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Abstract

Well-trained deep neural networks (DNNs) treat all test
samples equally during prediction. Adaptive DNN inference
with early exiting leverages the observation that some test
examples can be easier to predict than others. This paper
presents EENet, a novel early-exiting scheduling framework
for multi-exit DNN models. Instead of having every sam-
ple go through all DNN layers during prediction, EENet
learns an early exit scheduler, which can intelligently ter-
minate the inference earlier for certain predictions, which
the model has high confidence of early exit. As opposed to
previous early-exiting solutions with heuristics-based meth-
ods, our EENet framework optimizes an early-exiting policy
to maximize model accuracy while satisfying the given per-
sample average inference budget. Extensive experiments
are conducted on four computer vision datasets (CIFAR-10,
CIFAR-100, ImageNet, Cityscapes) and two NLP datasets
(SST-2, AgNews). The results demonstrate that the adap-
tive inference by EENet can outperform the representative
existing early exit techniques. We also perform a detailed
visualization analysis of the comparison results to interpret
the benefits of EENet.

1. Introduction
Deep neural networks (DNNs) have shown unprece-

dented success in various fields such as computer vision
and natural language processing, thanks to the advances in
computation technologies (GPUs, TPUs) and the increas-
ing amount of available data to train very large and deep
neural networks. However, these models usually have very
high computational costs, which leads to many practical
challenges in deployment and inference on edge comput-
ing applications, especially for edge clients with limited re-
sources such as smartphones, IoT devices, and embedded
devices [10, 17, 24]. Significant research has been dedi-
cated to improving the computational efficiency of DNN
models through training phase optimizations, such as model

quantization and deep compression [8], neural network
pruning [7, 9], knowledge distillation [12], and multi-exit
DNNs [13,25]. Among these, multi-exit DNNs stand out as
a promising technique since they enable adaptive inference
with early exiting to reduce inference latency based on the
available budget of the deployed device [17].

Early exiting employs the idea of injecting early exit
classifiers into certain intermediate layers of a deep learn-
ing model and with that multi-exit DNN, gaining the ca-
pability to adaptively stop inference at one of these early
exits in runtime [17]. At the model training phase, we
train the DNN model with the additional multiple exit
branches through joint loss optimization. During adaptive
inference, the multi-exit DNN model can elastically ad-
just how much time to spend on each sample based on an
early exit scheduling policy to maximize the overall perfor-
mance metric under the given total latency budget. Even
though there is a significant line of research on improv-
ing the performance of multi-exit DNNs through designing
specialized architectures [6, 13, 26, 28] and training algo-
rithms [18, 22], work on optimizing early exit policies is
very limited. In the literature, most methods still consider
hand-tuned confidence measures for sample scoring such
as maximum score [13], entropy [25], voting [30] etc., and
heuristics-based threshold computation approaches.

We argue that through optimizing an early exit schedul-
ing policy, the potential of early exiting can be maximized
to efficiently utilize the provided inference resources on het-
erogeneous edge devices. To this end, we present EENet
(Early-Exiting Network), an early exit scheduling frame-
work with two novel functionalities. First, EENet intro-
duces the concept of exit scores by jointly evaluating and
combining two complimentary statistics: (i) multiple confi-
dence measures and (ii) class-wise prediction scores. This
enables EENet to calibrate output scores for handling sta-
tistical differences among prediction scores for different
classes. Second, EENet optimizes the distribution of sam-
ples to different exits and computes the exit thresholds given
the inference budget. We note that the optimization of
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EENet is performed on the validation dataset in a decou-
pled manner with the multi-exit DNN training phase. This
enables EENet to quickly adapt to varying budget scenar-
ios by only training the schedulers and eliminates the re-
quirement of re-training the full DNN model each time the
inference budget changes as opposed to other studies that
integrate two optimization phases [1, 3]. Lastly, EENet is
model-agnostic and applicable to all pre-trained multi-exit
models. In addition, flexible deployment is applicable for
edge clients with heterogeneous computational resources by
running only a partial model split until a certain early exit
that matches the resource constraint.

We conduct extensive experiments with multiple DNN
architectures (ResNet [11], DenseNet [14], MSDNet [13],
HRNet [27], BERT [5]) on three image recognition bench-
marks (CIFAR10, CIFAR100, ImageNet), one image seg-
mentation benchmark (Cityscapes) and two sentiment anal-
ysis benchmarks (SST-2, AgNews). We demonstrate the
improvements of EENet compared to existing representa-
tive approaches, such as BranchyNet [25], MSDNet [13],
PABEE [30] and MAML-stop [1]. Lastly, we provide an
ablation study of EENet design components and visual anal-
ysis to interpret the behavior of our approach.

2. Related Work
BranchyNet [25] is the first to explore the idea of early

exits for adaptive inference with DNNs. It considers the en-
tropy of prediction scores as the measure of confidence and
sets the early exit thresholds heuristically. Certain studies
consider maximum prediction score instead of entropy as
the exit confidence measure [13] on computer vision tasks.
PABEE [30] proposes stopping the inference when the num-
ber of predictions on the same output reaches a certain pa-
tience threshold. However, this method depends on having
a high number of early exits to produce meaningful scores
so that the samples can be separated with a higher reso-
lution for the exit decision. All these methods introduce
heuristics-based rules, which do not optimize the early exit
policy in terms of scoring and threshold computation.

Some recent efforts propose task-dependent confidence
measures [19, 20] or modifying the training objective to in-
clude exit policy learning during the training of the multi-
exit DNN [1, 3]. EPNet [3] proposes using Markov deci-
sion processes however, they add an early exit classifier at
each exit to increase the number of states, which is com-
putationally unfeasible since each early exit introduces an
additional computational cost during both training and in-
ference. MAML-stop [1] proposes a variational Bayesian
approach to learning when to stop predicting during train-
ing. The major drawback of these approaches is the require-
ment of training the full model for every different budget
value since the optimization of early exiting behavior is in-
tegrated into the DNN training phase.

3. Methodology
Overview. Figure 1 provides an architectural overview of
our system. Given a pre-trained DNN model, we first inject
early exits and finetune the multi-exit model on the training
dataset. During this training phase, we jointly optimize the
losses from each exit. During multi-exit model training to
enhance the performance of earlier exits, we perform self-
distillation between early exits and the final exit by mini-
mizing the KL divergence between outputs. Next, we ini-
tiate the early exit scheduling policy optimization phase on
the validation dataset. The goal of this step is to optimize
the exit scoring functions and exit thresholds such that the
provided inference budget is satisfied and the performance
metric is maximized. We first obtain the validation predic-
tions of the trained multi-exit model and construct the train-
ing dataset for scheduling optimization. We iteratively op-
timize the exit scoring functions (gk) and exit assignment
functions (hk). Finally, we compute the early exit trigger-
ing thresholds, one for each exit, and complete the early exit
scheduling policy optimization phase. The trained multi-
exit model, with the exit scoring functions and exit thresh-
olds, is then utilized during the test to determine which exit
each sample should take. In the rest of this section, we pro-
vide the multi-exit model training in Section 3.1. Then,
we describe the adaptive inference with early exiting and
scheduling optimization methodology in Section 3.2.

3.1. Multi-exit Model Training with Self-distillation

To enable a given pre-trained DNN classifier to per-
form early exiting, we first inject early exit classifiers into
the model at certain intermediate layers. If the config-
uration of per-client computational resource constraints,
which specifies the computational budget Bm of a client
m ∈ {1, ...,M}, is available, the number of exits K can
be determined heuristically with clustering analysis of the
computational requirements of potential users {Bm|1 ≤
m ≤ M}. In this work, we set K based on the num-
ber of resource categories of heterogeneous edge clients.
Then, we set the exit locations lk for each exit k based
on the lowest resource capacity from the group of edge
clients in the kth resource category by finding the largest
submodel fk while not exceeding the constraints satisfying
that cost(fk) ≤ min{Bm|m ∈ Sk}, where Sk is the set
of clients at the kth resource category and cost is the cost
function (#PARAMS, #FLOPs, latency etc.).

Let f denote a multi-exit classification model capable of
outputting multiple predictions after the injection of early
exit subnetworks fe

k at each exit k. After preparing the
multi-exit model with K exits, we start finetuning with joint
loss optimization across all K exit classifiers. Let us de-
note the set of output probability scores of f for one sam-
ple as {ŷk}Kk=1 and the label as y ∈ C, where K is the
number of exits and C = {1, 2, . . . C} is the set of classes.
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Figure 1. Architectural overview of EENet. The training phase contains the steps necessary to obtain and train the multi-exit DNN
model. The scheduling optimization phase involves optimizing the early exit schedulers and computing exit thresholds given the inference
budget. Each scheduler at exit k encapsulates an exit scoring function gk, which outputs an exit score q̂k representing the confidence in the
correctness of the model prediction, and an exit assignment function hk, which is used to estimate the posterior distribution over the exit
assignment r̂.

Here, at each exit k, ŷk = fk(x) = [. . . ŷk,c . . . ] ∈ RC

is the vector of prediction scores for each class c, where
fk ≜ fe

k ◦ f c
k ◦ . . . f c

1 with f c
k the kth core subnetwork and

fe
k the kth early exit subnetwork of the multi-exit model f .

During the training/finetuning of these K-exit mod-
els, we minimize the weighted average of cross-entropy
losses from each exit combined with the KL divergence
among exit predictions for self-distillation: Ltrain =PK

k=1 γkℓk + αKL

PK−1
k=1 DKL(ŷK ||ŷk), where ℓk is the

cross-entropy loss at the kth exit, γk = k
K(K+1) is

the loss weight of the kth exit, and DKL(ŷK ||ŷk) =

sum(σ(ŷK/τ) log σ(ŷK/τ)
σ(ŷk/τ)

)τ2 is the forward KL diver-
gence from ŷk to ŷK . Here, αKL and τ are the hyperpa-
rameters that control the effect of self-distillation.

3.2. Adaptive Early-Exit Inference Optimization

After training the multi-exit classification model f with
K exits, we store the validation predictions of the multi-
exit model at each exit to use during scheduler optimization.
Then, we move forward to generating an early exit policy
under given budget constraints.

Problem Definition. We are given an average per-sample
inference budget B (in terms of latency, #FLOPs etc.), and

the vector of computation costs c ∈ RK of the model
f until each exit. On a dataset with N examples, D =
{({ŷn,k}Kk=1, yn)}Nn=1 containing model prediction scores
and labels on the validation set, the ultimate goal is to
find the exit scoring functions ({gk}Kk=1) and the thresholds
t ∈ RK that maximizes the accuracy such that:

t, {gk}Kk=1 = argmax
t∈RK ,{gk:RD→R}K

k=1

1

N

NX

n=1

1ŷn,kn=yn
(1)

while satisfying the given average per-sample inference
budget B such that 1

N

PN
n=1 ckn

≤ B.
Here, kn = min{k|gk(ŷn,k) ≥ tk} denotes the mini-

mum exit index where the computed exit score is greater or
equal to the threshold of that exit, i.e. the assigned exit for
the nth sample. Exit scoring functions gk take the corre-
sponding prediction score vector at exit-k as input and re-
turn the exit score for that sample, which represents the like-
lihood of a correct prediction, i.e. gk(ŷ) ≜ P (y = ŷ|ŷ, k).
The pair of exit scoring functions (g1, g2 . . . gK) and thresh-
olds (t1, t2, . . . tK) that maximize the validation accuracy
while satisfying the given average budget are then used for
early-exit enabled inference as will be explained at Sec-
tion 3.2.1 and illustrated in Figure 2.
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3.2.1 EENet Scheduler Architecture

We develop a multi-objective optimization approach with
three goals: (i) estimating whether a given prediction is cor-
rect or not, (ii) estimating the exit assignment for a given
sample, and (iii) satisfying the given average per sample in-
ference budget over the validation dataset. To this end, first,
we define a target variable qk = 1ŷk=y , representing the
correctness of a prediction, where ŷk ≜ argmaxc∈C ŷk,c is
the predicted class. Here, qk is equal to one if the prediction
at exit k is correct and zero otherwise. In addition, we de-
fine a confidence score vector ak containing three different
confidence measures: (i) maximum prediction score, which
measures the confidence based on the highest probability
score among predictions for each class (ii) entropy, which
measures the confidence based on the entropy of probabil-
ity scores (i.e., if entropy is high, there is high uncertainty
therefore, confidence is low) and (iii) voting, which mea-
sures the confidence based on the number of agreements
among different exit classifiers. These values can be formu-
lated as below:

a
(max)
k = max

c∈C
ŷk,c, (2)

a
(entropy)
k = 1 +

PC
c′=1 ŷk,c′ log ŷk,c′

logC
, (3)

a
(vote)
k =

1

k
max
c∈C

kX

k′=1

1ŷk′=c. (4)

At each exit k, using the prediction score vector ŷk and
the confidence score vector ak, EENet calibrates the pre-
dictions and computes the exit score q̂k as a linear combi-
nation to estimate the correctness of the prediction: q̂k =
gk(ŷk,ak, bk) = clamp(ψT [ŷk,ak, bk], 0, 1) ≜ P (y =
ŷ|ŷ, k), where bk = [q̂1, . . . q̂k−1] for k > 1 is the collec-
tion of previous exit scores.

Next, we consider the assigned exit k as latent variable
and define the exit assignment functions hk to estimate the
posterior distribution over exits r̂k ≜ p(k|ŷ) as follows:

r̃k = hk(ŷk,ak, bk), r̂k =
er̃k

PK
k′=1 e

r̃k′
, (5)

where hk is a two-layer MLP with ReLU activation and Dh

hidden dimensions. Outputs over all exits are normalized
using the softmax function.

3.2.2 Optimization

We provide the pseudocode for the optimization of the exit
scoring functions {gk}Kk=1 and thresholds t in Algorithm 1.
Here in line 4-6, given the dataset containing model pre-
dictions and target labels on the validation data, budget and

Figure 2. Adaptive inference with early exit scheduling. Early ex-
iting at exit k is performed if the computed exit score q̂k (estimated
probability of a correct prediction) is higher than the threshold tk.
Execution continues until the condition is met.

inference costs, we iteratively optimize the exit scoring and
assignment functions by minimizing the losses observed by
these functions.

For the optimization objective of exit scoring functions,
we define the loss Lg as follows:

Lg =
1

K

NX

n=1

KX

k=1

wn,kℓg(q̂n,k, qn,k), (6)

where ℓg(q̂k, qk) = qk log(q̂k)+ (1− qk) log(1− q̂k) is the

Algorithm 1 EENet Scheduling Optimization

1: Inputs: D = {({ŷn,k}Kk=1, yn)}Nn=1, B, c ∈ RK

2: Outputs: {gk}Kk=1, t ∈ RK

3: Initialize: h ← zeros(N), t ← ones(k)
4: for iter i = 1 to Niter do
5: Optimize {gk}Kk=1 by minimizing Lg on D.
6: Optimize {hk}Kk=1 by minimizing Lh on D.
7: Compute exit scores using {gk}Kk=1: Q̂ ≜ (q̂n,k) ∈

RN×K

8: S = (sn,k) ∈ NN×K ← argsort(Q̂, 1)
9: for exit index k = 1 to K − 1 do

10: c ← 0
11: Estimate exit distribution using {hk}Kk=1: pk ←

1
N

PN
n=1 r̂n,k

12: for sample index n = 1 to N do
13: if hsn,k

= 0 then
14: c ← c+ 1
15: hsn,k

← 1
16: if c = round(Npk) then
17: tk ← q̂sn,k,k

18: break
19: tK ← 0
20: return {gk}Kk=1, t
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binary CE loss. N is the number of validation data samples
and wn,k =

r̂n,kPN
n′=1

r̂n′,k
is the loss weight for the nth sam-

ple at the kth exit. This weighting scheme encourages exit
scoring functions to specialize in their respective subset of
data. For instance, for a given sample, if the exit assignment
score at a particular exit is high, the exit scoring function at
that exit will be optimized with that sample more compared
to other samples.

For the optimization objective of exit assignment func-
tions, we ideally would try to achieve a distribution that
maximizes the following objective:

argmax
p(k|·)

Ek∼p(k|·) logP (y = ŷ|ŷ, k) + βhH(p). (7)

In other words, the expected log-probability of a correct
prediction should be maximized in addition to an entropy
regularization term, H(p) ≜ −P

k p(k) log p(k), whose
effect is controlled with βh > 0. Taking the derivative with
respect to p yields the following target distribution:

p∗(k|y, ŷk) =
P (y = ŷ|ŷk, k)

1/βh

P
k′ P (y = ŷ|ŷk′ , k′)1/βh

=
q̂

1/βh

kP
k′ q̂

1/βh

k′

(8)

Our goal is to optimize a distribution p(k|ŷk) that does
not require observing the label and it will be as close as pos-
sible to this target distribution p∗(k|y, ŷk) while satisfying
the budget requirement. To this end, we define the exit as-
signment loss as a combination of KL-divergence between
p and p∗, and a budget loss such that Lh = DKL(p

∗||p) +
αcostℓcost, where

DKL(p
∗||p) = 1

NK

NX

n=1

KX

k=1

p∗(k|yn, ŷn,k) log
p∗(k|yn, ŷn,k)

p(k|ŷn,k)
,

(9)

ℓcost =
1

B
|B − 1

N

NX

n=1

KX

k=1

r̂n,kck|. (10)

p(k|ŷn,k) = r̂n,k is provided in Eq. 5 and p∗(k|yn, ŷn,k)
is provided in Eq. 8. Here, ℓcost is the budget cost and cal-
culates the scaled absolute distance between the inference
budget and used resources using the computed exit assign-
ment scores and inference costs until each exit.

After optimizing the exit scoring functions {gk}Kk=1 and
exit assignment functions {hk}Kk=1, we compute the exit
thresholds. We first sort the exit scores for all samples at
each exit (line 8). Then at each exit, we let Npk samples
with the highest scores exit, where pk = 1

N

PN
n=1 r̂n,k is

the mean of exit assignment scores of validation samples.
And, we set the threshold to the exit score of the last exited
sample with the lowest score (Algorithm 1, lines 9-19).

We provide the formulation of our framework for the
traditional classification tasks. For dense prediction tasks

such as image segmentation, we consider the mean of the
pixel-level scores during exit score and assignment compu-
tations. Regression tasks such as object detection/tracking
(early exiting for easier frames with fewer objects/less oc-
clusion, etc.) are also applicable with minor modifica-
tions: (i) instead of ŷk, we can use the hidden layer output
(f c

k ◦ . . . f c
1 )(x) as input to gk and hk, (ii) we can treat exit

scoring functions as boosters by defining residuals as their
targets, and (iii) for MSE loss, we can consider Gaussian
distribution to derive the likelihood for Eq. 7.

4. Experiments
We conduct experiments with convolutional and

transformer-based networks to evaluate EENet and re-
port the performance improvements obtained for budget-
constrained adaptive inference on six image/text bench-
marks (CIFAR-10, CIFAR-100, ImageNet, Cityscapes,
SST-2 and AgNews). We provide detailed expla-
nations of experiment setups, and further analysis in
the supplementary material. Our code is available at
https://github.com/git-disl/EENet.

4.1. Datasets and Preprocessing

In image classification experiments, we work on CIFAR-
10/100 [16] and ImageNET [4] datasets. CIFAR-10 and
CIFAR-100 contain 50000 train and 10000 test images with
32x32 resolution from 10 and 100 classes respectively. Ima-
geNET contains 1.2 million train and 150000 validation im-
ages (used for testing) with 224x224 resolution from 1000
classes. We hold out randomly selected 5000 images from
CIFAR-10/100 train set and 25000 images from the Ima-
geNET train set for validation. We follow the data aug-
mentation techniques applied in [11], zero padding, center
cropping and random horizontal flip with 0.5 probability.
For image segmentation, we use the Cityscapes [2] dataset,
which contains 5000 (train: 2975, val: 500, test: 1525)
images with size 1024x2048, finely labeled in pixel-level
for 19 classes. In text classification experiments, we con-
sider SST-2 [23] and AGNews [29] datasets. SST-2 contains
67349 train, 872 validation and 1821 samples with positive
or negative labels. AGNews contains 120000 train and 7600
samples from four classes. We hold randomly selected 5000
sentences for validation.

4.2. Validation of EENet with Comparison

We compare our method with various representative
early exiting methodologies such as BranchyNet [25],
PABEE [30], MSDNet [13] and MAML-stop [1] in terms of
the accuracy obtained under different latency budget con-
straints. We consider average latency per sample as the
budget definition throughout the experiments. For MSD-
Net [13], BranchyNet [25] and PABEE [30], we use maxi-
mum score, entropy-based and agreement-based scores as
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Dataset, Model and
Base Performance

Base Model
Latency

Average Latency
Budget per sample

Speed Gain
Metric (%)

BranchyNet MSDNet PABEE MAML-stop EENet
CIFAR-10
ResNet56 w/ 3 exits
93.90% - accuracy

4.70 ms
3.50 ms 1.34x 93.76 93.81 93.69 - 93.84 ±0.05
3.00 ms 1.56x 92.57 92.79 91.85 - 92.90 ±0.13
2.50 ms 1.88x 87.55 88.76 84.39 88.67 88.90 ±0.19

CIFAR-100
DenseNet121 w/ 4 exits
75.08% - accuracy

10.20 ms
7.50 ms 1.36x 73.96 74.01 73.68 - 74.08 ±0.13
6.75 ms 1.51x 71.65 71.99 68.10 - 72.12 ±0.20
6.00 ms 1.70x 68.13 68.70 61.13 69.00 69.57 ±0.22

ImageNet
MSDNet35 w/ 5 exits
74.60% - accuracy

195.14 ms
125.00 ms 1.56x 74.10 74.13 74.05 - 74.18 ±0.13
100.00 ms 1.95x 72.44 72.70 72.40 - 72.75 ±0.11
75.00 ms 2.60x 69.32 69.76 68.13 69.55 69.88 ±0.15

Cityscapes
HRNET-W48 w/ 3 exits
80.90% - mIoU

131.60 ms
100.00 ms 1.32x 79.22 78.75 72.20 - 80.03 ±0.21
50.00 ms 2.63x 75.54 75.50 70.09 - 76.90 ±0.17
15.00 ms 8.77x 68.12 68.35 63.95 65.76 70.30 ±0.35

Table 1. Image classification/segmentation experiment results in terms of accuracy for image classification on CIFAR-10, CIFAR-100,
ImageNet and mean IoU for image segmentation on Cityscapes dataset at different average latency budget values.

Dataset, Model and
Base Performance

Base Model
Latency

Average Latency
Budget per sample

Speed Gain
Metric (%)

BranchyNet MSDNet PABEE MAML-stop EENet
SST-2
BERT-base w/ 4 exits
92.36% - accuracy

189.93 ms
150.00 ms 1.27x 92.14 92.17 92.05 - 92.25 ±0.03
125.00 ms 1.52x 90.86 91.00 90.75 - 92.09 ±0.05
100.00 ms 1.89x 87.66 87.71 86.99 88.15 91.58 ±0.60

AgNews
BERT-base w/ 4 exits
93.98% - accuracy

189.93 ms
150.00 ms 1.27x 93.20 93.17 93.15 - 93.85 ±0.01
125.00 ms 1.52x 92.95 92.98 92.57 - 93.75 ±0.11
100.00 ms 1.89x 85.58 84.93 85.22 93.00 93.45 ±0.09

Table 2. Sentiment analysis experiment results in terms of accuracy obtained at different average latency budget values.

provided in Eq. 4. To compute the thresholds for these
methods, we follow the approach in [13] and assume that
the exit assignment of samples will follow a geometric dis-
tribution since BranchyNet and PABEE do not provide any
guidance on how to set the exit thresholds.

We provide Table 1 for the results on image classification
and Table 2 for sentiment analysis tasks. Since MAML-
stop requires training the full DNN model for each different
budget setting, we obtain the result for one budget value
in each experiment. Please note that we refer to the maxi-
mum prediction score-based early exiting approach in [13]
as MSDNet and the multi-exit CNN architecture with 35
layers as MSDNet35. As demonstrated in Table 1, our sys-
tem consistently performs better compared to other early
exit approaches for image tasks. In addition, we observe
that our approach achieves greater performance gains as the
budget tightens with improvements ranging from 0.23% to
1.95% compared to the closest competitor method. We ob-
serve that MAML-stop performs closest in most scenarios
but requires finetuning the full multi-exit model separately
for each budget setting, which is not practical in most ap-
plications. PABEE only considers the agreement among
different early exit classifiers and completely ignores the
scores, which causes it to perform worse in most settings.
Similar observations are also made for the sentiment analy-

sis task, showing that EENet offers consistent performance
improvement for all six benchmarks across different bud-
get settings thanks to optimizing exit scoring and distri-
bution as opposed to manual rule-based approaches. For
instance, our approach achieves 93.45% accuracy on Ag-
News at 100ms/sample while BranchyNet can only achieve
93.25% even at 150ms/sample.

4.3. Analysis of EENet Scheduler Behavior

Analysis of Exit Assignments. Figure 3 provides a com-
parison of our method with MSDNet on CIFAR-100, with
four exits of the respective early exit models. We randomly
display samples and the exit location that they were as-
signed by our system (right) and by MSDNet (left). Images
with green/red borders are predicted correctly/incorrectly at
the corresponding exit. Our approach obtains the perfor-
mance gain over MSDNet by allowing more correct predic-
tions to exit earlier at the second exit. In this figure, Group
A is correctly predicted by both at the same exit. Group
B samples are correctly predicted by both but EENet exits
earlier and gains throughput. Likewise, Group D samples
are incorrectly predicted by both but EENet exits earlier.
EENet exits later for group C samples to achieve the correct
prediction while the other method fails. Group E samples
are incorrectly predicted by both at the same exit.
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Figure 3. Visual comparison of MSDNet and EENet results on CIFAR-100 for the average latency budget of 6 ms. We illustrate randomly
selected twenty samples and the exit location that they were assigned. Images with blue/orange borders are predicted correctly/incorrectly
at the corresponding exit. We also report the number of correct predictions and exited samples at each exit.

Figure 4. Images with blue/orange borders are predicted correctly/incorrectly at the first exit of DenseNet121 on CIFAR-100 (left: MS-
DNet, right: EENet). Our approach provides a clearer separation of true and false predictions for all classes, compared to maximum
prediction score-based confidence, which is popularly used in the literature. Correct predictions for low-success classes have lower maxi-
mum prediction scores whereas their exit scores computed by EENet are higher as desired.

Analysis of Exit Scores. In Figure 4, we analyze exam-
ples to show why the exit scores produced by our approach
are more effective by comparing with the maximum pre-
diction scoring method for early exit used in MSDNet and
others in the literature. Randomly selected ten classes are
listed on the x-axis sorted by the accuracy achieved using
the full model on the corresponding class. From the left
figure, using maximum prediction scores to determine ex-

iting may lead to missing some good early exit opportu-
nities. For example, consider those classes that the DNN
model produces relatively low maximum prediction scores
(less than 0.7), such as lizard, man, butterfly and fox. Even
though the predictor can predict them correctly, the relative
confidence is not very high. In comparison, the exit scores
obtained by our system reflect the correctness of test predic-
tions more accurately. For example, those classes that have
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Model
Exit-1 Exit-2 Exit-3 Exit-4 Exit-5 Base Model

#PRMs Latency #PRMs Latency #PRMs Latency #PRMs Latency #PRMs Latency #PRMs Latency

ResNet56
(w/ EENet)

0.06M 2.31ms 0.28M 4.15ms 0.96M 4.93ms - - - - 0.86M 4.77ms
(<1K) (+0.01ms) (<1K) (+0.01ms) (<1K) (+0.01ms) - - - - - -

DenseNet121
(w/ EENet)

0.06M 2.49ms 0.25M 5.30ms 0.86M 9.53ms 1.17M 10.20ms - - 1.04M 10.03ms
(+5.25K) (+0.08ms) (+5.36K) (0.08ms) (+5.47K) (+0.08ms) (+5.57K) (+0.08ms) - - - -

MSDNet35
(w/ EENet)

8.76M 58.95 ms 20.15M 122.99 ms 31.73M 155. 49 ms 41.86M 177.69 ms 62.31M 194.31 ms 58.70M 188.49 ms
(+0.25M) (+0.72ms) (+0.25M) (+0.72ms) (+0.25M) (+0.72ms) (+0.25M) (+0.72ms) (+0.25M) (+0.72ms) - -

HRNet-W48
(w/ EENet)

1.59M 4.80 ms 17.14M 19.17 ms 65.96M 138.05 ms - - - - 63.60M 131.60 ms
(<1K) (+1.21ms) (<1K) (+1.21ms) (<1K) (+1.24ms) - - - - - -

BERT-base
(w/ EENet)

45.69M 51.04 ms 67.55M 91.35 ms 89.40M 148.13 ms 111.26M 188.90 ms - - 109.90M 183.45 ms
(<200) (<0.01ms) (<200) (<0.01ms) (<200) (<0.01ms) (<200) (<0.01ms) - - - -

Table 3. In each row, the top values are the model size (#PRMs) and average inference latency (ms) measured when running the multi-exit
model at inference time. The bottom values in parentheses are the additional cost of model size and latency measured when running the
EENet adaptive scheduler to predict the exit scores for each test example. The last column is the model size without early exits.

Figure 5. Scheduler weights (for randomly selected ten classes and
other inputs) of exit scoring functions at each exit at 6.5 ms/sample
budget setting for CIFAR-100.

lower maximum prediction scores on the true predictions,
such as lizard, man, butterfly and fox, will have high exit
scores in EENet as shown in the right figure highlighted in
the blue oval. To interpret what contributes most during exit
score computation, we also analyze the scheduler weights
at each exit for CIFAR-100 experiments in Figure 5. The
results show that the maximum score contributes the most
and higher weights for low-success classes also support the
observations.

4.4. Computational Cost Analysis

Table 3 reports the number of parameters (#PRMs) and
latency of the models used in the experiments until each exit
for four multi-exit DNNs. For each model, we also pro-
vide the additional computational cost of EENet in employ-
ing the budgeted adaptive early exit policy. The increase
of latency caused is negligible (< 0.5%) compared to the
cost of the forward pass of the original pre-trained DNN
model. The scheduler training cost is also very low thanks
to lightweight scheduler architectures. For instance, opti-
mizing the schedulers takes less than five minutes in CIFAR
experiments on an RTX3060 GPU.

Partial deployment on edge device hierarchies. For
the edge application scenarios with strict constraints (stor-
age/RAM limitations), the partial model split until a certain
exit can be deployed, with the partial model size meeting
the edge deployment constraints. With flexible deployment
on heterogeneous edge clients, those test samples with exit
scores below the learned exit threshold can be passed to the
next-level edge server in the hierarchical edge computing
infrastructure, which has a higher computational capacity
to continue inference.

5. Conclusion
We present EENet, an early exit scheduling optimiza-

tion method for adaptive DNN inference. This paper makes
two novel contributions. EENet optimizes both exit scoring
functions and exit thresholds such that the given inference
budget is satisfied while the performance metric is maxi-
mized. As opposed to previous manually defined heuristics-
based early exit techniques, including task-specific archi-
tectural optimization techniques, our approach is model-
agnostic and can easily be used in different deep learning
tasks with multi-exit neural networks, ranging from com-
puter vision to NLP applications. In addition, the effi-
cient structure of schedulers provides flexibility compared
to the methods that require full model finetuning for vary-
ing budget settings. Extensive experiments on six bench-
marks demonstrate that EENet offers significant perfor-
mance gains compared to existing methods, especially un-
der tighter budget regimes and large DNN models.
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