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Abstract

Causal and temporal reasoning about video dynamics is
a challenging problem. While neuro-symbolic models that
combine symbolic reasoning with neural-based perception
and prediction have shown promise, they exhibit limitations,
especially in answering counterfactual questions. This pa-
per introduces a method to enhance a neuro-symbolic model
for counterfactual reasoning, leveraging symbolic reason-
ing about causal relations among events. We define the no-
tion of a causal graph to represent such relations and use
Answer Set Programming (ASP), a declarative logic pro-
gramming method, to find how to coordinate perception and
simulation modules. We validate the effectiveness of our
approach on two benchmarks, CLEVRER and CRAFT. Our
enhancement achieves state-of-the-art performance on the
CLEVRER challenge, significantly outperforming existing
models. In the case of the CRAFT benchmark, we lever-
age a large pre-trained language model, such as GPT-3.5
and GPT-4, as a proxy for a dynamics simulator. Our find-
ings show that this method can further improve its perfor-
mance on counterfactual questions by providing alternative
prompts instructed by symbolic causal reasoning.

1. Introduction
The ability to recognize object movement and reason

about its dynamics is a fundamental aspect of human cog-
nition [29]. Deep neural networks have shown remarkable
progress in recognizing patterns in complex visual and lan-
guage inputs [11, 20, 24, 25], but answering questions in-
volving temporal and causal structures in video dynamics
remains a significant challenge in AI. This is particularly
true when dealing with hypothetical questions such as pre-
dictive and counterfactual ones [22, 30, 32]. Highlighting
this issue, Yi et al. [32] introduced a challenging benchmark
known as CLEVRER1. This comprises four types of ques-
tions about videos featuring the movement of various ob-
jects, each differing in shape, color, and material. They ob-

1http://clevrer.csail.mit.edu.

served that previous state-of-the-art end-to-end models for
visual QA, such as TbD-Net [19], MAC [12], and IEP [13],
failed to perform well on the CLEVRER benchmark. In
response, they proposed a neuro-symbolic hybrid AI model
called NS-DR that outperforms these models. The key strat-
egy involves integrating (i) neural components that recog-
nize objects and events and simulate dynamics of objects
with (ii) symbolic components that aggregate the outputs
of the neural components and apply symbolic logic to an-
swer the natural language questions. Further improvements
were made along the same architecture, enhancing the neu-
ral components for more accurate perception and predic-
tion. For instance, VRDP [9] incorporates a differentiable
physics engine that infers explicit physical properties and
uses this knowledge to yield better simulations. However,
these models still have room for improvement, particularly
concerning counterfactual questions.

On the other hand, a recent end-to-end neural model
called Aloe [8], which is based on the self-attention mech-
anism, has demonstrated significant performance improve-
ments when compared to the earlier neural models. This
finding was further bolstered by ODDN-Aloe [28], whose
performance has been found to be on par with VRDP. How-
ever, it’s important to note that these neural models still lack
the transparency and interpretability that is often required.

In this paper, we argue that previous neuro-symbolic
models have not fully utilized the strength of the neuro-
symbolic approach. Instead of using symbolic reasoning
only to aggregate information from neural components, we
propose incorporating symbolic reasoning at the front as
well to orchestrate between neural perception and neural
simulation. Specifically, for counterfactual question an-
swering, our method constructs a causal graph by observ-
ing the video and taking into account the objects that are
intervened upon in the counterfactual question. We then
compute the causal effects of this change and use the re-
sult to trigger simulation only when needed, starting from
the relevant frames. This contrasts with the previous neuro-
symbolic models which blindly apply simulation from the
beginning. For the computation of a causal graph, we use
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Answer Set Programming (ASP) [4, 15], a declarative logic
programming method. We claim that our approach en-
hances baselines as long as perception is more accurate than
simulation, which is usually the case for most baselines.
Additionally, our model outperforms the baseline neuro-
symbolic models even with the use of the same perception
and simulation modules from them.

We validate the effectiveness of our method by applying
it to two benchmarks, CLEVRER and CRAFT [2]. For the
CLEVRER task, we also enhance answering the other types
of questions by augmenting baseline models with additional
modules, thanks to the modularity of the neuro-symbolic ar-
chitecture. As a result, we achieve the state-of-the-art result
on CLEVRER, outperforming all the models above.

We have also discovered an intriguing use case for large
language models (LLMs). Our method assumes the avail-
ability of a simulator, but we couldn’t find a publicly avail-
able simulator for the CRAFT dataset. Instead of construct-
ing a new simulator, we use an LLM, such as GPT-3.5 and
GPT-4 [5, 21], as a proxy simulator. We provide GPT-x (x
∈ {3.5, 4}) with the natural language descriptions of the
scenes in the dataset and use it to answer counterfactual
questions. Surprisingly, the vanilla GPT-x reasoning ex-
hibits reasonable performance for the textual descriptions of
visual scenes. Moreover, by applying our method, we can
further enhance the performance by determining whether
a counterfactual question can be answered using factual
states, as demonstrated by the causal graph. Since GPT-x
handles factual questions more effectively than counterfac-
tual questions, our method significantly improves the accu-
racy of GPT-x answers. Essentially, our method can be con-
sidered a new way of prompting GPT-x for counterfactual
questions.

In summary, this paper first introduces a graphical model
that formalizes causal and temporal relations among events.
Second, we implement the model’s computation in the
declarative programming language ASP, which we use to
improve counterfactual event prediction. Third, we demon-
strate the effectiveness of our method by achieving state-of-
the-art performance on CLEVRER. Finally, we demonstrate
the visual reasoning capability of an LLM and show how it
can be further enhanced through our counterfactual reason-
ing approach.

The paper is organized as follows. Section 2 provides
a brief overview of the necessary background information.
In Section 3, we introduce a graphical model that describes
causal relationships among temporal events, and Section 4
presents its implementation in ASP. Sections 5 and 6 present
experimental results with CLEVRER and CRAFT.

The implementation of our method is publicly available
at https://github.com/azreasoners/crcg.

2. Preliminaries
2.1. Neuro-Symbolic Models and CLEVRER

NS-DR explicitly combines perception, language, and
physical dynamics through symbolic representation. It
consists of the following modules.

• The question parser translates the question and answer
options to a functional program, which is passed to the
program executor.

• The video frame parser (perception module) identifies
objects and their trajectories in the video. It returns ob-
ject trajectories and the intrinsic attributes of objects.

• The dynamics predictor (simulation module) learns the
dynamics of objects by training on object masks pro-
posed by the video frame parser.

• The program executor is a symbolic reasoner that ex-
ecutes the functional program. It consists of sev-
eral functional modules implemented in Python, which
query the output of the dynamics predictor (such
as getting the post-video or counterfactual collision
events), or perform logical operations (such as recur-
sively checking the ancestors of collision events).

A few enhancements were proposed building upon the
structure of NS-DR. To avoid dense annotations for visual
attributes and physical events, DCL [6] applies concept
learning through weak supervision using question-answer
pairs associated with videos. However, its accuracy is only
marginally better than that of NS-DR.

VRDP [9] has a similar architecture, but has a better
dynamics predictor. It integrates a differentiable physics
engine that infers explicit physical properties, such as
mass and velocity, from object-centric representations and
uses them to run simulations. Its overall performance on
CLEVRER is slightly worse than that of ODDN-Aloe ex-
cept for counterfactual questions.

In all the models above, symbolic reasoning is applied
at the end after aggregating all the information from other
components to derive the answer.

2.2. Answer Set Programming

Answer Set Programming (ASP) [4, 15] is a logic pro-
gramming paradigm that allows for declarative reasoning in
knowledge-intensive applications. It is based on the answer
set semantics of logic programs [10], which enables the ex-
pression of causal reasoning, default reasoning, aggregates,
and various other constraints. There are several efficient
solvers, such as CLINGO, DLV, and WASP.

ASP has primarily been applied in symbolic domains,
but there are some exceptions that apply ASP in conjunction
with visual perception, as demonstrated in [1,14,23,26,27].
We use CLINGO v5.3.0 as an ASP solver. For the language
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Figure 1. Overview of CRCG — the enhanced counterfactual reasoning using a causal graph. The Causal Graph Construction and the
Symbolic Executor modules are realized by ASP and perform symbolic computation.

of CLINGO, we refer the reader to the textbook [16] or the
CLINGO manual.2

3. Counterfactual Reasoning with Causal
Graphs

In videos depicting the objects moving and colliding
with each other, the state of an object o at a frame t in-
cludes the information about its location, speed, direction,
mass, etc. We aim to investigate the causal relationships be-
tween these states resulting from changes described in the
counterfactual question. We will explore how identifying
these causal relations can aid in counterfactual reasoning.

Consider a video V depicting a set O of objects. Let
Q = ⟨Oc, o1, o2⟩ represent a counterfactual question “if we
intervene in (that is, remove or replace) some objects Oc

(⊆ O), will there be a collision between objects o1 and o2?”
Let Or (⊆ Oc) denote the set of removed objects in Oc and
let Ou denote O \Or.

Let Mp denote a perception model that detects object
states and collisions in the video:

{[s1o, . . . , smaxv
o ] | o ∈ O}, C←Mp(V), (1)

where sto denotes the state of object o at frame t returned
by the perception model (known as the perception state);
maxv is the total number of frames in a video; and C is
a set of collision events of the form ⟨i, j, t⟩ found by the
perception model, representing that objects i and j collide
at frame t.

LetMs denote a simulation model that takes the states of
Ou at frame t as input and outputs their states at frame t+1,
and the collisions happened at frame t in the simulation:

{ŝt+1
o | o ∈ Ou}, Ĉt ←Ms({ŝto | o ∈ Ou})

where ŝto denotes the state of object o at frame t returned
by the simulation model (simulated state); Ĉt is a set of
detected collisions at frame t; and the initial states are from
perception, i.e., ŝ1o = s1o for o ∈ Ou.

When comparing known perception states sto to simu-
lated states ŝto, we typically find that the latter are less ac-
curate, and that simulation error accumulates over frames.

2https://github.com/potassco/guide/releases/
tag/v2.2.0

To answer a counterfactual question, we aim to use the per-
ception states for as long as possible, only switching to the
simulated states once the perception states have been “af-
fected” by the intervened objects.

3.1. A Causal Graph with Temporal Events

Our method, which we call CRCG (Counterfactual Rea-
soning using a Causal Graph), uses a pipeline shown in Fig-
ure 1. The pipeline begins with the Causal Graph Construc-
tion module that takes as input the intervened objects Oc

from the Question Parser, and the objects O and in-video
collisions C from the Visual Perception module. The mod-
ule constructs a graph ⟨V,E⟩ using the given inputs.

The Causal Graph Construction module first obtains
[t1, . . . , tk] from C as an ordered list of frames in the video
when collisions occur. Since only k frames introduce causal
relations, we model the causal relations in video V with a
causal graph ⟨V,E⟩ where

• V is a set of nodes sto for o ∈ O and t ∈ {t1, . . . , tk};

• E is a set of directed edges of two kinds: (i) for ev-
ery collision ⟨i, j, t⟩ ∈ C, there are two horizontal
edges between nodes sti and stj , and (ii) for every ob-
ject o ∈ O and every consecutive frames ti and ti+1

in [t1, . . . , tk], there is a vertical edge from node stio to
node s

ti+1
o .

Intuitively, each horizontal edge denotes a collision between
the two objects, while each vertical edge denotes the state
change over time of the same object.

Given a causal graph ⟨V,E⟩ constructed for video V , we
formalize causal relationships among nodes in V as follows.

Definition 1 (Ancestor) For any two different nodes sto
and st

′

o′ in the causal graph, if there is a path from sto to
st

′

o′ , we say sto is an ancestor of st
′

o′ .

The ancestor relation is used to determine whether the
state of one object affects the state of another object and
whether the intervention of some objects affects other ob-
jects in subsequent frames.
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Figure 2. The causal graph for Example 1. The removed object
blue is colored grey. Affected nodes are circled in red. The sim
node is denoted by “s”.

Definition 2 (Affected) We say a node sto ∈ V is affected
by the intervened objects Oc if (i) o ∈ Oc or (ii) there exists
a node st

′

o′ ∈ V that is an ancestor of sto and o′ ∈ Oc.

For any object o ∈ Ou and any frame t, if sto is affected
by Oc, the simulation for o must start by frame t at the latest.
We define the notion of a “simulation node” that indicates
such a node in the causal graph.

Definition 3 (Sim Node) For any node sto ∈ V, it is a sim-
ulation node (or sim node in short) if (i) o ∈ Ou, (ii) sto is
affected by Oc, and (iii) there is no node st

′

o ∈ V such that
st

′

o is affected by Oc and t′ < t.

Example 1 Figure 2 shows an example causal graph
for a video, from which Mp detects 5 objects O =
{orange, purple, cyan, green, blue} and 3 collisions C =
{⟨cyan, green, 30⟩, ⟨green, blue, 55⟩, ⟨purple, cyan, 100⟩}.
V consists of node sto for o ∈ O and t ∈ {30, 55, 100}.
E consists of horizontal and vertical edges, as illustrated.
Specifically, E includes horizontal edges between cyan
and green object states at frame 30, green and blue object
states at 55, and the purple and cyan object states at frame
100. The node s30blue is an ancestor of the nodes s55blue, s100blue,
s55green, s100green, and all are affected by the removed object
Oc = {blue}. Of these five nodes, only s55green satisfies
the conditions for being a simulation node. (1) It is not
removed, (2) it is affected by some object, and (3) it is the
first node stgreen to be affected.

3.2. Enhancing Simulation with Causal Graphs
If we know that node sto is a sim node, we can poten-

tially improve the accuracy of the simulation by replacing
the preceding simulated states ŝio with the perception states
sio for i ∈ {1, . . . , t − 1}. This is the idea behind the En-
hanced Simulation module in Figure 1. The Enhanced Sim-
ulation module, denoted byMes, takes as input the causal
graph ⟨V,E⟩ constructed in the Causal Graph Construction
module, a simulation modelMs, and the perception states
sto of all remaining objects o ∈ Ou in all video frames
t ∈ {1, . . . ,maxv}. It then outputs their simulated states
and collisions:

{[ŝ1o, . . . , ŝmaxs
o ] | o ∈ Ou}, Ĉ←

Mes(⟨V,E⟩,Ms, {[s1o, . . . , smaxv
o ] | o ∈ Ou})

where maxs is the maximum number of frames to simulate,
and Ĉ is the set of collisions detected in the enhanced simu-
lation, which will be used in the Symbolic Executor module
(shown in Figure 1) to find the answer to the counterfactual
question.

Algorithm 1 Enhanced SimulationMes

Input: A causal graph ⟨V,E⟩ (includes sim nodes), a
simulator Ms, and (perception) states [s1o, . . . , s

maxv
o ] for

o ∈ Ou

Output: States [ŝ1o, . . . , ŝ
maxs
o ] for o ∈ Ou, collisions Ĉ

1: Op ← Ou; ŝ1o ← s1o for o ∈ Ou

2: for each t ∈ {1, . . . ,maxs} do
3: {ŝt+1

o | o ∈ Ou}, Ĉt ←Ms({ŝto | o ∈ Ou})
4: for each o ∈ Op do
5: if t = maxv or sto is a sim node or ⟨o, o′, t⟩ ∈

Ĉt for some o′ ∈ Ou \Op then
6: Op ← Op \ {o}
7: else
8: ŝt+1

o ← st+1
o

9: end if
10: end for
11: end for
12: return {[ŝ1o, . . . , ŝmaxs

o ] | o ∈ Ou}, Ĉ =
maxs⋃
t=1

Ĉt

Algorithm 1 describes the detailed procedure inMes. In
this algorithm, a set of objects Op is maintained, where the
simulated states of these objects can be replaced with their
perception states. To explain the algorithm’s process, let us
consider a single frame t. First, Algorithm 1 calculates the
simulated state ŝt+1

o for each object o ∈ Ou (line 3). Next,
it checks each object o ∈ Op to see if its perception state is
not usable from t+1 (line 5). If this is true, the object is re-
moved from Op (line 6). Otherwise, the algorithm replaces
the simulated state ŝt+1

o of the object with its perception
state st+1

o (line 8).
Finally, the symbolic executor of our model (as depicted

in Figure 1) determines the answer to a counterfactual ques-
tion Q = ⟨Oc, o1, o2⟩. It answers yes if there exists a frame
t such that ⟨o1, o2, t⟩ ∈ Ĉ, and no otherwise.
Example 1 Continued When the blue object in Figure 2
is removed,Mes computes the simulated states for the re-
maining four objects. Figure 3 visualizes the trajectories
of all objects in the original video (left) and the trajecto-
ries of the unremoved objects in the base (middle) or en-
hanced (right) simulation. Consider the enhanced simula-
tion (right). For o ∈ {purple, cyan}, the simulated states
are the same as the perception states, since there states are
not affected.

Now, suppose that we are asked whether cyan and
purple collide. The enhanced simulation detects this col-
lision at frame 100, just as in the original video. However,
the basic simulation fails due to the accumulated simula-

6701



Figure 3. Object trajectories from the location information. The
numbers are the frame numbers for the collisions (left) in the per-
ception states by Mp; (middle) in the simulated states by Ms

where simulation starts from the beginning after removing the blue
object; (right) in the enhanced simulation by Mes using the causal
graph. Solid and dashed lines represent trajectories extracted from
perception and simulated states, respectively. The left misses to
detect the collision between green and orange; the middle misses
to detect two collisions; the right found all three collisions.

tion error. Note that although this collision happens much
later than the collision of the removed object, it is still not
affected, according to our causal graph in Figure 2.

Finally, let’s consider a query about whether green and
orange collide. Thanks to the corrected trajectory of green
by our enhancement, the enhanced simulation detects this
collision at frame 90.

3.3. Approximation of CRCG When Frame-by-
Frame Simulator is Not Available

Algorithm 1 assumes that the simulation modelMs can
perform frame-by-frame simulation. It does not apply if
Ms is a blackbox that could only return the final prediction.
However, even ifMs is a black box that doesn’t give inter-
mediate frame results and can only make a final counter-
factual predictions yes or no, there is a way to enhance the
accuracy by using the information from the causal graph. In
the following, we design an approximation of CRCG with
a blackbox simulator, where we identify cases where it is
appropriate to reason about the perception result in place of
simulation by consulting the causal graph.

To achieve this, we introduce a new pipeline denoted
by CRCGapprox, which is shown in Figure 4. Unlike the
previous section, here we restrict a counterfactual question
Q = ⟨Or, o1, o2⟩ to be a special case “if we remove some
objects Or (⊆ O), will there be a collision between objects
o1 and o2?” as in CLEVRER.

Definition 4 (Determined) Consider a counterfactual
question Q = ⟨Or, o1, o2⟩ and a causal graph constructed
on objects O and collisions C.

• The result of Q is determined to be yes if there exists
some t such that ⟨o1, o2, t⟩ ∈ C and sto1 and sto2 are
not affected.

• The result of Q is determined to be no if (i) o1 or
o2 is in Or or (ii) sto1 and sto2 are not affected and
⟨o1, o2, t⟩ ̸∈ C for any t.

Intuitively, Definition 4 says that the result of a coun-
terfactual question is determined to be yes if the collision
happened in the video and the state of the two queried ob-
jects at the moment of the collision is not affected by the
removed objects. The result is determined to be no if either
(i) a queried object in the collision is removed, or (ii) the
collision did not happen in the video and all the states of the
queried objects are not affected by the removed objects.

Remark Note that, unlike Algorithm 1, it is inevitable that
the above-determined result cannot capture the influence
from other simulated objects and thus is not guaranteed to
be always correct even with a perfect perception modelMp.
Consider the example in Figure 5 where the counterfactual
question is Q = ⟨{blue}, purple, cyan⟩. While its result
is determined to be yes according to the above definition,
the collision between purple and cyan shouldn’t happen
because green would collide with cyan if blue were re-
moved, which changes the trajectory of cyan so that cyan
wouldn’t hit purple. Such examples are possible, yet don’t
occur often in practice.3

In the end, given a baseline counterfactual prediction
pQ ∈ {yes, no}, the Enhanced Prediction module in Fig-
ure 4 gives the final answer on a counterfactual question
Q = ⟨Oc, o1, o2⟩: if the result is determined to be yes or
no, the final answer is the same. Otherwise (i.e., if the result
is not determined), the final answer is the same as pQ. In
other words, the determined fact obtained from the percep-
tion states overrides the baseline’s prediction pQ. This can
be understood as an approximation of Algorithm 1 where
maxs = maxv and the checking of “⟨o, o′, t⟩ ∈ Ct for
some o′ ∈ Ou \Op” in line 5 is removed.

4. Realization of CRCG in ASP
This section models the causal graph using answer set

programming and uses an answer set solver to derive the
necessary information.

Given a video V , a perception model Mp returns the
in-video collisions C and the perception states of all ob-
jects O. These outputs and a counterfactual question
Q = ⟨Oc, o1, o2⟩ are represented in the ASP facts as fol-
lows. We represent each collision ⟨i, j, t⟩ in C with an
atom collision(i,j,t), and represent each object
o ∈ O, o ∈ Oc, and o ∈ Or with atoms object(o),
intervened(o), and removed(o) respectively. The
atoms ancestor(o,t,o’,t’), affected(o,t),
and sim(o,t) represent “sto is an ancestor of st

′

o′ ,” “sto is
affected (by the intervened objects),” and “sto is a sim node,”
respectively. We designed an ASP program Π to represent
the causal graph and to deduce a single answer set A such
that (i) ancestor(o,t,o’,t’) ∈ A iff sto is an ances-
tor of st

′

o′ , (ii) affected(o,t) ∈ A iff sto is affected, and

3See Table 2 for illustration.
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Figure 4. Overview of the approximation of CRCG when no access to a frame-by-frame simulator is available.

Figure 5. (left) The causal graph constructed for a video with 4
objects and 2 collisions. On its right are object trajectories from
the location information in the perception states by Mp (middle)
or in the simulated states by Mes (right).

(iii) sim(o,t) ∈ A iff sto is a sim node.
The definitions introduced in Section 3 can be repre-

sented in ASP in a straightforward way.

Ancestor The ancestor relation is introduced either by the
same object with different frames (i.e., vertical edges in the
causal graph)

ancestor(O,T1,O,T2) :- object(O),
collision(_,_,T1), collision(_,_,T2), T1<T2.

or by a collision (i.e., horizontal edges in the causal graph)

ancestor(O1,T,O2,T) :- collision(O1,O2,T).
collision(O1,O2,T) :- collision(O2,O1,T).

or by the transitive closure of the ancestor relation itself.

ancestor(O1,T1,O2,T2) :- ancestor(O1,T1,O3,T3),
ancestor(O3,T3,O2,T2), (O1,T1)!=(O2,T2).

In ASP, a variable starts with an uppercase letter, a constant
starts with a lowercase letter, and an underscore represents
an anonymous variable. The term (O1,T1)!=(O2,T2)
in the last rule guarantees that nodes sT1

O1 and sT2
O2 are not the

same, thus no edge will be introduced to form a self-loop.

Affected A node sto is affected if o is intervened

affected(O,T) :- intervened(O), collision(_,_,T).

or there is an intervened object o′ such that st
′

o′ is an ancestor
of sto for some t′.

affected(O,T) :- intervened(O’), ancestor(O’,T’,O,T).

Sim Node Node sto is a sim node if object o is not removed,
node sto is affected, and no node st

′

o in earlier frame t′ is
affected.

sim(O,T) :- not removed(O), affected(O,T),
T<=T’: affected(O,T’).

In the above rule, T<=T’: affected(O,T’) is a con-
ditional literal saying that “for all cases when node sT

′

O is
affected, T ′ must be greater or equal to T .”

Implementation of CRCG (Sec 3.2) using ASP Assum-
ing the availability of the frame-by-frame simulator Ms,
we implement Algorithm 1 in “Enhanced Simulation Model
(Mes)” (Figure 1) to find all collisions Ĉ using the percep-
tion states detected fromMp and the sim node information
sim(O,T) (encoding sto is a sim node) computed by ASP.
For counterfactual question Q = ⟨Oc, o1, o2⟩, the answer is
yes (i.e., the event in Q happens) if a collision between o1
and o2 belongs to Ĉ. Otherwise, the answer is no.

5. Experiments with CLEVRER
5.1. Applying CRCG to CLEVRER

We utilized our approach, CRCG, in conjunction with
both the perception model and the simulation model within
VRDP [9]. Specifically, we refer to the combination of
CRCG with the VRDP model as CRCGV RDP . Addition-
ally, we applied CRCGapprox to enhance the predictions
of NS-DR directly, and we denote this combination as
CRCGapprox

NSDR.

Table 1. Performance comparison with the state-of-the-art meth-
ods on counterfactual questions in CLEVRER test set.

Model Opt.Accuracy (%) Ques. Accuracy (%)

NS-DR [32] 74.1 42.2
DCL [6] 80.4 46.5
Aloe [8] 91.4 75.6
ODDN-Aloe [28] 93.0 80.1
VRDP [9] 94.8 84.3

CRCGapprox
NSDR 90.7 78.3

CRCGV RDP 96.1 87.8

Table 1 demonstrates the significant improvement in
option accuracy and question accuracy resulting from
our enhancement of NS-DR predictions. Furthermore,
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CRCGV RDP outperforms the VRDP baseline and estab-
lishes a new state-of-the-art level of performance for coun-
terfactual questions in the CLEVRER dataset. We measure
the average runtime of the ASP programs computing the
causal graphs to be 6 milliseconds.
Table 2. Ablation study on CLEVRER validation set of how the
source (i.e., perception or simulation) of predicted collision for an
option affects the option accuracy. The number of options and
accuracy are reported for each source.

Model
determined not determined

#opt. / acc(%) #opt. / acc(%)

NS-DR 20558 / 75.31 12493 / 71.78
CRCGapprox

NSDR 20558 / 95.08 12493 / 71.78

In the CLEVRER dataset, every question-option pair
can be represented as a tuple ⟨Oc, o1, o2⟩. To evaluate the
effectiveness of CRCGapprox in improving baselines, we
have divided these tuples into two sets based on whether
the answer is determined or not. The improvements
on each set are shown in Table 2. We have observed that
CRCGapprox

NSDR performs much better in the first column. The
reason is that collisions detected directly from the video
using Mp in NS-DR are generally more accurate than the
collisions predicted usingMs simulation from frame 1 on-
wards. Applying CRCG significantly enhances the option
accuracy from 75.31% to 95.08% for those options where
in-video collisions can be used. However, the accuracy re-
mains the same for the remaining options, as both methods
use the same baseline prediction pQ.

5.2. Enhancements for Other Question Types of
CLEVRER

This section describes how we can further enhance
neuro-symbolic models for other question types in
CLEVRER, leveraging their modular architecture. Table 3
presents a comparison of different models’ performance on
the CLEVRER test set, including NS-DR and VRDP mod-
els improved by our approach.

To achieve state-of-the-art performance on all question
categories, we designed two additional modules to improve
the accuracy of perception and simulated states, respec-
tively.
Improved Object Detection (IOD) IOD is a post-
processor for the perception model Mp that reduces its
output noise and errors through two functions: trajectory
smoothing and topmost as center. Trajectory smoothing
draws a virtual line to connect the trajectories and interpo-
lates missing frames. This helps reduce noise and errors in
the output. In addition, since there are missing trajectories
of objects at some frames due to occlusion and errors, top-
most as center uses the topmost point (instead of center) of
an object to trace its trajectory. This is because the topmost
position is less likely to be occluded than the center point.

Table 3. Performance of models among all question categories on
CLEVRER test set. Also, refer to the leaderboard https://
eval.ai/web/challenges/challenge-page/667/
leaderboard/1813.

Model Desc. Explanatory Predictive Counterfact.
opt. ques. opt. ques. opt. ques.

NS-DR [18] 88.1 87.6 79.6 82.9 68.7 74.1 42.2
DCL [6] 90.7 89.6 82.8 90.5 82.0 80.4 46.5
Aloe [8] 94.0 98.47 96.0 93.5 87.5 91.42 75.61
VRDP [9] 93.4 96.3 91.9 95.7 91.4 94.8 84.3
ODDN-Aloe [28] 95.8 98.9 97.0 95.7 91.8 93.0 80.1
CRCGapprox

NSDR+IOD+SPS 95.55 99.94 99.81 88.12 76.64 90.73 78.31
CRCGV RDP +IOD+SPS 96.46 99.32 98.80 96.11 92.28 96.61 90.72

Simple Physics Simulator (SPS) We used the smoothed
trajectories generated by IOD to create a basic physics sim-
ulator, which serves as Ms for predicting and exploring
counterfactual scenarios. Our simulator represents the mo-
tion of objects in a two-dimensional space, where each ob-
ject is treated as a point and follows simple kinematic equa-
tions to determine its movement.

6. Experiments with CRAFT
The CRAFT dataset [2] contains 10,000 videos that de-

pict causal relationships between falling and sliding objects.
It also includes 57,000 questions. CRAFT differs from
CLEVRER by introducing additional events and presenting
many different environments that feature various configura-
tions of immovable objects such as ramps and baskets. The
questions in the dataset are divided into three categories, but
we only consider counterfactual questions.

Figure 6. Screenshots from sample CRAFT video #1,179.

As there are no baselines for CRAFT that provide the
necessary intermediate information for constructing causal
graphs – such as object static features (e.g. color, shape,
size) and in-video collision information – we explore an al-
ternative approach. Specifically, we take advantage of GPT-
x, a large language model, as a proxy for a simulator (de-
noted asMs in Figure 4), by utilizing the textual descrip-
tions of the videos available within the CRAFT dataset. For
example, a description-query pair for video #1,179 (shown
in Figure 6) from the test set is:

Start. Large cyan circle collides with small yellow circle.
Small purple triangle enters basket. Large cyan
circle collides with small yellow circle. Small purple
triangle collides with basket. End.

Will the tiny purple triangle end up in the basket if the
large cyan circle is removed?
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We compare three settings: vanilla GPT-x, CRCGapprox

using GPT-x as a proxy simulator, and another GPT-x case
where we give a modified prompt by leveraging the “deter-
mined” information obtained as part of CRCGapprox. 4

GPT-x The baseline GPT-x model receives two inputs:
natural language descriptions of the scenes in the CRAFT
dataset, and a prompt generated from video descriptions
and a question. It then outputs an answer, such as “Yes”
or “No”.

CRCGapprox
GPTx Since we input natural language descrip-

tions of the scenes, we extend the question parser to ex-
tract symbolic information, such as removed objects Oc

and in-video collisions C from both the question and the
video description. Subsequently, the ASP implementa-
tion of CRCGapprox converts this information into a causal
graph and determines whether the result of the question is
determined. If it is, in-video collisions C are used to
answer the question. Otherwise, we resort to the baseline
GPT-x prediction as in the first setting.

GPT-x with CRCG guided prompt Similar to the
second setting, the process first checks if the result is
determined. If not, we default to the baseline GPT-x
prediction as in the first setting. Conversely, if the result is
determined, we rephrase the given counterfactual ques-
tion (e.g., ”Will the blue circle fall to the ground if the large
blue triangle is removed?”) as a perception question (e.g.,
“Did the small blue circle fall to the floor?”), and then use
GPT-x to answer it.
Table 4. Accuracy on counterfactual questions in CRAFT test
dataset

Model
Easy Split Hard Split
Ques.(%) Ques.(%)

LSTM-D [2] 55.89 56.00
BERT-D [2] 80.05 79.34
GPT-3.5 52.29 52.53
CRCGapprox

GPT3.5 65.32 68.48
GPT-3.5 with CRCG guided prompt 63.26 65.89
GPT-4 77.93 81.20
CRCGapprox

GPT4 79.68 83.64
GPT-4 with CRCG guided prompt 78.07 81.22

Table 4 compares the performance of the aforementioned
cases with the LSTM-D and BERT-D models from [2]. The
comparison is based on both the ”easy” and ”hard” splits
of counterfactual questions in the CRAFT test set. While
LSTM-D and BERT-D also take questions and textual de-
scriptions of scenes as input, they need to be trained on ap-
proximately 34K training instances. In contrast, all GPT-x-
based methods are in a few-shot setting.

4The GPT-3.5 model used in our experiments is “gpt-3.5-turbo-0613”,
the GPT-4 model used is “gpt-4-0613” and the temperature is set to 0 for
all experiments.

Table 5. Accuracy on counterfactual questions in CRAFT test
dataset whose results are determined.

Model
Easy Split Hard Split
Ques.(%) Ques.(%)

GPT-3.5 57.62 53.99
CRCGapprox

GPT3.5 97.96 99.00
GPT-3.5 with CRCG guided prompt 91.58 91.69
GPT-4 92.55 92.11
CRCGapprox

GPT4 97.96 99.00
GPT-4 with CRCG guided prompt 93.00 92.19

To better understand the effectiveness of CRCG, we
compared the test accuracy on 1,128 counterfactual ques-
tions (out of 3,489) whose results were determined. The
results are presented in Table 5. The CRCGapprox

GPTx mod-
els achieved an impressive 97.96%/99% accuracy on the
easy/hard split, which is much higher than their respective
GPT-x baselines. Notably, using determined to guide
the GPT-x prompt also improved the baseline accuracy by
about 13% for GPT-3.5, demonstrating that prompt engi-
neering can greatly benefit from the causal graph. Note
that CRCGapprox

GPT3.5 and CRCGapprox
GPT4 have the same perfor-

mance, this is due to the fact that for the determined cases,
the solution is found without using the simulator, thus in
both cases no simulator is used and the ASP programs are
identical.

There are other similar benchmarks like CLEVRER
and CRAFT that deals with counterfactual reasoning un-
der physics constraints, such as ComPhy [7] and Cophy [3].
We believe that our approach is applicable to these datasets
as well, but the required frame-by-frame simulator is non-
trivial to build and we couldn’t find a publicly available one.

7. Conclusion

In this paper, we present a method for strengthening
neuro-symbolic models by identifying the relation between
actual and counterfactual states via explicit causal reasoning
in answer set programming. Our method improves upon the
baseline as long as perception is more accurate than simula-
tion (which is typically the case), while using the same per-
ception/simulation modules. As the experimental analysis
shows, a further improvement is possible with a more accu-
rate simulation module; this is again a benefit of the modu-
lar architecture. Moreover, the computation of our approach
is interpretable, which led us to improve some modules by
augmenting them with additional computation.
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