defocusing, and other factors that can impact the
accuracy and reliability of image data. Table 4 shows that

Ensemble
Backbone WRN-101 & RNext-101 & DenseN-201

Image size 480⇥480 480⇥480 320⇥320 320⇥320

Method PNI [2]
(w/ refine) Ours

PatchCore
[29] Ours

Detection 99.63 99.72 99.6 99.67

Segmentation 99.06 98.67 98.2 98.36

Table 6. Comparison of ensemble model anomaly detection
(image-level AUROC) and segmentation (pixel-level AUROC)
performance on the MVTec AD dataset.

ReConPatch is robust to these environmental changes by
learning patch-level feature representations. To simulate
real-world scenarios, we randomly applied rotation, trans-
lation, color jitter (brightness and contrast), and Gaussian
blur. While PatchCore’s image-level AUROC decreased to
3.62 under these conditions, ReConPatch’s only slightly de-
creased to 1.0.

4.3. Anomaly detection on MVTec AD

In this section, we evaluate the anomaly detection perfor-
mance of our proposed method on the MVTec AD dataset
by comparing it with previous works that used the same
pre-trained model and image size [7, 9, 19, 29]. We also
include the performance of concurrent methods PNI [2]
and CFLOW-AD [13] in Tables 5. In case of PNI [2], a
WideResNet-101 model with an image size of 480⇥480
was used. To improve its performance, a refinement net-
work was included, which was trained in a supervised man-
ner using artificially created defect dataset. For CFLOW-
AD [13], a WideResNet-50 model with an image size of

2057



Class VT-ADL [25] SPADE [7] PaDiM [9] FastFlow [41] PyramidFlow [20] CFA [19] RD4AD [10] RD++ [36] PNI [2] PatchCore [29] Ours

1 (97.6, 99) (91.4, 97.3) (99.8, 97) (99.4, 97.1) (100, 97.4) (98.1, 95.9) (96.3, 96.6) (96.8, 96.2) (-, 97.4) (98, 96.9) (99.7, 96.8)
2 (71, 94) (71.4, 94.4) (82, 96) (82.4, 93.6) (88.2, 97.6) (85.5, 96) (86.6, 96.7) (90.1, 96.4) (-, 97) (81.6, 95.8) (87.7, 96.6)
3 (82.6, 77) (99.9, 99.1) (99.4, 98.8) (91.1, 98.3) (99.3, 98.1) (99, 98.6) (100, 99.7) (100, 99.7) (-, 99) (99.8, 99.1) (100, 99)

Avg. (83.7, 90) (87.6, 96.9) (93.7, 97.3) (91, 96.3) (95.8, 97.7) (94.2, 96.8) (94.3, 97.7) (95.6, 97.4) (-, 97.8) (93.1, 97.3) (95.8, 97.5)

Table 7. Anomaly detection and segmentation performance on the BTAD [25] dataset. (image-level AUROC, pixel-level AUROC)

256⇥256 is used. The evaluation results used in CFLOW-
AD were the best performances obtained for each category
when using the image size of 256⇥256.

For the single-model performance comparison, we per-
formed the same pre-processing as described in previous
work [7, 9, 19, 29]. Specifically, we resized each image to
256⇥256 and then center-cropped to 224⇥224. For the
ensemble model, the same pre-processing was used as in
[29], each image was resized to 366⇥366 and then center-
cropped to 320⇥320. In addition, to compare with PNI [2],
we resized each image to 512⇥512 and then center-cropped
to 480⇥480. No data augmentation was applied to any cat-
egory.

The performance of the ReConPatch in Tables 5 was
obtained using 1% coreset subsampling and f layer di-
mensions of 512, which is determined according to Ta-
ble 2. Table 5 compares the anomaly detection and seg-
mentation performance of a single model for each category
of the MVTec AD [4] dataset, evaluated with image-level
AUROC. Our proposed ReConPatch achieved an image-
level AUROC of 99.56%, which outperformed CFA [19] (at
99.3%). Furthermore, ReConPatch provided higher perfor-
mance than the state-of-the-art PNI [2] with WideResNet-
101 [42], which achieved the performance of 99.62%.

Our proposed approach focused on improving the
anomaly detection performance. As a result, the segmen-
tation performance may not be as high as its detection per-
formance. However, we achieved a higher performance of
98.18% compared to PatchCore [29], indicating that the ad-
dition of ReConPatch feature in the f layer contributed to
the improved segmentation performance.

Table 6 presents the performance of our ensemble model,
which was evaluated using the modified z-score in Eq. 11
for each output from WideResNet-101 [42], ResNext-101
[39], and DenseNet-201 [15] models. Our model achieved
state-of-the-art performance in anomaly detection task with
AUROC of 99.72% on the MVTec AD dataset using an im-
age size of 480⇥480. We note that our model still outper-
forms the PNI [2] using a smaller image size of 320⇥320,
achieving an AUROC of 99.67% compared to AUROC of
99.63% Furthermore, we outperformed PatchCore [29] in
terms of anomaly segmentation performance, with an im-
proved performance of 98.36% AUROC.

Figure 3. An illustrative comparison of features mapped by (a)
PatchCore and (b) (c) (d) ReConPatch using the MVTec AD
dataset. The scatter plot describes the feature space of each
method, colored according to the pixel position.

Figure 4. The histogram of the anomaly score of the normal and
abnormal data for the bottle class. ReConPatch shows high dis-
criminability, as shown in d0 measure.

4.4. Anomaly detection on BTAD

To verify the capability of anomaly detection and seg-
mentation in other dataset, we compare the performance
of our model with contemporary methods using BTAD
dataset [25]. For BTAD dataset, we use the pre-trained
WideResNet-101 model as a feature extractor and image
size of 480⇥480 for ReConPatch, which achieve our best
performance. Table 7 shows the image-level AUROC and
the pixel-level AUROC on BTAD dataset. Our model
achieves a state-of-the-art performance in anomaly detec-
tion, with an AUROC of 95.8%. Furthermore, in anomaly
segmentation, our model outperforms PatchCore [29] with
a higher AUROC of 97.5%.
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Figure 5. Examples of images with anomalies (top) and measured anomaly score maps (bottom) on MVTec AD dataset. The orange line
depicts the ground truth of the anomalies and the green line depicts thresholds optimizing F1 scores of anomaly segmentation. The green
star indicates the maximal location of the anomaly score in the heatmap.

4.5. Qualitative analysis

To assess the impact of ReConPatch learning on the fea-
ture space, we contrast the feature space of PatchCore and
ReConPatch using the MVTec AD dataset. Our visualiza-
tion, depicted in Figure 3, employs UMAP [24] for effective
2D representation of high-dimensional patch features, with
color coding indicating spatial positions. The visualiza-
tion attests that ReConPatch’s training encourages proxim-
ity of features with similar positions. Building on findings
in prior research [2, 13], which demonstrated the value of
positional information, we hypothesize that ReConPatch’s
performance enhancement arises from implicit positional
information learning. We also visualize the feature map
along the training, which indicates the features are trained
to map similar position to be gather.

ReConPatch’s reconfigured feature space yields more
distinct histogram distributions of image-level anomaly
scores compared to PatchCore. In Figure 4, we observe
this effect on the MVTec AD dataset’s bottle class. Re-
ConPatch compresses the score distribution for normal data
while pushing the abnormal data’s distribution further from
the normal one, a contrast to PatchCore [29]. We gauge
the distribution separability using the d0 discriminability in-
dex [34] between normal and abnormal data:

d
0 =

|µabnormal � µnormal|p
(�2

abnormal
+ �

2
normal

)/2
. (12)

Here, the patch features mirror those of locally aware patch
features in PatchCore. ReConPatch, as detailed in Section
3.2, leverages target-oriented features through patch-level
representation training, enhancing discrimination between
normal and abnormal attributes. Performance-wise (Table
5), ReConPatch achieves an image-level AUROC of 99.56

We present anomaly score maps overlaid on input im-
ages (Figure 5) with ground truth annotations. Higher val-
ues in the anomaly map indicate probable anomalies. A

threshold optimized via F1 scores governs the green line.
Our analysis focuses on 4 superior classes (cable, transistor,
tile, wood) and 3 inferior classes (metal nut, pill, leather).
Despite intricate ground truth cases, ReConPatch consis-
tently identifies anomaly locations. While inferior class
anomaly maps may exhibit noise, the green star pinpointing
maximal anomaly score aligns with ground truth anomalies,
affirming our method’s robust performance in anomaly de-
tection.

5. Conclusion

In this paper, we introduce the ReConPatch to learn a
target-oriented representation space, which can effectively
distinguish the anomalies from the normal dataset. ReCon-
Patch effectively trains the representation by applying the
metric learning with softly guided by the similarity over the
nominal features. Applying the contrastive learning with
two similarity based pseudo soft labels, ReConPatch shows
the state-of-the-art performance on the MVTec anomaly de-
tection dataset. We also provide the anomaly detection
performance on the additional BTAD dataset, where Re-
ConPatch also achieves the best performance. We believe
that ReConPatch would contribute to the improvements in
anomaly detection since it shows high performance without
extensive data augmentation and enables dimension reduc-
tion without significant loss of performance. Furthermore,
we expect to improve the performance in the pixel-level ab-
normal detection by considering the correlation among the
neighboring features.
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